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ABSTRACT

Recent studies have reported hundreds of genes linked to Alzheimer’s Disease (AD). However, many of
these candidate genes may be not identified in different studies when analyses were replicated.
Moreover, results could be controversial. Here, we proposed a computational workflow to curate and
evaluate AD related genes. The method integrates large scale literature knowledge data and gene expres-
sion data that were acquired from postmortem human brain regions (AD case/control: 31/32 and 22/8).
Pathway Enrichment, Sub-Network Enrichment, and Gene-Gene Interaction analysis were conducted to
study the pathogenic profile of the candidate genes, with 4 metrics proposed and validated for each gene.
By using our approach, a scalable AD genetic database was developed, including AD related genes, path-
ways, diseases and info of supporting references. The AD case/control classification supported the effec-
tiveness of the 4 proposed metrics, which successfully identified 21 well-studied AD genes (i.g. TGFB1,
CTNNB1, APP, IL1B, PSEN1, PTGS2, IL6, VEGFA, SOD1, AKT1, CDK5, TNF, GSK3B, TP53, CCL2, BDNF, NGF,
IGF1, SIRT1, AGER and TLR) and highlighted one recently reported AD gene (i.g. ITGB1). The computa-
tional biology approach and the AD database developed in this study provide a valuable resource which
may facilitate the understanding of the AD genetic profile.
© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

(World Health Organization, 2015). Although the cause of most
Alzheimer’s cases largely remains unknown, about 70% of the risk

Alzheimer’s disease (AD) is a chronic neurodegenerative disease
that usually onsets slowly and progresses more rapidly over time
(Burns and lliffe, 2009). It is the leading cause of dementia, begin-
ning with impaired memory, and most often onsets in people over
65 years of age (Mendez 2012). The global prevalence of AD as of
2015 was estimated to be as high as 48 million people worldwide
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is believed to come from a large network of genes (Ballard et al.,
2011). As such, researches into the causes of AD are currently being
explored.

In recent years, an increased number of genetic researches have
been conducted revealing over a thousand altered genes linked to
AD. For example, increased GSK3B activity and decreased phospho-
rylation of the gene have been repeatedly observed in AD cases
(Cole et al., 2007; Koedam et al., 2013; Xu et al., 2016). Significantly
increased expression levels of TP53, PTGS2 and TGFB1 were sug-
gested by many independent studies to be associated with AD
(Cenini et al., 2008; Lanni et al., 2012; Ramalho et al., 2008; Yoo
et al,, 2008; Wang et al., 2014; Luo et al., 2006). Observations from
these previous studies are valuable in studying the genetic basis of
the pathogenic development of the disease.

However, approximately one third of these AD-gene linkages
were reported once with no further replication, and over 60% were
supported by no more than three citations. Moreover, most of
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these studies had small sample sizes that were more susceptible to
noise. Additionally, due to the variation in data collection and pro-
cessing approaches, results from different studies were not always
consistent. Meanwhile, there are dozens of new AD risk genes
being reported every year, posing an increased need for further val-
idation of these candidate genes to AD. While biological experi-
ments were effective towards this validation task, they could be
very costly. To address this issue, we propose a computational
biology approach for a systematic evaluation of these AD candidate
genes.

In recent years, Pathway Studio ResNet relation data have been
widely used to study modeled relationships between proteins,
genes, complexes, cells, tissues and diseases (http://pathwaystu-
dio.gousinfo.com/Mendeley.html). In this study, we integrated
large scale AD related ResNet literature knowledge data, indepen-
dent gene expression data and related pathway/network informa-
tion to study the functional profile of a large gene pool that has
been reported to be linked to AD. The purpose of the study is to
provide an easy-update computational evaluation workflow,
through which an AD genetic database (AD_GD) could be gener-
ated to present a weighted landscape view of the genetic basis
underlying the pathogenic development of AD. Our results support
the hypothesis that AD candidate genes are functionally linked to
each other, forming a large genetic network to regulate the patho-
genic development of AD through multiple pathways.

2. Materials and methods

Fig. 1 presents the diagram of the proposed computational gene
marker evaluation system, with detailed descriptions in the follow-
ing sub-sections. Using our approach, a genetic database (AD_GD)
was developed and deposited into an open source ‘Bioinformatics
Database’ online available at http://database.gousinfo.com, includ-
ing 1699 genes (with metric scores), 151 pathways and 114 dis-
eases that are linked to AD. Also included in AD_GD are
information of 27000+ supporting references for AD-gene relation-
ships, including the titles and relevant sentences where the rela-
tions were identified. The AD_GD database is scalable and will be
updated monthly or upon request using our approach.

2.1. ResNet literature knowledge data
ResNet relation data (AD-Gene) were acquired from the Path-

way Studio ResNet® Mammalian database (http://pathwaystu-
dio.gousinfo.com/ResNetDatabase.html) updated November 2016.

Identify AD genes--
ResNet Data Analysis

Identify AD Pathways
& Diseases-- =>
Enrichment analvsis

U

The ResNet® Mammalian database are a group of real-time
updated literature knowledge databases, including curated signal-
ing, cellular processes and metabolic pathways, ontologies and
annotations, as well as molecular interactions and functional rela-
tionships  (http://pathwaystudio.gousinfo.com/ResNetDatabase.
html). Modeled relation data are extracted from the 41M+ refer-
ences covering entire PubMed abstracts and Elsevier and third
party full text journals. The ResNet database employs an auto-
mated natural language processing-based information extraction
system, MedScan, with precision of over 91% (Daraselia et al.,
2004). Each relationship within the database is supported with
one or more references. By far, Pathway Studio ResNet Databases
is the largest database among known competitors in the field
(Lorenzi et al., 2014).

2.2. Enrichment and gene-gene interaction analysis

Pathway enrichment analysis (PEA) and sub-network enrich-
ment analysis (SNEA) (http://pathwaystudio.gousinfo.com/SNEA.
pdf) was conducted using Pathway Studio to identify genetic path-
ways and diseases potentially linked to AD (Sivachenko et al.,
2007). Furthermore, a pathway based gene-gene interaction
(GGI) analysis was conducted to generate weighted edges/linkage
between genes. The weight of an edge is the number of pathways
where both nodes were included.

2.3. Metrics analysis

For the gene network built through the aforementioned steps, 4
metrics were proposed for each node/gene, including 2 literature
based metric scores (RScore and AScore), and 2 enrichment based
metric scores (PScore and SScore). The logic is that, a gene is likely
linked to AD if it satisfies one or more of the following conditions:
the gene has been frequently observed in independent studies to
be associated with AD (high RScore), plays roles within multiple
pathways associated with AD (high PScore), and demonstrates
strong functional linkage to many of other genes associated with
AD (high SSCore). Additionally, an AScore was proposed to present
the history of each AD-gene relation. The detailed definitions of the
proposed metrics are described as follows.

2.3.1. Two literature metrics

The reference score (RScore) of a gene is defined as the refer-
ence number underlying a gene-disease relationship, as shown in
Eq. (1).

ene-Gene Interaction Analysi

I

enerate node weights
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-- Metrics Analysis
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s

Validation --
AD case/control classification
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Fig. 1. Diagram for the integrative computational marker evaluation approach for AD. First, literature based analysis were conducted to identify the AD related genes, then
Gene-Gene Interaction Analysis, Enrichment analysis, and Metrics analysis were conducted on these gene and results were saved in the AD database. Finally, AD case/control
classification were conducted to test the effectiveness of the identified genes, using gene expression datasets.
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Rscore = The number of references underlying a realitionship
(1)
The age score (AScore) of a gene is defined as the earliest pub-
lication age of a gene-disease relationship, as shown in Eq. (2).
AScore = max ArtilcePubAge; (2)
1<i<n
where n is the total number of references supporting a gene-disease
relation, and

ArticlePubAge = current date — publication date + 1 (3)

2.3.2. Two enrichment metrics

We define a network significance score (SScore) of a node as
Freeman’s formalized node degree centrality (Freeman, 2012), as
defined in Eq. (4).

n
SScore = ij = number of nodes directly linked with current node
J

(4)

where n is the total number of nodes, and j represents all other
nodes within the network; x is the adjacency matrix, in which the
cell x is 1 if the jth node is connected with the current node, other
with is 0.

Given a disease is associated with a set of genetic pathways R
we define the PScore for the gene as Eq. (5).

PScore, = The number of pathways from R including the kth gene

()

2.4. Validation using independent gene expression data

We hypothesized that significant AD related genes should con-
tribute to distinguishing AD patients from healthy controls. To val-
idate the effectiveness of the selected genes and the proposed
metrics, we performed a Euclidean distance-based multivariate
classification (Wang et al., 2015) on two independent gene expres-
sion data sets (NCBI GEO: GSE29378 and GSE28146), followed by a
leave-one-out (LOO) cross validation, using the overall gene set
and the sub-sets selected by different scores as tentative markers.
In each run of LOO, gene expression data of one subject is used for
testing and the rest for training. A permutation of 5000 runs was
then conducted to test the hypothesis that a randomly selected
gene set in same size can reach equal or higher classification accu-
racy (CR).

For dataset GSE29378, RNA expression profile of 64 subjects
(AD case/control: 31/32) were obtained from 60 pm sections of fro-
zen human hippocampus using scalpel dissection. Of the 1699
genes evaluated, 1605 were included in the database. For
GSE28146, brain sections from a total of 30 subjects were analyzed
(case/control: 22/8), with 1621 out of 1699 genes included.

3. Results
3.1. AD genes for evaluation

AD-Gene literature knowledge data analysis identified 1699 AD
genes, supported by 27128 scientific articles (AD_GD — Related
Genes and AD_GD — References for Disease-Gene Relation). A
scalable genetic database, AD_GD, was developed through our
study, which is online available at ‘Bioinformatics Database’
(http://database.gousinfo.com).

Of the 1699 genes, 644 (37.90%) have been reported with one
reference (RScore = 1), 262 (15.42%) with 2, 181 (10.65%) with 3,

and 433 (25.49%) with more than 5 references, as shown in Supple-
mentary Fig. S1(a). Publication date statistics of the 27128 support-
ing references are presented in Supplementary Fig. S1(b), with
novel genes reported in each year (Supplementary Fig. S1(c)). To
note, these articles have an average publication age of only 7.4
years, indicating that most of the articles were published in recent
years.

3.2. Enrichment analysis results

PEA showed that, 1453 out of 1669 genes got significantly
enriched within 151 AD candidate pathways/gene sets (p-values
<1le-15,q=0.001 for FDR; AD_GD — Related Pathways). Not sur-
prisingly, aging (GO: 0016280; overlap 140 genes; q-value =
2.28E—84) is the top one enriched gene group. In addition, 11 path-
ways/groups were related to the neuronal system (619 unique
genes) (Gong and Lippa, 2010; Marcello et al., 2012), 10 to cell
growth and proliferation (441 unique genes) (Hohman et al.,
2015; Li and Yao, 2013), 8 to cell apoptosis (452 unique genes)
(Behl, 2000), 5 to protein phosphorylation (246 unique genes)
(Shapiro et al., 1991), 2 to protein kinase (209 unique genes)
(Martin et al., 2013), 3 to brain function/development (99 unique
genes) (Llorente-Vizcaino and Cejudo-Bolivar, 2001), and 2 to
immune system (268 unique genes) (Heneka et al., 2001). Due to
lack of space, we only present the top 10 pathways enriched in
Table 1 (p-value < 2.6e—55, including 755 out of 1699 genes).

A SNEA was also performed to identify the pathogenic signifi-
cance of the reported genes to other disorders which are poten-
tially related to AD. Interestingly, besides neuropathic related
diseases (e.g., Parkinson’s disease and Schizophrenia) and some
types of cancers (e.g., breast cancer), AD seems to share major gene
overlaps with many blood related diseases (e.g., diabetes mellitus,
obesity, type 2 diabetes, atherosclerosis, ischemia, myocardial
infarction, hyperglycemia and stroke). The full list of 113 disease
related sub-networks enriched with p-value < 1e—~150 (q=0.001
for FDR; 1625 out of 1669 genes enriched; see AD_GD — Related
Diseases).

3.3. GGI results

Fig. 2 presents the genetic network for AD, which was built
through GGI analysis. The nodes of the network are 1453 out of
1669 genes that were enriched within the 151 AD target pathways.
There were 319206 edges within the network, the weight of which
are the numbers of pathways shared by the corresponding pair of
nodes. The average node strength (sum of the number of genes
directly connected) of the network was 219.69, and the node
strength for the 246 unconnected genes was signed with 0.

Along with GGI, SScore and PScore were calculated for each
gene (AD_GD — Related Genes). The value of a PScore represents
how many AD candidate pathways involve the gene, and an SScore
represents how strong of a gene associated with other genes within
the network.

3.4. Validation results

We hypothesized that, if our selected gene set (1669 genes) and
the top genes selected by the proposed metric scores are signifi-
cant to the pathogenesis of AD, they should lead to significant
higher classification accuracy comparing to randomly selected
genes. To test the hypothesis, classification and LOO cross valida-
tion were conducted on two independent public RNA expression
dataset (NCBI GEO: GSE29378 and GSE28146), followed by a per-
mutation test of 5000 runs.

For the LOO cross validation, the 1669 genes were first ranked
by different metric scores, then the top n (n=1, 2 ...) genes were
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Table 1
Top 10 Molecular function pathways/groups enriched by 1669 genes reported.

999

Pathway/gene set name GO ID # of Entities Overlap q-value Jaccard similarity
Aging 0016280 254 140 2.28E-84 0.077
Neuronal cell body 0043025 466 172 4.7E-72 0.086
Neuron projection 0043005 378 153 2.8E-70 0.079
Response to lipopolysaccharide 0032496 252 126 4.9E-69 0.069
Response to hypoxia 0001666 259 127 8.11E-68 0.069
Response to organic cyclic compound 0014070 253 122 1.79E-64 0.067
Response to ethanol 0017036 161 94 4.21E-59 0.053
Negative regulation of apoptotic process 0006916 650 187 1.21E-56 0.086
Perinuclear region of cytoplasm 0048471 688 188 2.11E-55 0.085
Axon 0030424 318 125 2.56E-55 0.066

For each gene set, the p-value was calculated using Fisher’s-Exact test against the hypothesis that a randomly selected gene group of same size (1669) can generate a same or
higher overlap with the corresponding gene set (q = 0.001 for FDR correction). The Jaccard similarity (js) is a statistic used for comparing the similarity and diversity of sample

_ AnB

sets, which is defined by j;(A, B) = 453

where A and B are two sample sets.
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Fig. 2. Gene-gene interaction network for AD. The network contains 1453 out of 1669 genes AD target genes that enriched within the 151 AD target pathways. The weight of
an edge between two nodes is the number of pathways shared by both nodes. The larger the size of a node, the larger the number of AD candidate pathways including the
gene (high PScore); the brighter the color, the larger number of AD candidate genes associated with gene (high SScore). 216 out of 1669 genes were not included in the

network as they were not enriched within the top 151 AD candidate pathways.

Table 2
Permutation test on top genes corresponding to highest CRs.
Data sets Items RScore AScore PScore SScore All genes
GSE29378 (31/32) Max CR (%) 80.95 79.37 82.54 74.60 60.32
#Gene 66 109 20 57 1605
p-value 0.0022 0.004 0.0004 0.03 0.96
GSE28146 (22/8) Max CR (%) 80.00 90.00 83.33 90.00 73.33
#Gene 18 102 25 22 1621
p-value 0.017 0.001 0.0074 0.0002 0.90

used as input variables for classification and LOO cross validation.
Table 2 and Fig. 3 presents the results with the maximum classifi-
cation ratios (CRs) marked at the position of corresponding num-
ber of genes.

From Fig. 3 we see that the top genes selected by different
scores (in descending order) can lead to the highest classifica-
tion accuracies, which are significantly higher than the average
CRs of randomly selected gene set in same size, while adding
more genes with lower score may not necessarily lead to
improved CRs.

3.5. Cross metrics analysis

Results from AD case/control classification (Table 2 and Fig. 3)
showed that, the top genes selected using each of the four pro-
posed metrics led to significantly higher CR compared to randomly
selected gene sets, demonstrating the effectiveness of the proposed
metrics. Therefore, it is worthy to study the overlaps among these
top genes. Cross metrics analysis of the top 5% (86 genes, corre-
sponding to the number of genes reported this years, 2016) of
1699 genes selected using different scores showed that (see Veen
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Fig. 3. Validation of different metrics through a LOO cross validation. (a) Results from GSE29378; (b) Results from GSE28146. Mean of CRs by randomly selected genes are

displayed in a dash-grey line (Legend: Random). The maximum CR by different metrics are presented at the corresponding positions.

diagram at Supplementary Fig. S2), there was strong overlap
between PScore group and SScore group (63/86). Among these 63
genes, 21 were also identified to be within RScore group, including
TGFB1, CTNNB1, APP, IL1B, PSENT1, PTGS2, IL6, VEGFA, SOD1, AKT1,
CDKS5, TNF, GSK3B, TP53, CCL2, BDNF, NGF, IGF1, SIRT1, AGER and
TLR4, with RScore = 542 + 16 refrences, PScore = 29 + 6 pathways,
SScore =969 + 85 connected genes. Network analysis using Path-
way Studio showed that, these 21 genes also demonstrated strong

correlation with the top disorders that are linked to AD (Fig. 4,
highlighted in red). The genes related to these diseases present sig-
nificant overlap with these genes linked to AD (see AD_GD —
Related Diseases). On the other hand, only one gene, ITGB1, was
identified to be the overlap of AScore, PScore and SScore groups
(Fig. 4, highlighted in yellow), which also linked to several other
diseases (e.g., diabetes, stroke and breast cancer) that are geneti-
cally linked to AD.

@ e Biomarker

——> ClinicalTrial

FunctionalAssociation

—@—> CeneticChange
——> QuantitativeChange

Regulation

— —> StateChange

Fig. 4. AD genes selected by cross metrics analysis and their relation with other diseases. The 21 genes that were overlap in RScore, PScore and SScore groups are highlighted
in green; Gene ITGB1 that was the overlap in AScore, PScore and SScore groups and is highlighted in yellow. The network was built using the ‘network building’ module of
Pathway Studio.
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4. Discussion

Recent studies proposed over a thousand of AD risk genes
with dozens of novel targets identified each year. However, over
half of these AD target genes were lack of replication and results
were not always consistent, posing an increasing need of a sys-
tematic evaluate approach to test the significance of these genes
as a network to AD. In this study, we integrated large scale lit-
erature knowledge data, gene expression data and related path-
ways and disease-sub networks to evaluate 1669 AD candidate
genes. Four metric scores have been proposed and validated. A
scalable genetic database, AD_GD, was developed through our
study, which is online available at ‘Bioinformatics Database’
(http://database.gousinfo.com).

PEA results showed that most genes within the network (1453
out of 1699) were significantly enriched (FDR corrected p-value <
1e—15) in the pathways previously implicated with AD, including
pathways/groups related to aging, neuronal system pathways, cell
growth and proliferation, cell apoptosis, protein phosphorylation
brain function/development and immune system (Gong and
Lippa, 2010; Marcello et al., 2012; Hohman et al., 2015; Li and
Yao, 2013; Behl, 2000; Shapiro et al., 1991; Martin et al., 2013;
Llorente-Vizcaino and Cejudo-Bolivar, 2001; Heneka et al., 2001).
These observations support the hypothesis that, most of the AD
target genes are functionally linked to each other and play roles
within multiple pathways associated with AD.

In addition to PEA, we performed a SNEA, which can provide
high levels of confidence when interpreting experimentally-
derived genetic data against the background of previously pub-
lished results (http://pathwaystudio.gousinfo.com/SNEA.pdf).
SNEA results demonstrated that over 95% (1625) of the 1669 AD-
genes were as well identified as causal genes for other disorders
that were linked to AD (AD_GD — Related Diseases).

For a quantitative measure of the significance of these 1669 AD
candidate genes, we proposed 4 metrics: (1) publication frequency
(RScore), (2) novelties (AScore), (3) Number of associated AD can-
didate pathways (PScore), and (4) Network centrality (SScore). We
hypothesized that if a gene satisfies one or more of the following
conditions, it has high possibility to be linked to AD: The gene is
frequently identified by independent studies to be linked to AD
(high RScore), plays roles within multiple AD pathways (high
PScore), and is functionally linked to multiple AD genes (high
SScore).

The effectiveness of our 4 proposed metrics were supported by
the AD case/control classification study using two independent
gene expression data sets (GSE29378 and GSE28146). Results of
the LOO cross validation and permutation process showed that,
the top genes by the 4 proposed metrics can lead to significantly
higher classification ratio than using randomly selected gene sets
(Table 2 and Fig. 3). While using the identified gene set as a whole
(1605 and 1621 out of 1669 for GSE29378 and GSE28146, respec-
tively) showed no significant efficiency in terms of AD prediction
(permutation p-value > 0.9; see Table 2), suggesting the necessity
of using our network metrics for further analysis of the candidate
AD genes when dealing with specific experiment data. Notably,
for each score, the number of top genes corresponded to the max-
imum CRs for the two data sets were different. This may reflect the
group-wise variation in terms of sample size (63 vs. 30) and clini-
cal parameter dissimilarities (e.g., age, gender). The difference may
be also caused by the unique variation of different sub-
jects’ genome in case of AD.

Cross metrics analysis showed that 21 genes were overlapped
within RScore, SScore and PScore groups (Fig. 4, highlighted in
green). These genes were frequently identified by different studies
to be linked to AD (RScore = 542 + 16 references), play roles with in
multiple AD candidate pathways (PScore =29 + 6 pathways), and

demonstrate strong network centrality (SScore =969 + 85 direct
gene connections). Therefore, our results suggest that they are
among the top AD risk genes that likely pose biological significance
with the disease. As a matter of fact, these genes were also identi-
fied to play role within many other disorders that were linked to
AD, such as diabetes mellitus, obesity, Parkinson’s disease,
Schizophrenia, and breast cancer (Fig. 4). These results support
the effectiveness of the proposed metric scores in the identification
of top genes for AD.

Additionally, there was one newly reported gene, ITGB1
(AScore = 1), also demonstrated high SScore and PScore (Fig. 4,
highlighted in yellow). Although ITGB1 were not frequently repli-
cated in their association with AD (RScore = 1 reference), and pre-
sented less relationships with other AD related mental disorders, it
demonstrated high interaction with other genes within the genetic
network (SScore = 1050 directly connected genes) and play role
within multiple pathways implicated with AD (PScore = 28 path-
ways). Therefore, our study suggests that it may be worthy of fur-
ther study. In fact, activation of integrin p1 (ITGB1) has been
reported to regulate the synthesis of enterovirus 71-induced and
NADPH oxidase-driven reactive oxygen species (ROS) (Tung et al.,
2011), which are closely involved in pathogeneses of AD (Aliev
et al., 2003). It also revealed that adhesion of HeLa cells to B1 inte-
grin clustering can increase the release of arachidonic acid (Xu and
Clark, 1997) that has therapeutic functions against AD (Huang and
Cheung, 2011). These findings support our observation that ITGB1
may play roles for pathogenic development of AD, demonstrating
the effectiveness of our proposed PScore and SScore in identifying
novel genes for the disease. To note that, although in this study we
evaluated 1669 known AD candidate genes acquired from ResNet
database, which already received literature support for their asso-
ciation with AD, our proposed PScore and SScore can be applied to
any given genes and therefore could be used for evaluation and dis-
covery of novel target genes for AD.

The genetic database built through our approach, namely
AD_GD, is scalable and can be automatically updated using the
computational workflow proposed in this study. Any novel AD-
gene relationships can be added to update the database. Moreover,
further network analysis with more experiment data may extract
additional meaningful features that can be added into our pro-
posed system to gain improved evaluation of existing and/or novel
AD genes.

To our knowledge, this is the first study integrating large scale
literature knowledge data, experiment data and related pathway/
network data for a systematical evaluation of AD candidate genes.
The computational biology approach of this study provides a com-
prehensive weighted genetic network and genetic database for AD,
which may help in the evaluation and prioritization of AD genes for
further study in the field.
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