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ABSTRACT
The expansion of outer radial glia (oRGs, also called basal RGs) and intermediate progenitor cells
(IPCs) has played a key role in the evolutionary expansion and folding of the neocortex, resulting
in superior sensorimotor and cognitive abilities. In particular, oRGs, which are critical for both the
increased production and lateral dispersion of neurons, are rare in lisencephalic species but vastly
expanded in gyrencephalic species. However, the mechanisms that expand oRGs and IPCs are not
well understood. We recently identified Sonic hedgehog (Shh) signaling as the first known
signaling pathway necessary and sufficient to expand both oRGs and IPCs. Elevated Shh signaling
in the embryonic neocortex leads to neocortical expansion and folding with normal
cytoarchitecture in otherwise smooth mouse neocortex, whereas the loss of Shh signaling
decreases oRGs, IPCs, and neocortical size. We also showed that SHH signaling activity in fetal
neocortex is stronger in humans than in mice and that blocking SHH signaling decreases oRGs in
human cerebral organoids. Shh signaling may be a conserved mechanism that promotes oRG and
IPC expansion, driving neocortical growth and folding in humans and other species.
Understanding the mechanisms underlying species-specific differences in Shh signaling activity
and how Shh signaling expands oRGs and IPCs will provide insights into the mechanisms of
neocortical development and evolution.
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Introduction

The neocortex, a 6-layered structure that computes
high-order sensory, motor, and cognitive processes, is
both a hallmark and a remarkably divergent part of
mammalian brains. Although the layering and thick-
ness of the neocortex remained relatively constant
over the course of evolution, its surface expanded dra-
matically and folded in certain species, resulting in
superior sensorimotor and cognitive abilities. Neocor-
tical expansion and folding require 2 coordinated
processes that depend on neural progenitors: the
increased production of neural cells and their lateral
dispersion.1-4 The primary neural progenitors are
radial glia (RGs), whose cell bodies reside in the ven-
tricular zone (VZ) at the apical side of the developing
brain and are thus called ventricular RGs (vRGs) or
apical RGs (aRGs). vRGs have a radial process that
extends to the pial surface and serves as a scaffold for
the migration of newborn neurons toward the cortical
plate, where later-born neurons settle above early

born neurons to form distinct neuronal layers in an
inside-out fashion. vRGs produce neurons directly or
indirectly via intermediate progenitor cells (IPCs) or
outer RGs (oRGs, also called basal RGs) that occupy
the subventricular zone (SVZ) basal to the VZ.5-11

Recent studies suggest that the expansion of oRGs,
which not only increases neuron production but also
spurs the lateral dispersion of neurons via radial pro-
cesses of oRGs, plays a critical role in neocortical
growth and folding.12-20 Consistently, oRGs are rare
in species with small/smooth brains but are greatly
expanded in species with large/folded brains.10-14,19

Nonetheless, oRGs are present in all the mammalian
lineages that have been examined.14,19,21,22 Further-
more, neocortical folding is prevalent in many mam-
malian lineages, including marsupials and even
egg-laying monotremes (http://neurosciencelibrary.
org/index.html). Therefore, mechanisms to induce
oRG expansion and neocortical growth and folding
appear to have been conserved from a common
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ancestor of mammals but selectively fortified or inacti-
vated in different lineages, giving rise to large/folded
or small/smooth brains.14,19,21-23 Recently, we pro-
vided evidence indicating that Sonic hedgehog (Shh)
signaling has been central to these mechanisms24

(Fig. 1).

Shh signaling expands oRGs and IPCs, leading to
neocortical growth and folding in mice

Shh signaling is a conserved mechanism that regulates
many aspects of animal development. Notably, muta-
tions that attenuate SHH signaling cause microcephaly
in humans,25-27 suggesting that SHH signaling regu-
lates brain size in humans. In mice, the loss of Shh sig-
naling in the neocortex decreases its size;28 however,
the gain of Shh signaling did not increase the

neocortical size but disrupted the patterning and spec-
ification of neural progenitors.29-32 To study the role
of Shh signaling in neocortical development beyond
patterning and specification, we conditionally
removed or activated Smoothened (Smo, an activator
of Shh signaling) by using GFAP::Cre, which induces
recombination at embryonic day 13.5, when the pat-
terning and specification of neural progenitors has
already been established. The expression of a constitu-
tively active form of Smo (SmoM2) in vRGs and their
progenies in GFAP::Cre; SmoM2fl/C (SmoM2 mutant)
mice significantly increased the size of the neocortex.
Remarkably, SmoM2 induced folding in the cingulate
cortex without affecting the normal cytoarchitecture.
As in the folded brains of larger mammals, in which
upper-layer (layer II and III) neurons are much more
expanded than are deeper-layer neurons and the white

Figure 1. In species with a large and folded neocortex, oRGs and IPCs are expanded in the cortical SVZ, which is divided into the inner
and outer SVZs (iSVZ and oSVZ). SHH promotes this expansion, leading to neocortical growth and folding. Mechanistically, SHH expands
oRGs by increasing their self-renewal and production from vRGs and expands IPCs by increasing their self-amplifying divisions in the
SVZ. Shh in mice and SHH in humans are highly expressed in the VZ of the ventral forebrain, suggesting trans-ventricular delivery of
SHH proteins to the neocortex.
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matter extends into the gyri, upper-layer neurons were
specifically increased in the folded cingulate cortex of
SmoM2 mutants, and the corpus callosum was
extended into the folded area. Upper-layer neurons
were not increased in the lateral part of the neocortex
that did not show folding, suggesting that increased
upper-layer neurons induced neocortical folding. The
medial-to-lateral gradient of the upper-layer neuron
increase reflected the expression pattern of SmoM2 in
GFAP::Cre; SmoM2fl/C mutants. The expression of
SmoM2 in Nestin::Cre; SmoM2fl/C or Nestin::CreER;
SmoM2fl/C mice, which do not show such a SmoM2
expression gradient, induced folding outside the cin-
gulate cortex too. Therefore, the mechanism that
underlies neocortical folding in SmoM2 mutants must
be a general one rather than being specific to the
cingulate cortex.

To understand the cellular mechanism by which
SmoM2 expanded upper-layer neurons, we investi-
gated whether and how SmoM2 changed the number
and behavior of neural progenitors. The number of
vRGs was not changed, but the numbers of oRGs and
IPCs were greatly expanded in SmoM2mutants. Nota-
bly, SmoM2 expanded oRGs and IPCs via distinct
mechanisms by affecting the behavior of all 3 types of
progenitor. SmoM2 did not affect the proliferation
rate of oRGs or vRGs, but it increased self-renewal of
oRGs and changed the vRG division modes to pro-
duce more oRGs and fewer IPCs and neurons. vRGs
dividing on an axis horizontal to the ventricular sur-
face mostly produce neurons or IPCs, whereas those
dividing nonhorizontally produce oRGs.11,33 Nonhori-
zontal divisions were markedly increased in SmoM2
mutants, as compared to controls. Thus, SmoM2
expanded oRGs by promoting their initial generation
from vRGs and their subsequent self-renewal. In con-
trast, SmoM2 decreased the generation of IPCs from
vRGs but increased their proliferation and self-ampli-
fying divisions, leading to their great expansion in the
SVZ. Similarly, IPCs of primates divide to make more
IPCs before producing neurons,12,34 whereas IPCs of
mice and rats mainly divide just once to produce
2 neurons.6-8

Consistent with the results of gain-of-function
experiments, we found that endogenous Shh signal-
ing is required to expand oRGs, IPCs, upper-layer
neurons, and the neocortex. The loss of Shh signal-
ing in GFAP::Cre; Smofl/fl mutants caused pheno-
types opposite to those of SmoM2 mutants.

Compared to wild-type mice, the GFAP::Cre; Smofl/fl

mice had abnormally small brains with fewer upper-
layer neurons, significantly fewer oRGs and IPCs
(but a similar number of vRGs), and a decreased
proportion of vRGs dividing nonhorizontally. Taken
together, these findings show that Shh signaling pro-
motes key developmental characteristics of large and
folded brains, namely oRG expansion and self-
amplifying IPC division, which a comparative study
of 102 mammalian brains proposed to be necessary
and sufficient for the evolution of an expanded and
folded neocortex.35

Shh signaling is required for human oRG
expansion

Based on our mouse study, we predicted that Shh sig-
naling activity would correlate with the number of
oRGs and IPCs and be stronger in gyrencephalic spe-
cies than in lisenscephalic species. Indeed, by compar-
ing RNAseq data and the results of in situ
hybridization experiments, we found that SHH signal-
ing activity is stronger in human fetal neocortex than
in mouse embryonic neocortex. Furthermore, the
developmental change in SHH signaling activity corre-
lated with oRG expansion in human fetal cortex. In
mice, the regional difference in Shh signaling activity
in the neocortex correlated with the number of oRGs.
A previous study in ferrets showed that Shh signaling
activity is significantly higher in the VZ area that gives
rise to the thick SVZ containing many oRGs than in
the VZ area that gives rise to the thin SVZ containing
fewer oRGs.36

To functionally test whether SHH signaling
expanded human oRGs and IPCs, we employed
human cerebral organoids that recapitulate key fea-
tures of the developing human cortex, including abun-
dant oRGs.37-41 In contrast to mouse vRGs, but similar
to human vRGs in slice culture,33 more than half of
the vRGs in the organoids divided nonhorizontally.
SANT1 (a Smo inhibitor) strongly decreased the inci-
dence of nonhorizontal division, similar to the low
incidence of nonhorizontal division in mouse vRGs,
and subsequently decreased the number of oRG-like
cells outside the VZ, whereas neither effect was seen
with SAG (a Smo agonist). Accordingly, we showed
that SHH signaling was intrinsically active in the orga-
noids and could be blocked by SANT1 but could not
be further increased by SAG. The number of IPCs was
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very low and was not significantly affected by SANT1
or SAG. These results suggest that Shh signaling pro-
motes oRG expansion in gyrencephalic species.

Conclusion and future directions

Our study showed that Shh signaling promotes oRG
and IPC expansion, leading to neocortical growth and
folding. Shh signaling is the first signaling pathway
with these properties to be identified. This role of
SHH signaling appears to be conserved, at least in
mice and humans. SHH signaling activity is stronger
in human fetal cortex than in mouse embryonic cortex
and correlates with the number of oRGs in both spe-
cies, suggesting that Shh signaling may have played
important roles in the evolutionary growth and fold-
ing of the neocortex. These findings linking Shh sig-
naling with oRG and IPC expansion, neocortical
growth, and evolution raise important questions: what
are the mechanisms underlying the difference in Shh
signaling activity in the developing neocortex of
humans and mice; what are the molecular mecha-
nisms by which Shh signaling differentially affects
3 different neural progenitor types; and are these
mechanisms conserved? The answers to these ques-
tions will provide fundamental insights into the devel-
opment and evolution of mammalian brains.
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