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1. INTRODUCTION

We introduce a new class of statistical models for mixture
experiments. In such experiments, the response depends on the
proportions of the mixture components, but not on the amount
of the mixture. For example, the strength of an alloy depends
on the proportions of the metals of which it is comprised. Sim-
ilarly, many features of friction materials (such as their friction
coefficients and compressibilities) depend on the proportions of
the chemicals from which they are made.

The common practice for analyzing mixture experiments has
evolved from the work of Scheffé (1958, 1963). Scheffé sug-
gested the canonical polynomial models, which have provided
the recourse for the majority of practitioners since, although
alternatives have been proposed.

Quenouillé (1953, 1959, 1963) demonstrated that the Scheffé
polynomials are incapable of describing common linear blend-
ing, a structure which he considers intuitively sensible. A com-
ponent blends linearly when the effect of increasing its presence
in the mixture, while keeping all other components in fixed rel-
ative proportions to each other, may be described by a linear
relationship. For example, this is the effect of a dilutent. In
response, Becker (1968) suggested alternative models whose
terms assume such effects. Where necessary, the veracity of
this assumption may be judged by any practitioner who applies
Becker’s models, but this is equally true of the contrasting as-
sumption in the Scheffé polynomials. Becker (1978) proposed
related developments by introducing terms capable of describ-
ing a far broader range of effects than previously considered.

Prior to the work of Scheffé, ordinary polynomial mod-
els in mathematically independent variables (MIV) were ap-
plied to mixture experiments and such models endure, where
they are deemed appropriate. Claringbold (1955), Draper and
Lawrence (1965a, 1965b), Thompson and Myers (1968), and
Becker (1970) considered cases where the MIV are linear com-
binations of the component proportions, while Hackler, Kriegel,
and Hader (1956) and Kenworthy (1963) took the MIV to be
ratios of the component proportions. The utility of the Scheffé

polynomials was extended by Draper and John (1977a, 1977b)
and Chen, Zhu, and Hu (1985), who proposed the use of in-
verse terms and logarithmic terms, respectively, Gorman and
Hinman (1962), who discussed a higher-order derivation, and
Darroch and Waller (1985), Draper and Pukelsheim (1998),
Cornell (2000), and Piepel, Szychowski, and Loeppky (2002),
who each presented useful reparameterizations. An overview of
mixture experiment methodology was given by Cornell (2002).

The terms of the existing mixture experiments models do not
allow sufficient flexibility to accommodate differences in the
way the components affect the response. The joint effects, that
is, those described by terms involving two or more components,
are limited. For example, existing models have limited capability
to represent rapid change in the response in certain areas of
the experimental region. As a result, models may represent the
response surface inaccurately or with a greater number of terms
than necessary.

Models that are nonlinear in parameters have not been ap-
plied to data from mixture experiments, with the exception of
those given by Focke, Sandrock, and Kok (2007) and Focke,
Ackermann, and Coetzer (2012). The models proposed by these
authors have application for only a small number of compo-
nents. However, there are situations where more complex mod-
els would be preferable over models providing potentially crude
polynomial approximations. The models proposed by Becker
(1968, 1978) provide some of the required increased flexibility.
However, these models assume linear blending, or alternatively
inactivity, of one or more components.
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The class of models we propose include many of the Scheffé
(1958, 1963) and Becker (1968, 1978) models as special cases.
However, this class of models also encompasses other ideas for
modeling mixture experiments.

In Section 2 we summarize the main features of mixture ex-
periments. We also discuss different effects that mixture compo-
nents may have. In Section 3 we introduce a new general class
of mixture models and discuss its relation to existing models.
We focus on models with binary and ternary blending as they
are useful in practice. In Section 4 we show that choosing the
appropriate model for a specific study and its estimation can be
combined, thus leading to a simple model selection procedure
that can be implemented using many statistical packages. This
is demonstrated with a simulated example, chosen to illustrate a
situation when the new models provide excellent fit of the data,
while the standard models do not. The dataset and computer
code implementing the analysis are available as supplemen-
tary material on the journal’s website. We conclude the article
with a discussion of the advantages and limitations of the new
methodology.

2. MIXTURE EXPERIMENTS

In mixture experiments the response of interest, y, is depen-
dent on the proportions of the q mixture components xi, i =
1, . . . , q, such that

q∑
i=1

xi = 1, xi ≥ 0. (1)

The unconstrained composition space of the experiment is the
(q − 1)- dimensional simplex. However, individual component
lower and upper bounds, linear multicomponent constraints,
and nonlinear constraints (Atkinson, Donev, and Tobias 2007,
p. 230) often apply.

Scheffé (1958) proposed the use of {q,m} symmetric canon-
ical polynomial models obtained by reparameterization of stan-
dard polynomials of degree m for q components by using (1).
The quadratic (S2), cubic (S3) and special cubic (SSC3) Scheffé
polynomials for mixtures are

E[y] =
q∑

i=1

βixi +
q∑

i �=j

βij xixj ,

E[y] =
q∑

i=1

βixi +
q∑

i<j

βij xixj

+
q∑

i<j

γij xixj (xi − xj ) +
q∑

i<j<k

βijkxixjxk, (2)

and

E[y] =
q∑

i=1

βixi +
q∑

i<j

βij xixj +
q∑

i<j<k

βijkxixjxk,

respectively, where β1, β2, . . . , γ12, γ13, . . . are the parameters
that must be estimated using the data.

As an alternative to the quadratic Scheffé polynomial, Piepel,
Szychowski, and Loeppky (2002) suggested partial quadratic

mixture (PQM) models, which are reduced forms of the model

E[y] =
q∑

i=1

βixi +
q∑

i<j

βij xixj +
q∑

i=1

βiix
2
i ,

where up to q(q − 1)/2 terms of binary joint effects xixj (i �= j )
or square terms x2

i are included in the model in addition to the
linear terms.

A full PQM model provides a fit equivalent to the full
quadratic Scheffé polynomial. However, a reduced PQM model,
containing squared terms, may prove more parsimonious than
reduced quadratic Scheffé polynomials (e.g., when one or more
components have strong quadratic curvature effects). This may
equivalently be said to be the case for the models proposed by
Draper and Pukelsheim (1998).

Becker (1968) introduced models that allow for describing
linear blending:

H1 : E[y] =
q∑

i=1

βixi +
q∑

i<j

βij min
(
xi, xj

)

+
q∑

i<j<k

βijk min
(
xi, xj , xk

) + · · · ,

H2 : E[y] =
q∑

i=1

βixi +
q∑

i<j

βij

xixj

xi + xj

+
q∑

i<j<k

βijk

xixj xk

xi + xj + xk

+ · · · , (3)

and

H3 : E[y] =
q∑

i=1

βixi +
q∑

i<j

βij

√
xixj

+
q∑

i<j<k

βijk

√
3xixjxk + · · · . (4)

Reports of applications of these models include those of Becker
(1968), Snee (1973), Johnson and Zabik (1981), Chen, Li, and
Jackson (1996), and Cornell (2002), among others, most of
whom demonstrate them to be advantageously used in compar-
ison to Scheffé polynomials.

Becker (1978) progressed to propose the general model form,

E[y] =
q∑

i=1

βixi +
q∑

i<j

h
(
xi, xj

) (
xi + xj

)

+
q∑

i<j<k

h
(
xi, xj , xk

) (
xi + xj + xk

) + · · · (5)

of which the H2 and H3 models are each a special case, where
h () are each homogenous of degree zero, that is, their effect
remains consistent for all values xi + xj , where xi and xj remain
in fixed relatively proportion, and similarly xi + xj + xk , where
xi , xj and xk remain in fixed relative proportions. Reduced
forms of this model form allow the linear blending effect of one
(or more) components on the response to be described. This is
useful when one or more components has an additive effect on
the response, such as a dilutent. Becker suggested the nonlinear
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terms

h
(
xj , . . . , xk

) =
k∏

i<j

(
xi

xj + · · · + xk

)ri

which potentially provide greater flexibility in joint effects of
the components. However, he gives little guidance on how these
nonlinear parameters could be used, nor does he consider their
estimation.

As described so far, the full statistical model chosen for a par-
ticular study may have too many terms describing joint effects,
particularly if the number of components is large. Often only a
subset of them will be needed. Stepwise regression (Efroymson
1965) can be applied to achieve this.

3. MODEL GENERALIZATION

The linear (in the parameters) models discussed thus far will
describe well situations where their terms accommodate the
specific joint effects of the mixture components. However, their
terms do not accommodate particular nonadditive effects and
this could lead them to perform poorly. They may not ade-
quately represent the response or do so in a manner detrimental
to model parsimony. This section proposes a general class of
models which can represent responses of mixtures whose com-
ponents have a wide range of different effects. We first discuss
joint effects of two components and then extend the presented
ideas to three components. The joint effects of more than three
components are rarely considered when modeling mixture ex-
periments using existing methodology and, therefore, are not
considered here. We start by describing an idea for combining
and generalizing standard binary blending models.

3.1 Motivation

The models

E[y] =
q∑

i=1

βixi + βijxixj , (6)

and

E[y] =
q∑

i=1

βixi + βij

xixj

xi + xj

, (7)

where 1 ≤ i, j ≤ q, i �= j , characterize the response surface in
contrasting ways with respect to the joint effect of xi and xj .
While (7) allows an additive blending effect through the linear
blending of Becker’s (1968)) H2 model, (6) uses the quadratic
blending effect of the Scheffé polynomial. This contrast can be
seen along any ray where xi and xj remain in a fixed relative
proportion. Models (6) and (7) differ by the form of their last
term. Where more than one pair of mixture components demon-
strate joint effects, the best model fit may be achieved where
the blending effect of the term in (6) is used for one pair of
components and that of the term in (7) for another (Johnson and
Zabik 1981).

Figure 1. Blending effects for sij = 0.2, 0.5, 1, 2, and 5.

First, a generalized binary blending effect is defined by intro-
ducing the parameter sij in the model

E[y] =
q∑

i=1

βixi + βij

(
xi

xi + xj

) (
xj

xi + xj

) (
xi + xj

)sij
.

(8)
The generalized binary blending term in (8) could be mathe-
matically reduced to the form xixj (xi + xj )s

∗
ij , but it is written

that way to more easily see subsequently that the Scheffé and
Becker H2 models are special cases.

The blending effects corresponding to five different values
of sij (sij = 0.2, 0.5, 1, 2, 5) are shown in Figure 1. Note that
increasing sij above 1 results in a term whose effect is very small
as xi + xj approaches zero, while reducing sij toward 0 results
in a term whose impact decreases rapidly as xi + xj approaches
zero.

Further flexibility can be added by introducing rij and rji to
the model, which gives

E[y] =
q∑

i=1

βixi + βij

(
xi

xi + xj

)rij
(

xj

xi + xj

)rji (
xi + xj

)sij
,

(9)
where, if sij = 1, this is a reduced form of (5) with only one
term of joint effect. Model (9) is linear in the parameters βij for
any values of the parameters sij , rij , rji that define the form of
the terms.

This concept can be extended to introduce a general ternary
joint effect in the model:

E[y] =
q∑

i=1

βixi + βijk

(
xi

xi + xj + xk

)rijk
(

xj

xi + xj + xk

)rjki

×
(

xk

xi + xj + xk

)rkij (
xi + xj + xk

)sijk
. (10)
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Here, the joint effect of the xi , xj , and xk is governed by sijk , rijk ,
rjki , rkij , and the corresponding βijk . In particular, sijk governs
the blending effect between xi , xj , and xk and the remainder
of the mixture, in an analogous manner to sij above. Thus,
contrasting effects may be seen along any ray where xi , xj , and
xk remain in fixed relative proportions. The new terms for the
binary and ternary cases are referred to as generalized terms of
binary and ternary joint effects.

Model (9) may alternatively be expressed as

E[y] =
q∑

i=1

βixi + βij

(
xi

xi + xj

)gij hij

×
(

xj

xi + xj

)gji (1−hji ) (
xi + xj

)sij
,

where gijhij = rij and gij

(
1 − hij

) = rji , so that gij = rij +
rji and hij = rij /gij . This allows us to better interpret the effects
rij and rji through constrained values of hij , gij , and gji , where
0 ≤ hij ≤ 1, gij > 0 and gji > 0.

The interpretation of gij , gij , and hij may be understood,
without loss of generality, along the edge where xi + xj = 1.
First hij describes location, that is the point of greatest departure
from linearity, with hij = 0.5 indicating a symmetrical effect.
Meanwhile, gij defines the localization of the effect, where
gij � 1 indicates a joint effect contained to a region localized
about the point of greatest departure from linearity. In contrast,
where gij � 1, the effect of the term changes little around this
point but instead causes rapid change as xi/(xi + xj ) approaches

0 and 1. The effect of the term is proportional to x
gij hij

i x
gij (1−hij )
j .

To illustrate the way the shape changes with xi (or conversely
with 1 − xj ), the effects for gij = 20 and gij = 0.2 are shown
in Figure 2 for hij = 0.75.

A general binary term has no effect when xi/(xi + xj ) or
xj/(xi + xj ) approaches zero. When hij = 1 (or conversely,

Figure 2. Binary blending effects for gij = 0.2 and 20.

hij = 0) the general binary blending term has greater signifi-
cance as xi/(xi + xj ) approaches 1, and xi dominates the effect.
The manner in which this occurs is governed by gij . For values
of gij > 1 the term becomes increasingly influential at an in-
creasingly rapid rate as xi/(xi + xj ) approaches 1. For values of
gij < 1 the term becomes increasingly influential at a decreas-
ingly rapid rate. The impact of the term diminishes for larger
values of gij . The parameter βij sets the magnitude of the effect
given its specification by sij , gij , and hij .

Similar analysis may be made of the general term for a ternary
joint effect. Model (10) may alternatively be expressed

E[y] =
q∑

i=1

βijkxixjxk

(
xi

xi + xj + xk

)gijkhijk

×
(

xj

xi + xj + xk

)gijkhjki

×
(

xk

xi + xj + xk

)gijk(1−hijk−hjki) (
xi + xj + xk

)sijk
,

where gijk = rijk + rjki + rkij , hijk = rijk/gijk ,
hjki = rjki/gijk , gijkhijk = rijk , gijkhjki = rjki , and
gijk

(
1 − hijk − hjki

) = rkij . The new terms for the gen-
eralized ternary effects can be interpreted in a similar way as
the generalized binary effects discussed earlier, without loss
of the generality, as the effect of the term across the two-
dimensional simplex where xi + xj + xk = 1. The parameters
hijk and hjki describe the location of the point of greatest
departure from linearity, with hijk = hjki = 1/3 indicating a
rotationally symmetrical effect, while gijk once again describes
the localization of the effect about that point.

3.2 General Blending Mixture Models

We propose a class of generalized blending mixture (GBM)
models, for q components, of the form

E[y] =
q∑

i=1

βixi

+
∑
i<j

βij

(
xi

xi + xj

)rij
(

xj

xi + xj

)rji (
xi + xj

)sij

+
∑

i<j<k

βijk

(
xi

xi + xj + xk

)rijk
(

xj

xi + xj + xk

)rjki

×
(

xk

xi + xj + xk

)rkij (
xi + xj + xk

)sijk
. (11)

In the second and third sums, we have
(
q

2

)
and

(
q

3

)
terms,

respectively. Although one could have multiple terms involving
the same variables with different powers, we do not consider
this.

As discussed earlier, the GBM models can also be reparame-
terized as

E[y] =
q∑

i=1

βixi

+
∑
i<j

βij

(
xi

xi + xj

)gij hij
(

xj

xi + xj

)gji (1−hij ) (
xi + xj

)sij
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+
∑

i<j<k

βijk

(
xi

xi + xj + xk

)gijkhijk
(

xj

xi + xj + xk

)gjkihjki

×
(

xk

xi + xj + xk

)gkij (1−hijk−hjki ) (
xi + xj + xk

)sijk
. (12)

Models (11) and (12) may be used to establish a broad range
of joint effects. In fact, many models presented in the liter-
ature are special cases of our class of models. For example,
the quadratic crossproduct terms in the Scheffé polynomial or
the PQM model, occur when hij = 0.5, gij = 2, and sij = 2.
The squared terms in the PQM model occur when hij = 0,
gij = 2, and sij = 2. The binary blending terms of Becker’s H2
and H3 models occur when hij = 0.5, sij = 1, and gij = 2 or 1,
respectively. Furthermore, the ternary term of the special cubic
model occurs when hijk = hjim = 1

3 , gijk = 3, and sijk = 3.
Thus, the GBM model allows us to consider commonly used
terms, as well as new terms, with considerable flexibility.

4. MODEL SELECTION

Model (11) is complex, being a nonlinear function of some of
its parameters. Its estimation is difficult but possible. However,
in most cases it is unnecessary to estimate all its parameters
simultaneously. When the parameters rij , rji , sij , rijk , rjik , and
sijk are specified, the estimation of the remaining parameters
of (11) becomes trivial as the resulting models are linear in
the parameters. Therefore, a sensible alternative to estimating
(11) is to choose a model from a list of models that includes
traditional models as well as new GBM models obtained for
a grid of values for rij , rji , sij , rijk , rjik , and sijk . The model
selection criterion

AICc = 2pn/(n − p + 1) − 2log(L)

is used, where L is the likelihood function and p is the number
of the parameters of the estimated model.

There are various ways of implementing such a comparison.
The results presented here were obtained by a forward selection
stepwise regression procedure, that is, by fitting first the model
including the effects of the individual mixture components and
then sequentially adding the best possible term representing joint
action of two or three components, defined by all possible values
of rij , rji , sij , rijk , rjik , and sijk and judged by the AICc criterion.
The fitting was terminated when the models became unnecessar-
ily complicated. The computer implementation was done with
the free software package R using the AICc function of the
library AICcmodavg (Mazerolle 2013). The computer program
is provided as online supplementary material.

Most published datasets obtained in mixture experiments are
provided with satisfactory statistical analyses using standard
models. Fitting GBM models to such data, therefore, usually
brings modest benefits, which is not surprising. Furthermore,
the experimental designs used in such studies often do not allow
for fitting the GBM models, as they either have too few obser-
vations or their location in the design region does not allow the
estimation of some of the model parameters. This is why to il-
lustrate the features of the new models, data were simulated for
a scenario where their advantages in comparison with standard
models could be seen. Certainly, this is not a typical case and

Figure 3. Contour plot for the underlying model.

in most practical situations the differences seen in this example
are likely to be considerably smaller.

Example. This example involves three mixture components
with their proportions varying from 0 to 1. The response surface
for this example was chosen to be asymmetric, but ordinary;
see Figure 3. The maximum of the response was attained by a
combination of a large proportion of x1 and similar but small
proportions of the remaining components x2 and x3. However,
the joint effect of the mixture components was strong. This was
achieved by using the model

E [y] = 3x1 + 4x2 + 5x3 + 20x1x
3
2 + 80

x2.5
1 x0.5

2 x0.5
3

x1 + x2 + x3
.

The data were generated for the 22-trial, 3-component sim-
plex lattice design with an additional centroid point shown in
Figure 4. Independent and normally distributed random errors
with homogeneous variance equal to 0.252 were added to the
model-calculated values to yield the simulated data.

The best GBM model with four terms was chosen by compar-
ing all possible models obtained by adding to the model having
just three terms, that is,

E[y] =
3∑

i=1

βixi,

a single term of joint action. There were four types of terms

to consider adding: βij

(
xi

xi+xj

)rij
(

xj

xi+xj

)rji (
xi + xj

)sij , for i =
1, j = 2; i = 1, j = 3; and i = 2, j = 3; and β123x

r123
1 x

r231
2 x

r312
3 ,

where the last term simplified from that in (11) as x1 + x2 +
x3 = 1. Each of these terms was considered for all possible
combinations of the values 0.5, 1, 1.5, 2, 2.5, or 3 for r12, r13,
r23, r123, r231, and r312 and the values 0, 1, 2, or 3 for s12, s13,
and s23. Hence, 3(4 ∗ 62) + 63 = 648 models were considered.
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Figure 4. Plot of design for simulated data.

The model with smallest AICc was chosen. It included a term
representing binary blending for the components x1 and x2.

The best GBM model with five terms was chosen by com-
paring all models obtained by adding one more term to the best
GBM model with four terms. The list of models to compare was
obtained in the same way as that used to obtain the best GBM
model with four terms. At this stage a term representing ternary
blending for the components was included.

The same approach was used again to obtain the best GBM
model with six and then, with seven terms. The terms that were
added represented binary blending for components x1 and x3 and
for components x2 and x3, respectively. As expected, the model
with seven terms had the same structure as (11).

It may be beneficial to use different blending terms for the
same components only in very rare situations. If this possibility
is excluded in the model selection, it becomes faster as the
number of models to consider becomes smaller as more terms
are added to the model.

The full Scheffé cubic polynomial (2), Becker’s models H2
(3) and H3 (4) were also fitted to the data. Their AICc statistics,
as well as those for the best GBM models with three, four, five,
six, and seven terms, are given in Table 1.

The GBM model with five terms had a smaller AICc statistic
than those for the GBM models with three, four, six, or seven
terms, and was overall the best model. This model is

ŷ = 2.8791(0.1366)x1 + 3.8191(0.1585)x2 + 5.1871(0.1279)x3

+ 19.628(2.1260)x1x
2
2 + 82.3909(3.6170)

x2.5
1 x0.5

2 x0.5
3

x1 + x2 + x3
,

Table 1. AICc statistics for models fitting the simulated data

Model Scheffé H2 H3 GBM GBM GBM GBM GBM

Terms 10 7 7 3 4 5 6 7
AICc 95.85 80.53 78.72 80.60 45.53 9.91 10.49 11.81

Figure 5. Prediction contour plot for Scheffé special cubic model
fit to the simulated data.

where the figures in the brackets are the standard deviations
of the estimates of the parameters that precede them. The
AICc value for this model is 9.91 and compares rather favor-
ably with the corresponding values for the fitted full Scheffé
cubic polynomial and Becker’s H2 and H3 models for which it
is 95.85, 80.53, and 78.72, respectively. While we emphasize
that such advantageous differences in favor of the GBM mod-
els are not typical, this example shows that for certain studied
phenomena they can be achieved.

The contour plots of the predicted surfaces with the full
Scheffé cubic polynomial and the selected GBM model are
shown in Figures 5 and 6. It can be seen that the estimated
response surfaces of the GBM model was very similar to the
true response surface shown in Figure 3. This cannot be said
for the estimated full Scheffé cubic polynomial as its estimated
response surface is notably different from the true surface.

Using a grid with a larger number of possible values for r12,
r13, r23, r123, r231, r312, s12, s13, and s23 was attempted but did not
bring any benefits. It was felt that the reason for that was that
the amount of simulated data was not sufficiently large to allow
to distinguish between models with such small differences of
the values of the nonlinear parameters. However, as different
models were found, some with structures somewhat different
to that of the true model, they all produced predictions which
would be considered indistinguishable in a practical application
and well representing the underlying relationship.

5. DISCUSSION

The general class of models that we propose, provide a power-
ful unification and extension of the existing statistical method-
ology for analysis of data obtained in mixture experiments.
The complexity of the models fitted to the data will closely
match the complexity of the studied phenomena: they will be
models equivalent to those proposed by Scheffé (1958, 1963),
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Figure 6. Prediction contour plot for GBM model fit to the simulated
data.

Becker (1968), and Piepel, Szychowski, and Loeppky (2002)
when possible, but more complex when needed. The main ben-
efits of using GBM models are that they are parsimonious and
can accurately describe response surfaces in situations where
sometimes standard models will offer only a crude and possibly
even misleading approximation.

Estimating simultaneously all parameters of the GBM mod-
els (11) would require a substantial computational effort. The
authors have made considerable progress in developing a com-
putational tool capable of doing this, though its discussion re-
mains outside the scope of the presented research. However, the
method of choosing a GBM model proposed in this article is
effective, simple, and computationally stable, thus it is good for
its purpose.

The development of the general class of mixture models natu-
rally creates the need to reevaluate the usefulness of the standard
and computer generated experimental designs for mixture ex-
periments. It is clear that fitting GBM models requires more
data than fitting any of the standard models. It is possible to
use space-filling experimental designs, collecting as much data
as the available resources allow for. Such designs have been
explored, for example, by Fang and Wang (1994), Borkowski
and Piepel (2009), and Ning, Fang, and Zhou (2011). Further
work aiming to formulate a better experimental design strategy
for estimating the class of general blending mixture models that
takes into account their structure is underway.

SUPPLEMENTARY MATERIALS

Data and Code: The simulated dataset used in the example
in Section 4 of the article, along with R code to perform the
analysis (zip folder).
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