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Summary points

• The field of precision public health (PPH) has emerged as a response to the increasing

availability of genomics, biobanks, and other sources of big data in healthcare and public

health.

• The field has evolved starting with genomics to include multiple practical applications

such as pathogen genomics that address population health.

• PPH can expand understanding of health disparities, advance strategic public health sci-

ence, and demonstrate the need for innovation and workforce development.

• In the coronavirus disease 2019 (COVID-19) era, rapidly evolving scientific innovation

can have a long-lasting impact on PPH beyond the pandemic.

• Further developments in PPH will require global, national, and local leadership and

stakeholder engagement.

Introduction

In the past few years, precision public health (PPH) has emerged as a multidisciplinary field

[1,2] that relies on big data and data science [3] to drive public health assessment, policy, and

implementation activities. The use of the word “precision” in the context of population-level

activities as opposed to individualized precision medicine interventions has generated a variety

of reactions [4–7]. The word is traditionally applied to individuals and may seem at odds with

public health efforts focused on improving population health. In addition, as the field of preci-

sion medicine has so far identified mostly with genomic medicine, there was concern about its

silence on social and environmental determinants that are important drivers of population

health. An online dialogue and a paper elaborated on the tension between precision medicine
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and population health and the need for both personalized and population-level interventions

to improve health [8]. Increasingly, big data offer opportunities for wider implementation of

PPH approaches together with methodological strategies to address potential limitations.

Recently, a special series of articles explored the topic of PPH in Frontiers in Public Health
[9]. In their introductory editorial, Weeramanthri and colleagues [10] discussed how the term

was introduced in Western Australia as a way to use genomics, spatial technology in health,

and data linkages to complement the developments in “precision medicine,” a term used in a

2011 US National Research Council Report [11]. In 2015, the US government launched its pre-

cision medicine initiative [12], focusing on cancer and the development of a large cohort of a

million or more participants for a longitudinal study of health and disease (AllofUs Research

Program) [13]. In 2016, the concept of PPH was introduced in the peer-reviewed literature as

a call to modernize surveillance and information systems, as well as targeted interventions

from a population health perspective [1]. In 2019, we elaborated on the notion of PPH as

much larger in scope than individual genomic variation [14], as well as the need to use novel

data sources and analytics to modernize public health tracking and implementation by time,

place, and persons [14]. While we recognize that PPH is a global issue, national public health

systems and their approaches do vary significantly. Therefore, in this review we focus mainly

on the US health and public health system to demonstrate important points and examples.

From genomics and big data to precision medicine and PPH

In the past decade, we have seen an explosion in health- and non-health-related data. With elec-

tronic health records, genomic and other biomarkers, and emerging use of wearable biomonitor-

ing devices, the sheer amount of information available for population analysis is large and

increasing exponentially [2]. Perhaps as opposed to “small data,” big data are “too complex and

varied to be contained in one spreadsheet or sometimes even in one computer” [15]. Big data can

be integrated from many sources related to people, places, and time, such as geographic informa-

tion systems, electronic health records, digital biomarkers, online apps, and social media.

Banks [15] recently reported some staggering numbers about big data. Examples include an

estimated worldwide health data of 2,314 exabytes (1018 bytes) in 2020 and 25 petabytes (1015

bytes) of genomic data by 2030. A single typical hospitalization generates about 150,000 pieces

of data, and the market for wearable devices that can capture health related is projected to be

at $16.3 billion in 2022 [15].

Big data enable the potential for more “precision” in medicine and public health. In theory,

more data at the individual level can help redefine the meaning of healthy and the progression

from health to disease, helping to uncover preventable disease risk factors and allowing more

precision diagnostic and prognostic information. At the population level, big data can help

integrate multiple social and environmental risk factors such as air pollution, neighborhood

walkability, and access to healthy food.

Table 1 summarizes our take on the evolving definitions in medicine and public health in

relation to how genomics and “precision” have influenced these fields. It is important to

acknowledge at the outset that addressing health problems in a population requires the appli-

cation of individual medical approaches [16] and population-level approaches [17,18].

Improving the health of populations is not only about delivering the most optimal healthcare

but is about working across all determinants of health, ranging from genetic and biological fac-

tors to social and environmental determinants of health. The completion of the human

genome project led to a new era of genomic medicine [19] driven by genetic information in

individuals. In parallel, the field of public health genomics arose as an approach to use genomic

information to improve the health of populations. However, the recent evolution of genomic
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medicine to include other types of information led to the rise of “precision medicine,” which

seeks to personalize medical interventions at the individual level. PPH is more than the appli-

cation of genomics in populations. Beyond genomics, all kinds of data can be used in measur-

ing determinants of health and impact of interventions. If precision medicine is about

delivering the right intervention to the right individual at the right time, PPH can be simply

viewed as delivering the right intervention to the right population at the right time. Put in

another way, PPH is “about using the best available data to target more effectively and effi-

ciently interventions of all kinds to those most in need” [7].

Current applications in PPH

There are several current or near-term potential applications of genomics and big data in

PPH, including a focus on modernizing public health surveillance, development of targeted

interventions to implement effective interventions to improve health and reduce health dispar-

ities, the use of machine learning in public health, and special applications of pathogen geno-

mics in the public health response to infectious diseases. Recent studies, commentaries, tools,

and applications in PPH can be searched in the curated and continually updated Centers for

Disease Control and Prevention (CDC) Public Health Genomics and Precision Health Knowl-

edge Base [20] for specific health conditions or public health issues.

Public health surveillance in the era of big data

An emerging priority for public health is the use of information technology (IT) and data sci-

ence in enhancing public health surveillance. Surveillance has been defined as the systematic,

ongoing collection, management, analysis, and interpretation of data to stimulate and guide

action [1]. Broadly, surveillance includes traditional case counting as well as surveys, registries,

real-time monitoring systems (such as used by the National Syndromic Surveillance Program),

and specialized studies. As recently reviewed by Dolley [21], big data’s most cited use in public

health is to improve disease surveillance and “signal detection.” The richness of emerging data

by place, persons, and time has the potential to accelerate public health surveillance and early

disease detection and community health issues. Below are some examples.

Table 1. Genomics, precision medicine, and PPH: Definitions and comparisons.

Medicine Public Health

Medicine is the art and science of practice for

diagnosing, treating, and preventing disease. [16]

Public health is “the science of protecting and

improving the health of people and their

communities.” [17]

What we as a society do collectively to ensure the

conditions in which people can be healthy [18]

Genomics Genomic medicine is an “emerging medical

discipline that involves using genomic

information about an individual as part of their

clinical care.” [19]

Public health genomics is a multidisciplinary field

concerned with the responsible and effective

translation of genome discoveries into improved

population health.” [20]

Precision Precision medicine is “a novel approach to

treatment and prevention that takes into account

differences in lifestyle, environment, and

biology.” [12]

The right intervention to the right patient at the

right time.

PPH is a novel approach that uses big data science

and technology to improve population health and

reduce health disparities.

The right intervention to the right population at the

right time.

Abbreviation: PPH, precision public health

https://doi.org/10.1371/journal.pmed.1003373.t001
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Place. Using small-area analysis, we might be able to uncover pockets of health disparities

that are often masked in analyses performed on areas such as counties or states. For example, a

local-burden-of-disease analysis of child mortality under the age of 5 years across 46 African

countries [22] showed that when mortality was analyzed at a high spatial resolution, new maps

showed major disparities in child mortality even though overall progress was reported at the

country level. Another example is the use of neighborhood deprivation metrics that can assess

health outcomes and disparities within regions (for example, affluent towns may have pockets

of health deprivation) [23]. Another example is a recent study [24] of census tracts across the

US that classified social determinants of health measures using indices of advantage, isolation,

opportunity, and migrant cohesion and accessibility. The analysis was conducted by 7 neigh-

borhood typologies, which included an extreme poverty group. Social determinants of health

indices were associated with premature mortality rates. This and other studies using geospatial

approaches can quantify social determinants of health more precisely than using single indica-

tors and thus could capture better the underlying complexity and heterogeneity of these fac-

tors. Thus, more “precision” in geographic, community, and health system analysis can

pinpoint how best to target interventions to reduce morbidity in difficult-to-reach subpopula-

tions and thus help reduce disparities.

More geographic precision can allow for public health resources to be used more efficiently.

An example discussed by Dowell and colleagues [2] is that the Aedes aegypti mosquitoes that

transmit dengue, Zika, and chikungunya viruses are unlikely to spread these infections if they

carry a benign bacterium, Wolbachia. Wolbachia-carrying mosquitoes can be used to displace

A. aegypti and reduce viral transmission, but the wide global prevalence of these viruses could

make this approach costly. Using disease prevalence information and geospatial modeling has

identified with more precision pinpointed areas that can serve as best candidates for introduc-

ing Wolbachia as a public health intervention, which can address 90% of mosquito-borne dis-

ease burden.

Persons. Similarly, big data are allowing a more in-depth assessment of health outcomes

and disparities according to characteristics of patients and providers, beyond the use of tradi-

tional indicators such as age, sex, and race/ethnicity. Biomarkers, including genomics, are

increasingly used to stratify disease outcomes and susceptibility into subgroups that reflect

underlying heterogeneity and potential response to interventions. Public health surveillance

systems, such as cancer registries, are benefiting from more precise diagnostic classification of

cancers using biomarkers of etiology and treatment response [25].

Another example of personal heterogeneity is cholesterol education as a public health effort.

A one-size-fits-all campaign could miss the diagnosis of individuals with familial hypercholes-

terolemia (FH), a genetic disorder affecting 1 in 250 people that remains largely undiagnosed

and requires more intense identification; high-intensity low-density lipoprotein (LDL)-lower-

ing drugs; and cascade screening in families [26]. FH represents a prototype for PPH as it

points to the need to ascertain a high-risk population subgroup of a million or more individu-

als in the US that need aggressive treatment and cascade screening in families [26].

Time. Most population surveys rely on cross-sectional measurements of health indicators

and risk factors. Big data may also improve precision through analysis of repeated measure-

ments of the same variables over time. The use of personal devices such as wearable sensors

and smartphones [27] can provide measurement of variability over time for various health

indicators such as nutrition, physical activity, and blood pressure. Smartphones (and devices)

are used increasingly to deliver evidence-based interventions (e.g., diet and nutrition pro-

grams, psychotherapy, and exercise). The data, when ethically collected through digital

devices, may complement existing public health efforts in measuring population health out-

comes and disparities. A recent study evaluated the use of wearable technologies to monitor
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the rate of influenza-like illness (ILI) at the population level [28]. As acute infections can cause

an individual to have an elevated resting heart rate (RHR) and change in daily activities, the

study evaluated whether population trends of seasonal respiratory infections, such as influ-

enza, could be identified through wearable sensors that collect RHR and sleep data. The results

indicated that data from wearable devices significantly improved ILI predictions over baseline

models.

Public health implementation science and strategies in the era of big data

Big data may also provide insights for the conduct of the next generation of implementation

research that seeks to accelerate the translation of evidence-based discoveries into improved

population health [14]. Below are some current examples of how big data could be used, by

place, persons, and time, to accelerate implementation strategies of proven health interven-

tions and address health disparities in population subgroups.

Place. Implementation studies can evaluate costs, effectiveness, and efficiency of interven-

tions in real-world settings in the contexts of communities and health systems, with the goal of

delivering interventions optimally across populations. The use of machine learning and deci-

sion support tools are increasingly adapted to specific health systems. Engelgau and colleagues

recently discussed how tools of big data analytics can help identify barriers and facilitators for

optimal implementation of interventions within the contexts of health and community poli-

cies, health systems, and community resources [29].

One specific example is the successful use of big data and analytics in pharmacy-based med-

ication management to identify patients at highest risk for medication noncompliance or

adverse effects [30]. Big data also offer important opportunities for assessing environmental

and neighborhood-level factors that can increase vulnerability of populations, including den-

sity of tobacco and liquor retailers, walkability, environmental exposures, and affordable hous-

ing availability [31].

Persons. To reach subpopulations with unique health conditions, targeted intervention

strategies will be needed. For example, although evidence-based recommendations exist for

breast cancer and colorectal cancer screening for the “average” population, they do not apply

to the 2 million or more individuals in the US with hereditary cancers that confer increased

risk of colorectal cancer (Lynch syndrome) and hereditary breast and ovarian cancer due to

BRCA mutations (HBOC) [32]. For both HBOC and Lynch syndrome, more “precision” evi-

dence-based guidelines exist to reduce the burden of cancer in affected persons and their rela-

tives. In the US, current public health implementation activities focus on translating and

implementing these recommendations through the combination of surveillance, epidemio-

logic and health services research, communications, and partnerships. More recently, the

National Cancer Moonshot Initiative has funded several implementation research projects to

evaluate approaches in different populations and health systems for identifying and providing

care for individuals with inherited cancer syndromes and their relatives [33].

Time. Smartphone and online apps can use big data to allow real-world analysis of health

indicators over time for evidence-based interventions (e.g., medication adherence). For exam-

ple, in a recent paper, a randomized clinical trial of adults with poorly controlled hypertension

demonstrated that patients using a smartphone app with repeated measures showed an

improvement in reported adherence to medication use [34]. Under current guidelines, all indi-

viduals in the population are subject to identical blood pressure thresholds to determine

hypertension treatment. But a one-size-fits-all intervention will require the treatment of a

large number of persons to prevent cardiovascular health events over time. Using longitudinal

data on blood pressure facilitated by new technologies, the next generation of implementation
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research will allow estimates of intervention effectiveness tailored to each person, or subgroups

of individuals with similar genetic, behavioral, and environmental profiles.

Big data drawn from social media are also increasingly used not only to enhance public

health surveillance and detection of outbreaks but also to facilitate communication and behav-

ior change in disease prevention and control. A recent review assessed the progress and prom-

ise of social media interventions that could enhance PPH [35]. They cautioned about how little

we know about the health impact of such interventions and the risks of unintended

consequences.

Data science: Machine learning, predictive analytics, and health

disparities

An important scientific foundation for the use of big data in PPH is the emerging potential for

using novel forecasting and predictive analytic methods. Under the rubric of data science,

novel approaches to complex analysis are now increasingly used to integrate data from many

areas to arrive at more precision in measuring health and disease outcomes, which in turn can

be used to improve forecasting and prediction, aiding in decision-making for resource alloca-

tion and implementation strategies. Machine learning denotes a general approach to the pro-

cessing of big data, to learn patterns in the data, and validate patterns for decision makers (e.g.,

these approaches can be deployed to doctors, patients, or policy makers) [36].

One example that demonstrates the potential of machine learning to improve the accuracy

of disease diagnosis comes from medical image analysis, such as automating screening for dia-

betic retinopathy [37]. Patients with diabetes are at increased risk of eye disease. Manual analy-

sis of image data is currently a rate-limiting step that can slow down screening for eye disease

in diabetes. A new branch of machine learning—deep learning—has emerged and promises to

enhance health care decision-making with automated image analysis.

Cancer management and prevention provide examples [38] of important current applica-

tions for the use of big data analytics. One example is the combination of data from multiple

sources (e.g., DNA germ line and tumor sequencing, gene expression, epigenetics, proteomics)

along with clinical patient information and environmental exposures [39] to determine indi-

vidualized cancer therapeutic strategies. A specific application of machine learning analytics is

in breast cancer screening. A recent study [40] developed a machine learning approach to

identify breast cancer using mammograms in large UK and US data sets. The study compared

the system’s cancer predictions and clinical radiologists’ original decisions based on biopsy-

confirmed breast cancer. In the US data set, the approach led to 5.7% fewer false positives and

9.4% fewer false negatives than radiologists. In the UK data set, the results were more mixed.

While promising, this machine learning approach will require further replication and prospec-

tive evaluation in multiple populations.

Overall, so far, data forecasting and predictive analytics have not provided better quantita-

tive risk prediction models than classic statistical methods such as logistic regression analysis

[41]. There are several methodologic issues that need to be addressed before big data analytics

can be used in PPH. These include unrepresentative or selected populations, data inaccuracy

and missing information, measurement issues, and substantial concerns about confounding

and inference about causality. Other issues include deficiencies in model calibration and the

lack of or insufficient data sharing [42].

As discussed in a recent commentary [43], predictive analytics need to have a clear purpose.

The current literature contains studies on machine learning approaches that have undergone

retrospective testing but not prospective evaluation and validation. As a result, the current

applications of machine learning to healthcare systems remain limited. These limits also apply
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to public health activities that are concerned with measuring disease- and health-related infor-

mation in population subgroups outside the healthcare delivery system.

One important limitation of machine learning is its potential impact on health disparities.

An important tenet of PPH is to reduce health disparities by using big data to quantify health-

related outcomes in subpopulations and use this knowledge to reduce health disparities [2].

However, there are current methodologic deficiencies such as systematic bias that could result

in prediction models inadvertently contributing to a widening of health disparities, especially

in racial and ethnic minority populations. For example, recent studies have consistently shown

that genetic risk prediction models based on genome-wide association studies are less accurate

in non-European populations. This is because most genome-wide association studies have

been conducted in populations of European descent [44].

Another recent example [45] is a study of a machine learning risk assessment tool that is

widely used in US healthcare organizations that has erroneously assigned a large proportion of

Black patients to the same level of health risk as White patients. The authors estimated that

racial bias can reduce the number of Black patients identified for extra care by more than half.

Bias is present because the machine learning algorithm uses health costs as a proxy for health-

care needs. As less healthcare resources are spent on Black patients who have the same level of

need, the algorithm falsely concludes that Black patients are healthier than equally sick White

patients. This is a real example of biased predictive analytics that can widen existing health dis-

parities in the population. In PPH, we need to have a strong emphasis on preserving privacy

and confidentiality, as well as continuously evaluating the ethical, legal, and social implications

of big data and predictive analytics.

The limitations of predictive analytics are even more pronounced in the context of global

health data due to incompleteness and limitations of data for measuring exposures, health out-

comes, and implementation challenges around the world [46]. In this context, resource con-

straints can influence the development and applications of these methods. In addition, issues

of fairness, accountability, transparency, and privacy preservation provide important chal-

lenges to ensure that the promise of big data and predictive analytics to improve health and

reduce health disparities does not lead to unintended effects.

The goal of big data analytics is to improve decision-making both in the clinical setting and

in the population context. Providing outcome probabilities may or may not change physician,

patient, or health system behavior. We need to evaluate the balance between health benefits

and potential harms of specific implementation interventions that use big data analytics [47].

Pathogen genomics and PPH

Since the advent of next-generation genomic sequencing, pathogen genomics has rapidly

transformed infectious disease public health, allowing for more precise detection and investi-

gation of outbreaks, providing insights into disease emergence and transmission, enabling

more accurate and efficient phenotyping of microorganisms, and thus providing more infor-

mation for a PPH response, as compared with existing technologies [48,49].

Molecular subtyping of pathogens has played an important role in infectious disease public

health for decades. Subtyping of pathogens into finer groups often makes outbreaks easier to

detect, for example, and provides data to support or refute suspected transmission of a patho-

gen [48,50,51]. Almost all of these legacy subtyping technologies depend on changes in very

small parts of the pathogen’s genome. Pulsed-field gel electrophoresis (PFGE), for example,

produces a gel pattern that reflects polymorphisms (i.e., small changes in the genetic code) in

perhaps two-dozen sites within a 5-million nucleotide bacterial genome [52]. Multi-locus

sequence typing provides sequence data on only perhaps 7 of 3,000 genes in that genome.
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These technologies are generally very pathogen specific, may vary from laboratory to labora-

tory, and are usually uninformative about function.

Next-generation sequencing (also called high-throughput sequencing) increases by multiple

orders of magnitude the amount of DNA that can be sequenced, allowing for the first time

routine whole-genome sequencing of most pathogens. This not only enables extremely fine

subtyping of those pathogens but also provides information about function—the antimicrobial

resistance of a bacterial isolate, for example, or the presence or absence of a virulence factor

that may affect clinical or public health decisions [52]. These data are inherently standardized.

Moreover, the technology is applicable across the entire spectrum of microbes of public health

importance, leading to a convergence of subtyping methods not just for bacteria but also for

viral and eukaryotic pathogens [48].

In many high-income countries, next-generation sequencing is first being adopted in the

bacterial foodborne disease domain, improving surveillance for such pathogens as Salmonella,

Campylobacter, and Listeria [52]. The extremely fine subtyping provided by whole-genome

sequencing allows prompt detection of outbreaks, usually signaled by the sudden emergence of

a group of pathogens with identical or near-identical sequences. The technology improves

investigation of those clusters by more accurately segregating outbreak from non-outbreak

cases, allows for more precise confirmation of suspected food vehicles, and is a valuable tool in

trace-back investigations. The switch from legacy technologies (mostly PFGE) to whole-genome

sequencing in both the UK [53] and the US [54] has increased both the number of clusters of

disease detected by roughly 2-fold and the number outbreaks solved. All of this is leading to a

clearer picture of how pathogens are entering the food system and how they can be prevented.

The use of whole-genome sequencing in tuberculosis control is similar: extremely fine sub-

typing allows for detection of clusters that might otherwise be invisible [55]. Another example

is Legionnaire’s disease—cluster of disease can be more confidently linked to sources such as

cooling towers. In addition, the technology is providing insights into the ecology of the patho-

gen in water systems—insights that could eventually lead to better prevention [5]. For seasonal

influenza, the paradigm is different: next-generation sequencing is accelerating characteriza-

tion of the virus while providing a high-resolution picture of the dynamics of viral emergence,

information that is now being used to inform vaccine strain selection [56]. Other areas of pub-

lic health impacted by genomics include HIV, healthcare infection control, antimicrobial resis-

tance monitoring, viral hepatitis outbreak surveillance and investigation, vaccine-preventable

disease control, and many others [49].

Looking ahead: Prospects for PPH

Our expectations for big data to lead to more precision in public health depend on the contin-

ued ability to modernize the use of data in healthcare and public health, the conduct of rigor-

ous studies to evaluate the validity and utility of new data-driven approaches, and the need for

innovation in applications of data science and workforce development to help integrate data

science in public health.

Data modernization in healthcare and public health

To achieve PPH, we need data modernization in healthcare. Two perspectives need to be rec-

onciled: insurance-based priorities focused on payments and measurement of population

health outcomes. The science of measuring outcomes is nascent and requires substantial

research, new partnerships, and—importantly—new data.

New data will require new relationships, bringing together existing data in new ways, and

collecting novel data that we don’t have either in healthcare or public health, as well as non-
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health data. To make progress, public health data systems need modernization and more col-

laboration among healthcare systems [57,58]. In turn, inter-digitation of public health data sys-

tems with healthcare systems requires robust attention.

It is important to consider the data lifecycle in healthcare, public health, and their intersec-

tion. For example, traditional public health surveillance systems at the state level collect cases

of reportable conditions (such as tuberculosis and most cancers) and electronically notify the

CDC, which collates and analyzes the data. After years of insufficient investment, these systems

are being made interoperable. However, the data moving into the state systems need to be digi-

talized: many still are using phone, fax, paper reports, and incompatible digital formats. The

emergence of the electronic health record presents a tremendous but challenging opportunity

to bring healthcare data into public health directly. The Digital Bridge partnership and its first

use case, electronic case reporting [59], presents a vision for end-to-end flow of data. The

enabled analysis will serve healthcare providers and public health with information needed for

better, more efficient decision-making, at both the clinical and population levels.

These systems and others need modernization in terms of IT and data science. Challenges

include the complex organization of healthcare and public health, myriad laws and policies

that vary by jurisdictions, and building in the capacity to surge and scale in times of emer-

gency. Overcoming these challenges will require an investment and recruitment of talent. For

example, one recent success is the CDC’s National Syndromic Surveillance Program, which

capitalized on prior investment in BioSense, modernized its systems, partnership, and tools to

create a national community of practice that made contributions to public health, not only

every day but in times of local and national emergency [60,61].

Genomic testing and other precision health technologies such as digital biomarkers will

increasingly present an additional source of critical data to improve health outcomes that, as

yet, have not been incorporated into electronic medical record systems. How to make good

use of emerging genomics data starts with the modernization of public health and healthcare

data systems.

Public health multidisciplinary strategic science

Ultimately, approaches to the application and practice of PPH will shape its impact. Two

opportunities for increasing the impact of PPH practice are the use of a multidisciplinary

approach and the application of a strategic science lens.

Nearly all sectors of society are increasing the use of big data and expanding possibilities for

multidisciplinary approaches to PPH. Early on, PPH practice demonstrated the power of over-

laying geospatial and health data as a means of capturing the “place” [2]. Data from myriad

sources can be used to broaden a multidisciplinary lens both for individual and for popula-

tion-level data [26]. Multi-layered use of place-based environmental data, population-level

economic data, and neighborhood-level data can illuminate a range of new determinants of

health outcomes. In this way, the practice of PPH will likely expand intervention recommen-

dations from the level of individual behavior to the realm of policy and systems change [62].

This reshaping of heath determinants could advance health equity and foster multisectoral

approaches to public health.

While clearly beneficial, a multidisciplinary approach to PPH will exponentially increase

the volume of potentially relevant big data for public health analysis. Prioritization can be

guided by a “strategic science” lens. Strategic science, loosely defined, is high-quality science

that guides practice and informs policy to optimize public health impact. It starts with asking

the right questions to identify what public health problems and interventions will impact pub-

lic health’s explicit goals—decreasing morbidity and mortality and increasing health equity.
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Consideration of optimization of impact incorporates economic data, allowing for a more

pragmatic approach to maximizing impact within the constraints of available resources.

Need for ongoing innovation and workforce development

Across the public health ecosystem, organizational norms regarding data, innovation, and the

workforce are shifting. As we look to harness big data to deliver PPH, commensurate invest-

ments in workforce development and innovation are needed to explore and understand its

value, diverse challenges, and opportunities in today’s evolving digital healthcare

environment.

In today’s digital environment, organizations that succeed in transforming and moderniz-

ing couple their human capital with systems and technology that are interoperable and accessi-

ble and provide data that support timely action [63]. As organizations rapidly move from

siloed legacy infrastructure to dynamic, cloud-based environments, the enterprise becomes

digitally oriented, and the capabilities of the workforce become more critical. The days of sin-

gle-function work units are being eclipsed by demand for units that make strong use of emerg-

ing innovations and technologies such as artificial intelligence, machine learning, and the

internet of things. Across the public health system, organizations must embrace these changes

as opportunities and explore ways to augment internal capacity to support advanced tools and

capabilities. Likewise, workforce development and human capital enhancement will be needed

to take full advantage of the opportunities for growth.

Advanced tools, methods, and capabilities, such as big data analytics, are needed to achieve

the promise of PPH and transform big data into insights, strategy, and action. In the private

sector, high-performing organizations are more likely to use analytics to guide all decision-

making, big or small, and at all levels of the organization [64]. Leveraging big data analytics for

PPH is an opportunity in which the potential gain outweighs the harm or loss that could

impact public health practice if no action is taken. Taking these and other intelligent risks

requires a tolerance for failure and an expectation that innovation is not achieved through sup-

port of only successful endeavors. Organizations that invest in innovation realize that potential

caveats and limitations are inherent to the process and take steps to manage the risks [65].

Realizing the value of advanced analytics for PPH will necessitate critical workforce transfor-

mation and reduction of the cultural and technical barriers to innovation and intelligent risk

taking.

Concluding remarks: PPH in the era of COVID-19

The field of PPH is clearly in its infancy, and many challenges lie ahead. Perhaps the biggest

challenge of our time is the current pandemic of coronavirus disease 2019 (COVID-19). The

rapid emergence of a novel coronavirus [66] has facilitated an accelerated use of the applica-

tions of “big data” tools and technologies discussed in this paper to the investigation of

COVID-19. Just to illustrate, we cite the use of whole-genome sequencing [67–69] to track the

virus origin and spread; detailed geographic information to track spread at the global, country,

and local levels [70]; the use of smartphone-based tracking and control [71]; and rapid charac-

terization of risk factors related to severe disease such as age, underlying medical conditions,

and smoking [(72]. The role of host genomic factors is beginning to be explored [73]. Use of

machine learning and data science is contributing to prediction of diagnosis and complica-

tions [74–76]. A recent commentary summarized the potential applications of emerging digital

technologies [77] in augmenting public health strategies for tackling COVID-19, including

public health surveillance, detection and control, and mitigation of its impact on healthcare

delivery. In addition, while digital approaches to large-scale data collection can aid the
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investigation and control of COVID-19, ethical and social issues need to be considered, such

as privacy and public trust. This will provide the opportunity to develop best practices for

responsible data collection and processing globally [78]. The COVID-19 pandemic provides

both a challenge and a call to action for further evolution of PPH, as new tools and technolo-

gies will begin to complement medical and public health approaches to diagnosis, treatment,

control, and prevention [79]. In these challenging times, further developments in the field

will require global, national, and local leadership and commitment to enhance coordination

of systems; sharing, harmonization, integration, and evaluation of data; robust stakeholder

engagement; and support for the infrastructure and expertise needed to achieve the promise of

PPH.
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