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Abstract: Agasicles hygrophila is a classical biological agent used to control alligator weed (Alternanthera
philoxeroides). Previous research has indicated that the heat shock factor (HSF) is involved in regulating
the transcriptional expression of Hsp70 in response to heat resistance in A. hygrophila. However, the
regulatory mechanism by which AhHsf regulates the expression of AhHsp70 remains largely unknown.
Here, we identified and cloned a 944 bp AhHsp70 promoter (AhHsp70p) region from A. hygrophila.
Subsequent bioinformatics analysis revealed that the AhHsp70p sequence contains multiple functional
elements and has a common TATA box approximately 30 bp upstream of the transcription start site,
with transcription commencing at a purine base approximately 137 bp upstream of ATG. Promoter
deletion analyses revealed that the sequence from −944 to −744 bp was the core regulatory region.
A dual-luciferase reporter assay indicated that overexpressed AhHsf significantly enhanced the
activity of AhHsp70p. Furthermore, qPCR showed that AhHsp70 expression increased with time
in Spodoptera frugiperda (Sf9) cells, and AhHsf overexpression significantly upregulated AhHsp70
expression in vitro. Characterization of the upstream regulatory mechanisms demonstrated that
AhHsf binds to upstream cis-acting elements in the promoter region of AhHsp70 from−944 to−744 bp
to activate the AhHSF–AhHSP pathway at the transcriptional level to protect A. hygrophila from
high temperature damage. Furthermore, we proposed a molecular model of AhHsf modulation of
AhHsp70 transcription following heat shock in A. hygrophila. The findings of this study suggest that
enhancing the heat tolerance of A. hygrophila by modulating the upstream pathways of the Hsp family
can improve the biocontrol of A. philoxeroides.

Keywords: Agasicles hygrophila; transcription factor AhHsf ; heat shock protein 70 promoter (Hsp70p);
cell transfection; real-time quantitative PCR (RT-qPCR); inverse PCR (I-PCR)

1. Introduction

Insects are poikilothermal organisms that adapt to different environmental tempera-
tures through a variety of physiological and biochemical responses, and this ability directly
influences their population expansion and distribution [1,2]. Moreover, climatic adaptabil-
ity can drive insect adaptive evolution, promoting population differentiation and even the
formation of new species [3–5].

Organisms respond to the chemical and physiological stresses associated with elevated
temperatures by increasing the synthesis of heat shock proteins (Hsps) [6–10], which protect
cells from hyperthermic stress by binding to denatured proteins and facilitating their correct
refolding [8,11,12]. Under normal conditions, the expression of Hsp is typically maintained
at very low levels, although expression levels can be rapidly upregulated in response to
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stress conditions such as heat shock [13,14]. In terms of insect thermotolerance, Hsp70, a
member of the highly conserved chaperone class of proteins, is a typical representative
of the heat shock gene family [15,16]. The Hsp70 promoter has beenis used extensively in
transgenic and gene therapy studies to drive the expression of exogenous genes [14,17],
and numerous in vitro studies have sought to elevate its transcriptional activity for selected
transgenes [18]. In this regard, the regulation of transcriptional gene expression via DNA
elements such as promoters and enhancers playsan important role in controlling the
expression of genes associated with stress resistance [19–22].

The heat shock response represents a typical case of inducible gene expression [15,23]
that involves transcriptional activation mediated by the heat shock factor (HSF), which
binds to specific elements in the heat shock gene [24–27]. Among the stress-related pro-
teins, members of the most abundant and conserved Hsp70 family have frequently been
proposed as potential biomarkers of cellular toxicity [28]. Li et al. found that AtHsf reg-
ulates the expression of stress-responsive genes (Hsps) to enhance tolerance to heat and
other abiotic stresses in Arabidopsis by functional analysis of AtHsf knockout mutants and
AtHsf overexpressing transgenic plants [25]. In Caenorhabditis elegans, Baird et al. found
that HSF-1 modulates the calcium-binding protein PAT-10 to increase thermotolerance and
longevity during thermal stress [23]. In addition, it has been reported that post-translational
modifications of Hsp70 family proteins including phosphorylation, acetylation, ubiquiti-
nation, aminoylation, and ADP ribosylation play an important role in regulating Hsp70
activity [29].

The flea beetle Agasicles hygrophila Selman & Vogt, which is used as an important
biological control agent for alligator weed (Alternanthera philoxeroides [Amaranthaceae]) is
markedly influenced by temperature [30–32]. Previous field surveys in Hunan Province,
China have revealed that the population density of A. hygrophila decreases sharply during
mid-summer from July to September, thereby limiting the control of A. philoxeroides popu-
lation growth at this time of the year [33,34]. The correlation between high temperatures
(>36 ◦C and even above 39 ◦C) and the population decline of this beetle species indicates
that extremely high temperatures may be the primary factor suppressing the control of
alligator weed during mid-summer [35–37]. In addition, temperature data for Changsha
City collected from 2003 to 2013 indicated that in July and August, the frequencies of
extremely high temperatures exceeding 36 ◦C were 42.5% and 32.1%, respectively, and
the daily maximum temperatures recorded were often above 39 ◦C [37]. (Supplementary
Table S1; [China Meteorological Data, http://data.cma.gov.cn/, accessed on 6 August
2020]). Alternanthera philoxeroides (Mart.) Griseb., an aquatic amaranth native to South
America [38], was introduced into China in the 1930s as a forage crop [39], and has spread
throughout the southern regions of the country, becoming one of the most noxious weeds
in China [39,40]. This alien species has been recognized as a serious aquatic pest problem
threatening aquatic ecosystems worldwide and is currently listed as one of the 16 most
serious invasive species in China [31,32,41].

In our efforts to elucidate the molecular mechanisms underlying the heat resistance of
A. hygrophila, we previously demonstrated the importance of the AhHsp70 in the thermo-
tolerance of this beetle [42] and subsequently isolated and identified a heat shock factor
(AhHsf ) and its putative downstream target gene, AhHsp70. Our findings provide evidence
that AhHsf is involved in regulating the transcriptional expression of AhHsp70 in response
to the thermotolerance of A. hygrophila [43]. However, the mechanism by which AhHsf
regulates the expression of AhHsp70 remains poorly understood.

In the present study, we sought to verify our hypothesis that AhHsp70 plays a pro-
active role in A. hygrophila stress resistance by interacting with AhHsf. To this end, we
determined the sequence of the AhHsp70 promoter (AhHsp70p) using the inverse PCR
(I-PCR) technique of chromosome walking, and performed subsequent bioinformatics anal-
ysis. In addition, we characterized the AhHsp70 core promoter region by promoter deletion
analysis. Finally, using a dual-luciferase reporter (DLR) assay system, we determined the
interaction between AhHsf and AhHsp70p and established that AhHsf directly targets the
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AhHsp70 core promoter region to activate the AhHSF–AhHSP70 signaling pathway by
regulating the transcriptional expression of AhHsp70. These findings provide important
insights into the regulatory mechanisms associated with the response of A. hygrophila to
high external temperatures, and will potentially contribute to predicting the efficacy of
biocontrol using this beetle in the face of ongoing climate change.

2. Results
2.1. Analysis of the AhHsp70p Sequence in A. hygrophila

In this study, we isolated and identified a 944-bp upstream promoter sequence of
the AhHsp70 gene (AhHsp70p) from A. hygrophila using I-PCR which was deposited in the
NCBI database (GenBank accession number: MZ351037) (Figure 1). Bioinformatics analysis
revealed that the AhHsp70p sequence contains multiple functional elements including a
common TATA box, which is a DNA sequence recognized by transcription factors, located
approximately 30 bp upstream of the transcription start site. Berkeley Drosophila Genome
Project: Neural network promoter prediction indicated that AhHsp70p transcription com-
mences from a purine base approximately 137 bp upstream of the ATG coding region
(Figure 1). Furthermore, JASPAR and Tfsitescan predictions indicated that AhHsp70p has
transcription factor binding sites at approximately−850 bp (Figure 1), whereas MethPrimer
analysis revealed that AhHsp70p does not contain CpG islands (Supplementary Figure S1).
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Figure 1. Schematic representation of the promoter sequence of the AhHsp70 gene (AhHsp70p) from
Agasicles hygrophila based on bioinformatics analysis. The AhHsp70p sequence contains multiple
functional elements and a common TATA box at approximately 30 bp upstream of the transcription
start site. Transcription is believed to commence at a purine base approximately 137 bp upstream of
the coding region of ATG. The blue circle on the left represents other unknown sequences upstream
of the AhHsp70p. −944, 0, 1941, and 2049 refer to the cloned promoter sequence location, the
start codon location, the end of the coding region sequence location, and the 3′-UTR sequence
location, respectively.

2.2. Analysis of AhHsp70 Promoter Reporter Plasmid Activity

To determine the optimal co-transfection efficiency of the recombinant plasmid (pGL3-
basic-AhHsp70p) and internal reference plasmid (PRL-TK), we assessed different ratios of
the recombinant plasmid and the internal control vector plasmid used for co-transfection
and established that the optimal transfection efficiency was obtained at a ratio of 10:1
(Supplementary Figure S2, F(144) = 48.01, p < 0.0001; F(344) = 425.03, p < 0.0001; F(544) = 44.49,
p < 0.0001; F(744) = 124.66, p < 0.0001; F(944) = 133.42, p < 0.0001). Thereafter, we analyzed
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the activity of the AhHsp70p reporter plasmids in Spodoptera frugiperda (Sf9) cells using
thea TransDetect® DLR assay system. The results indicated that, with the exception of
pGL3-basic-AhHsp70p-144, the reporter plasmids showed significantly higher activity
than the control plasmid (Figure 2, t(144) = −1.34, p = 0.2525; t(344) = −6.55, p = 0.0028;
t(544) = −12.44, p = 0.0002; t(744) = −21.67, p < 0.0001; t(944) = −20.34, p < 0.0001). Moreover,
with an increase in the length of the promoter sequence, we detected a corresponding
gradual enhancement of reporter plasmid activity, with the pGL3-basic-AhHsp70p-944
plasmid showing the highest activity (Figure 2; t(944, 744) =−10.98, p = 0.0005; t(944) =−20.34,
p < 0.0001). Together, these results indicate that the sequence from −744 bp to 0 bp may
represent the basal promoter region, whereas that from −944 bp to −744 bp constitutes the
core regulatory region.
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Figure 2. Analysis of the luciferase activity of truncated sequences of AhHsp70p. In this experiment,
Spodoptera frugiperda (Sf9) cells were used for the stable expression of AhHsp70 in vitro. Sf9 cells were
transfected with recombinant plasmids containing AhHsp70p sequences of differing deletion length
or pGL3-Basic and pRL-TK as controls for 48–96 h and the cells were harvested for the luciferase
activity assay. qdz represents the AhHsp70 promoter. All values are shown as the mean ± SD. The
data were analyzed using the Student’s t-test. ** p < 0.01, extremely significant; *** p < 0.001, extremely
extremely significant; ns, not significant.

2.3. Characterization of the Interaction between Transcription Factor AhHsf and AhHsp70p

Sf9 cells were co-transfected with an AhHsf overexpression vector (PIZ/V5-His-Hsf)
(Figure 3C and Supplementary Figure S3F) and AhHsp70p expression vector, and a DLR
assay was used to determine the influence of AhHsf overexpression on the activity of the
target gene promoter AhHsp70p (Figure 3B). The DLR assay results revealed that compared
to cells transfected with the control vector, AhHsf overexpression significantly enhanced
the activity of AhHsp70p in vitro (Figure 3A, t(144) = −1.82, p = 0.1435; t(344) = 1.1, p = 0.3335;
t(544) = 0.79, p = 0.4754; t(744) = −0.81, p = 0.4633; t(944) = −7.94, p = 0.0014).

2.4. Expression Levels of AhHsp70 Following In Vitro Transfection

The level of AhHsp70 mRNA expression following in vitro transfection was determined
by RT-qPCRThe results indicated that the levels of AhHsp70 expression increased with the
extension of Sf9 cell proliferation time from 48 to 96 h (F(5,12) = 128.51, p < 0.0001), although
there was no significant difference between the expression levels at 72 hand 96 h (Figure 4,
F = 0.86, p = 0.4067).
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Figure 3. Overexpressed AhHsf enhanced the activity of AhHsp70p in vitro. In this experiment,
Spodoptera frugiperda (Sf9) cells were used for the stable expression of AhHsp70 in vitro. (A) Character-
ization of the interaction between transcription factor AhHsf and AhHsp70p. Analysis of the luciferase
activity of AhHsp70p in response to the overexpression of AhHsf based on a dual-luciferase reporter
assay system. pGL3-Basic was used as a control. (B) Schematic diagram of Sf9 cells co-transfected
with AhHsf and AhHsp70p luciferase reporter plasmids. (C) Agarose gel electrophoresis of the AhHsf
sequence and double-enzyme digestion of the recombinant plasmid. M denotes a Trans DNA marker
and lanes 1 and 2 show samples from duplicate analyses. All values are shown as the mean ± SD.
The data were analyzed using the Student’s t-test. ** p < 0.01, extremely significant; ns, not significant.
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Figure 4. Expression analysis of AhHsp70 gene at 48, 72, and 96 h after transfection in Spodoptera
frugiperda (Sf9) cells. Relative mRNA levels were determined using the 2−∆∆Ct method and normal-
ized to those of the β-actin. The figure shows data on the relative AhHsp70 gene expression levels
analyzed using one-way ANOVA followed by the least significant difference (LSD) test and bars with
different letters indicate significant differences (p < 0.05). All values are shown as the mean ± SD of
three replicates and pGL3-Basic was used as a control.

2.5. Transcription Factor AhHsf Upregulates the Expression of AhHsp70 In Vitro

The expression of AhHsp70 and AhHsf in co-transfected cells was determined using
RT-qPCR, and the results indicated that there was a significant increase in AhHsf and
AhHsp70 expression compared to the control group (Figure 5, t(AhHsf ) = −9.50, p = 0.0109;
t(AhHsp70) = −7.16, p = 0.0020). These findings indicate that overexpression of AhHsf can
significantly promote the expression of AhHsp70 and that this gene plays a regulatory role
in the activation of AhHsp70.
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Figure 5. Effect of AhHsf overexpression on the level of AhHsp70 expression. Relative mRNA levels
were determined using the 2−∆∆Ct method and normalized to those of the β-actin gene. The data
were analyzed using the Student’s t-test. * p < 0.05, significant; ** p < 0.01, extremely significant; ns,
not significant. All values are shown as the mean ± SD of three replicates and pGL3-Basic was used
as a control.

2.6. A Simple Model for Regulation of Transcriptional Gene Expression Following Heat Shock

Based on the findings of the present study and the Kyoto Encyclopedia of Genes and
Genomes pathways, we propose a model illustrating how gene transcription might be
regulated following heat shock (Figure 6). In this model, an increase in environmental
temperature initiates a signal transduction pathway that activates the transcription factor
AhHsf and upregulates the expression of AhHsf target genes. Subsequently, AhHsf activates
the expression of its target AhHsp70 thereby enhancing thermotolerance.
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3. Discussion

Heat shock factor 1 (Hsf1) plays an essential role in protecting cells from protein-
damaging stress associated with protein misfolding [27]. Previous studies have indicated
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that Hsf’s plays a central role in remodeling the chromatin structure of Hsp promoters
via constitutive interactions with a high-affinity binding site, the heat shock element
(HSE) [44–48]. By binding to a gene promoter, transcription factors are typically assembled
to form “transcriptional switches” that are capable of controlling gene expression [49].

In our previous study, based on RT-PCR and RNAi analyses, we found that the
transcription factor AhHsf regulates the transcriptional expression of AhHsp70 and plays a
key role in the thermotolerance of A. hygrophila [42,43]. In the present study, we isolated and
determined the sequence of the promoter region of this gene (AhHsp70p) based on I-PCR.
Subsequent bioinformatics analysis revealed that the sequence had certain characteristics
common to promoter regions, although it appeared to be deficient in CpG islands. In
contrast, other studies have found that some promoters contain CpG islands, which are
believed to play an important role in the epigenetic regulation of these genes and are
generically equipped to influence local chromatin structure and assist in the regulation of
gene activity [50–53]. Moreover, promoters serve as key cis-acting elements that regulate
gene expression, and it is generally believed that the cis- and trans-regulatory machinery in
promoter regions are basic requirements for gene expression [54]. In 2020, Jia et al. identified
six AhHsp70s (hsp70-1, hsp70-2, hsp70-3, hsp70-4, hsp70-5, hsp70-6) in A. hygrophila [55]; all
six Hsp70s of A. hygrophila had a non-organellar consensus motif RARFEEL [56], and the
C-terminal sequences included the EEVD motif for cytoplasmic localization.

Promoter deletion analysis is one of the primary and most widely used techniques
employed to determine whether they are cis-acting elements or specific transcription factor
binding sites within a promoter that are primarily responsible for the transcriptional regula-
tion of a particular gene [49,57]. Luciferase (firefly and Renilla luciferases) genes have been
used extensively as reporter genes because of their sensitivity and efficiency [18,54,58]. For
example, Apriana et al. demonstrated the root-specific expression of an alkenal reduc-
tase gene (OsAER1) in Oryza sativa, based on the deletion analysis of the OsAER1 gene
promoter [59]. Through deletion analysis in transgenic rice, Chen et al. reported that the
OsHAK1 promoter (Dp3037 sequence) a potentially suitable candidate for regulating the
expression of osmotic/drought stress-responsive transgenes [60]. Similarly, Yao et al. used
deletion analysis to identify a 22-bp DNA cis-element in the SPHK1 promoter that plays
an essential role in transcriptional activation [57]. In the present study, we used the same
analytical approach and our results indicated that cis-acting elements controlling AhHsp70
transcriptional expression in response to heat stress are located within a promoter region
between base pairs −944 and −744. However, to facilitate more accurate localization of
these cis-element positions, we will need to conduct further deletion analysis that entails
progressively finer truncations.

To elucidate the mechanisms by which the heat resistance in A. hygrophila is regu-
lated, we previously identified a heat shock factor (AhHsf ) and its downstream target gene
AhHsp70 and established that they play important roles in the thermotolerance of A. hy-
grophila [43]. In the current study, we further demonstrated that transcription factor (AhHsf )
binding to the AhHsp70p sequence (from −944 bp to −744 bp) activated its transcriptional
expression in vitro based on promoter deletion, the DLR system, and RT-qPCR analyses.
Collectively, the in vitro results obtained in the present study and in vivo results obtained
from previous work [43] provide convincing evidence that AhHsf binds to AhHsp70p to ac-
tivate the AhHSF–AhHSP signaling pathway, thereby promoting transcriptional expression
of AhHsp70, which in turn contributes to the enhancement of heat tolerance in A. hygrophila.
These findings are similar to those reported in Drosophila melanogaster and yeast, in which
cooperative interactions between Hsf’s and its target binding sites (promoter and heat shock
elements) regulate the transcriptional expression of heat shock protein genes [26,48,61].
Accordingly, we inferred that AhHsf acts directly on the AhHsp70 gene promoter to in-
duce the transcriptional expression of AhHsp70, thereby enhancing the tolerance of A.
hygrophila to high environmental temperatures. Nevertheless, we have established that
overexpressed AhHsf can promote AhHsp70 gene expression at the transcriptional level,



Int. J. Mol. Sci. 2022, 23, 3210 8 of 14

and further analyses will be needed to confirm whether our observations can be replicated
at the protein level.

4. Materials and Methods
4.1. Experimental Insects and Host Plants

Adult A. hygrophila were collected in July 2018 from an alligator weed covered pond
in Changsha (28◦11′49′′ N, 112◦58′42′′ E), Hunan Province, China, using a sweeping
method. These specimens were maintained on alligator weed plants in a laboratory at the
Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, and the
Langfang Experimental Station of the Chinese Academy of Agricultural Sciences, Hebei
Province, under controlled conditions (temperature, 26 ± 2 ◦C; relative humidity, 75% ±
5%; photoperiod, 12:12 h light:dark regime) [62]. To eliminate maternal effects, the flea
beetles were cultivated for three generations before commencing the experiments. Groups
of five females and five males were each placed in circular containers of 8 cm diameter and
12 cm height containing fresh A. philoxeroides stems. The gender of the experimental insects
was determined based on the presence of a groove at the end of the abdomen, which is
present in males but absent in females [37].

Roots of A. philoxeroides were collected from standing water at the Institute of Plant Pro-
tection, Hunan Academy of Agricultural Sciences, and planted in plastic boxes (25× 25× 20 cm)
containing sterilized soil. The plants were subsequently grown in a greenhouse at the
Langfang Experimental Station, with daily watering.

4.2. Expression Vector and Cell Lines

In the DLR assay system (Transgen, Beijing, China) thea firefly (Photinus pyralis)
luciferase gene vector pGL3-basic (Promega, Madison, WI, USA) was used as a reporter
plasmid, with the Renilla (Renilla reniformi) luciferase gene vector pRL-TK (Promega) as
an internal control plasmid. The plasmids were kindly donated by Professor Ganqiu
Lan of the College of Animal Science and Technology, Guangxi University. One element
of the pIZ/V5-His vector (catalog number: V8000-01, Invitrogen, Carlsbad, CA, USA),
an insect overexpression vector used for the transcription factor, was purchased from
Invitrogen, and the other was kindly donated by Professor Changyou Li of the Laboratory
of Biological Control for Insect Pests, Center for Advanced Invertebrate Cell Culture and
Cell Engineering, Qingdao Agricultural University. All vector sequences were confirmed by
Sangon Biotech Co. Ltd. (Shanghai, China). Sf9, donated by Professor Changyou Li, were
cultured in TNM-FH insect medium (Hyclone, Gibco, New York, NY, USA) supplemented
with 10% fetal bovine serum (Gibco, New York, NY, USA) in humidified air containing 5%
CO2 at 27 ◦C in a biochemical incubator (BPC-250F; Yiheng, China). These cells were sub-
cultured at 3- to 5-day intervals and used for transfection experiments when cell densities
reached approximately 80–85% confluence (at approximately five days) (Supplementary
Figure S4).

4.3. Sample Collection and In Vitro Experiments

To determine the AhHsp70p sequence via reverse PCR, each group comprising five
pairs of newly emerged (<12 h following eclosion) A. hygrophila adults was placed together
in a circular container (12 cm in height and 8 cm in diameter) provisioned with fresh
alligator weed leaves. The beetles were exposed daily to a temperature of 33 ◦C for a
4-h period (10:00 to 14:00) in a constant temperature incubator (RPX-450; Colin, Beijing,
China). The sampled individuals were immediately frozen in liquid nitrogen for DNA
or RNA extraction, or stored in a −80 ◦C freezer (DW-86L628; Haier, Tsingtao) until
further analyses.

For the DLR assays, vectors with different AhHsp70p promoter lengths (pGL3-basic-
AhHsp70p-144, pGL3-basic-AhHsp70p-344, pGL3-basic-AhHsp70p-544, pGL3-basic-AhHsp70p-744,
and pGL3-basic-AhHsp70p-944) were used and the vector pIZ/V5-His-AhHsf was used
to overexpress the transcription factor AhHsf. After transfection of the dual-luciferase
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reporter vector into Sf9 cells, the activity of AhHsp70p was analyzed using the DLR system,
and the level of AhHsp70 expression was determined using qPCR. After co-transforming
Sf9 cells with pIZ/V5-His-AhHsf and the AhHsp70p dual-luciferase reporter gene vector,
the AhHsp70p activity was analyzed compared with that of a control group lacking the
transcription factor overexpression vector, and the levels of AhHsp70 and AhHsf expression
were determined based on RT-qPCR.

4.4. DNA or RNA Extraction and Reverse PCR

Agasicles hygrophila genomic DNA was extracted using the phenol–chloroform method
and total RNA was extracted using TRIzol (Invitrogen) in accordance with the manu-
facturer’s instructions [63]. The isolated total RNA was either stored at −80 ◦C for fur-
ther use or converted to first-strand cDNA, synthesized using a reverse transcription kit
(TransScript® All-in-One First-Strand cDNA Synthesis SuperMix for qPCR [One-Step gDNA
Removal], AT341-02, TransGen Biotech, China) for subsequent RT-qPCR. The isolated DNA
was used to determine the AhHsp70p sequence by I-PCR (Supplementary Figure S5). To
characterize the promoter by PCR, primers were designed using Primer 5.0 (Table 1), and
the products were cloned into a pEASY-T3 vector (TransGen, Beijing, China) and then sequenced.

Table 1. Sequences of oligonucleotide primers used in this study, designed using CE V1.04 and
primer 5.0 software. Note: the underline sequences are cleavage sites of restriction enzyme and the
bases underlined with a wavy line are the homologous arm sequence of the upstream terminal of
the vector.

Primers Name Sequence (5′-3′) Application Enzyme

1279F CAGACATTTACAACATACGCAG Inverse PCR HindIII
305R TTTGGCTTACCACTCACG Inverse PCR
51F CGCAATCTAAGAACAAACC Sequence verification

1106R CAGCATCACCAAGAAGGC Sequence verification
−944F atttctctatcgataggtaccAAAGTCACAAATGAATGCAGTTATTTAT Cloning KpnI
−944R acttagatcgcagatctcgagTATTTTCCAAGTTTAATACTTCACAAATATATT Cloning XhoI
−744R acttagatcgcagatctcgagATTCTCGGCGTAAATCGAAAAG Cloning XhoI
−544R acttagatcgcagatctcgagAACTTCAAGAAAACAAATTGAATTTCC Cloning XhoI
−344R acttagatcgcagatctcgagGGCACCGATCAGATCATGTTTT Cloning XhoI
−144R acttagatcgcagatctcgagCTTTCATCCTGCTATCCAATATATCAT Cloning XhoI

q-AhHsp70-F GCCACAGCTGGTGACACACA TCT RT-qPCR
q-AhHsp70-R AGCTCTTTCGGCAGCAGTCC RT-qPCR
Q-AhHsp70-F GGTAGCAATGAATCCCAG RT-qPCR
Q-AhHsp70-R TTACCTTGGTCGTTGGCA RT-qPCR

Q-Hsf-F TGCCAACGACCAAGGTAA RT-qPCR
Q-Hsf-R ACACACCCACACAGGAATA RT-qPCR
β-actin-F GGAATGGAAGCCTGTGGTATC RT-qPCR
β-actin-R CATTCTGTCGGCAATACCTGG RT-qPCR

4.5. Relative Quantitative Real-Time PCR

The AhHsp70 and AhHsf expression levels were assessed via RT-qPCR using a TransStart
Green qPCR SuperMix Kit (AQ141-04-p, Transgen, Beijing, China) and an ABI Prism 7500
Real Time PCR System (Applied Biosystems, New York, NY, USA). All PCR reactions were
performed in triplicate using the primers listed in Table 1. Reactions were performed as
20 µL reaction mixtures comprising 10 µL of 2× TransStartR Tip Green qPCR SuperMix,
0.4 µL of Passive Reference Dye II, 0.4 µL of forward and reverse specific primers, 1 µL
of cDNA template, and 7.8 µL of ddH2O. β-actin was used as an internal reference stan-
dard and relative expression levels were determined using the 2−∆∆Ct method with the
following formula:

∆∆Ct = (Cp target − Cp reference)treatment − (Cp target − Cp reference)control
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4.6. AhHsp70p Sequence Analysis

We used the Berkeley Drosophila Genome Project neural network promoter prediction
(http://www.fruitfly.org/seq_tools/promoter.html/, accessed on 24 February 2021) to
predict the 5′ end transcription start site of AhHsp70 gene, and AhHsp70p binding sites were
predicted using JASPAR, a database of transcription factor binding profiles (http://jaspar.
genereg.net/, accessed on 24 February 2021) and TargetScan (http://www.targetscan.org/
mamm_31/, accessed on 24 February 2021). CpG islands in AhHsp70p were determined
using the Methprimer online software (http://www.urogene.org /methprimer/, accessed
on 26 February 2021).

4.7. Synthesis of AhHsp70p Insertion Fragments

To generate an AhHsp70p target luciferase reporter, we designed five deletion AhHsp70p
specific primers (Table 1) using the CE V1.04 software. A KpnI restriction site sequence with
approximately 15–25 bp homologous to the vector region was added to the 5′ end of the
forward primer and an XhoI restriction site with approximately 15–25 bp homologous to
the vector was added to the 5′ end of the reverse primer. The target fragment was obtained
by PCR amplification using genomic DNA as a template. PCR amplification reactions
were performed using a total reaction volume of 25 µL comprising 2.5 µL of 10× PCR
buffer (10 µM), 0.5 µL of dNTPs (2.5 mM), 0.5 µL of Taq DNA polymerase (TransGen Biotech,
China), 1 µL of each gene-specific primer pair, 0.5 µL of genomic DNA template, and 19 µL
ddH2O. The PCR products were purified using an AxyPrepTM DNA Gel Extraction Kit
(Axygen) and cloned into a pEASY-T3 vector (TransGen, Beijing, China). The veracity of the
plasmids was confirmed using commercial sequencing (Sangon Biotech, Shanghai, China).

4.8. Construction of Luciferase Reporter Plasmids and AhHsp70p Luciferase Activity Assays

The target plasmids described in Section 4.5 were digested using KpnI and XhoI, and
the resulting PCR products were subcloned into the KpnI and XhoI sites of the luciferase re-
porter vector pGL3-basic using a homologous one-step cloning kit (TreliefTM SoSoo Cloning
Kit, TSV-S2; TsingKe Biotech, Shangai, China) according to the manufacturer’s instructions,
with pRL-TK being used as a control vector. Digestion reactions were performed using
a total reaction volume of 50 µL containing 1 µg of pGL3-basic vector or insert fragment
plasmids, 5 µL of 10× Cutsmart buffer (NEB), 1 µL of KpnI-HF, and 1 µL of XhoI, made up
to the final volume with ddH2O. Following activation, the mixture was incubated for 4 h at
37 ◦C, after which XhoI was inactivated at 65 ◦C for 20 min, and 5 µL 10× gel loading dye
was added to inactivate KpnI-HF. Recombinant DNA was transformed into Escherichia coli
DH5α cells (TsingKe), and plasmids were sequenced (Sangon Biotech, Shanghai, China).

Sf9 cells were co-transfected with 1.5 µg luciferase recombinant reporter plasmids
(pGL3-basic-AhHsp70p-144, pGL3-basic-AhHsp70p-344, pGL3-basic-AhHsp70p-544, pGL3-
basic-AhHsp70p-744, and pGL3-basic-AhHsp70p-944) (Supplementary Figures S3A,E and S6)
and 150 ng of the pRL-TK internal control plasmid using Cellfectine® II Reagent (Invitro-
gen). At 48, 72, and 96 h post-transfection, cells were lysed, and the luminescence of firefly
and Renilla luciferases was determined using a Multi-Mode Microplate Reader (Infinite
M Plex; Tecan, SWIT) and a TransDetect® double-luciferase reporter assay system (FR201,
TransGen Biotech, China), which enhanced the experimental accuracy, in accordance with
the manufacturer’s protocol. AhHsp70 expression levels were determined using qPCR.

4.9. Assays for the Interaction between Transcription Factor AhHsf and AhHsp70p

To determine whether the transcription factor AhHsf directly regulates the expression
of AhHsp70p in vitro, we constructed the overexpression vector pIZ/V5-His-AhHsf harbor-
ing AhHsf and co-transfected this into sf9 cells with AhHsp70p reporter plasmids. After
co-transfection, AhHsp70p-related luciferase activity was measured using the DLR system
following the manufacturer’s protocol, and AhHsp70 and AhHsf expression levels were
determined based on RT-qPCR analysis.

http://www.fruitfly.org/seq_tools/promoter.html/
http://jaspar.genereg.net/
http://jaspar.genereg.net/
http://www.targetscan.org/mamm_31/
http://www.targetscan.org/mamm_31/
http://www.urogene.org
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4.10. Statistical Analysis

Statistical analyses were performed using SAS software v8 for Microsoft Windows
and GraphPad Prism software (version 6.0; GraphPad Software Inc., San Diego, CA, USA).
One-way analysis of variance (ANOVA; SAS Institute Inc., USA) was used to analyze
the differences among treatments, followed by a least significant difference (LSD) test
for multiple comparisons. AhHsp70 and AhHsf gene expression levels and AhHsp70p
relative luciferase activity after co-transfection of cells with the AhHsf overexpression
and AhHsp70p reporter plasmids were analyzed using the Student’s t-test. The results
are presented as mean values ± standard deviation (SD); p-values of 0.05 or lower were
considered significant (* p < 0.05; ** p < 0.01).

5. Conclusions

In summary, we isolated AhHsp70p from A. hygrophila, determined its sequence using
I-PCR, and characterized its composition based on bioinformatics analysis. We subse-
quently examined the activity of AhHsp70p via cell transfection and promoter deletion
analyses, and systematically studied the interaction between co-transfected AhHsf and
AhHsp70p using a dual-luciferase reporter assay system, with the levels of AhHsp70 and
AhHsf expression in co-transfected cells being determined based on RT-qPCR analysis.
Our findings indicated that the upstream sequence of the AhHsp70 promoter may contain
core functional regions between base pairs −944 and −744. The DLR assay system results
revealed that overexpression of AhHsf could significantly enhance the activity of AhHsp70p,
and qPCR assays indicated that the level of AhHsp70 expression increased with the exten-
sion of Sf9 cell proliferation time within a certain limit, which is conceivably attributable
to the fact that Sf9 cells cease proliferating after reaching a certain density or that cells are
subject to a certain extent of apoptosis. Moreover, we found that AhHsf overexpression
significantly enhanced the expression of AhHsp70 in transfected cells. Collectively, the
findings of this study enabled a preliminary characterization of upstream regulatory mech-
anisms underlying the transcriptional regulation of AhHsp70 expression, which entailed
binding of the transcription factor AhHsf to upstream cis-acting elements (promoter region
from −944 bp to −744bp) of AhHsp70 to activate the AhHSF–AhHSP signaling pathway at
the transcriptional level, thereby enhancing the transcriptional expression of AhHsp70 to
protect A. hygrophila from high-temperature damage.
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