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TGF-β induces phosphorylation of 
phosphatase and tensin homolog: 
implications for fibrosis of the 
trabecular meshwork tissue in 
glaucoma
Nikoleta Tellios1,2, Jillian C. Belrose1,3, Alexander C. Tokarewicz1, Cindy Hutnik1,2,5, Hong Liu5, 
Andrew Leask4, Michael Motolko1, Miho Iijima6 & Sunil K. Parapuram1,2,5

Fundamental cell signaling mechanisms that regulate dynamic remodeling of the extracellular matrix 
(ECM) in mechanically loaded tissues are not yet clearly understood. Trabecular meshwork (TM) tissue 
in the eye is under constant mechanical stress and continuous remodeling of ECM is crucial to maintain 
normal aqueous humor drainage and intraocular pressure (IOP). However, excessive ECM remodeling 
can cause fibrosis of the TM as in primary open-angle glaucoma (POAG) patients, and is characterized by 
increased resistance to aqueous humor drainage, elevated IOP, optic nerve degeneration and blindness. 
Increased levels of active transforming growth factor-β2 (TGF-β2) in the aqueous humor is the main 
cause of fibrosis of TM in POAG patients. Herein, we report a novel finding that, in TM cells, TGF-β-
induced increase in collagen expression is associated with phosphorylation of phosphatase and tensin 
homolog (PTEN) at residues Ser380/Thr382/383. Exogenous overexpression of a mutated form of PTEN 
with enhanced phosphatase activity prevented the TGF-β-induced collagen expression by TM cells. 
We propose that rapid alteration of PTEN activity through changes in its phosphorylation status could 
uniquely regulate the continuous remodeling of ECM in the normal TM. Modulating PTEN activity may 
have high therapeutic potential to alleviating the fibrosis of TM in POAG patients.

Dynamic remodeling of the extracellular matrix (ECM) is necessary for development, wound healing and main-
tenance of normal tissue homeostasis1. A breakdown in dynamic remodeling of the ECM can result in fibrosis 
which is characterized by excess deposition of ECM molecules that destroy the normal architecture of the tissue, 
leading to the impairment of organ function. It is estimated that loss of organ function due to fibrosis, as in dia-
betic nephropathy, pulmonary fibrosis and liver cirrhosis, contributes to one-third of natural deaths world-wide2. 
Currently there is no cure available for fibrotic diseases.

One of the factors that has a major impact on excess ECM deposition in many fibrotic diseases is transforming 
growth factor-beta (TGF-β)3. Thus, cell signaling mechanisms by which TGF-β induces excess ECM deposition 
are well studied4. Conversely, TGF-β in normal tissues has pleiotropic roles in the maintenance of tissue homeo-
stasis5 and does not cause fibrosis. It is plausible that TGF-β-mediated signaling pathways that induce fibrosis are 
suppressed or balanced by TGF-β-induced increase in matrix metalloproteinase activity that degrades ECM6–9. 
Thus, further investigation are required to delineate fundamental regulatory feed-back signaling mechanisms that 
could prevent fibrotic actions of TGF-β without affecting its normal homeostatic roles in tissues. Such signaling 
mechanisms when identified may also serve as effective therapeutic targets to prevent disease-associated fibrosis.

1Department of Ophthalmology, University of Western Ontario, London, ON, N6A 4V2, Canada. 2Pathology and 
Laboratory Medicine, University of Western Ontario, London, ON, N6A 5C1, Canada. 3Department of Anesthesia & 
Perioperative Medicine, University of Western Ontario, London, ON, N6A 5A5, Canada. 4Dentistry, Schulich School 
of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada. 5Lawson Health Research 
Institute, St. Joseph’s Health Care, London, ON, N6A 4V2, Canada. 6Department of Cell Biology, Johns Hopkins 
University School of Medicine, Baltimore, MD, 21205, USA. Correspondence and requests for materials should be 
addressed to S.K.P. (email: sparapur@uwo.ca)

Received: 13 September 2016

Accepted: 16 March 2017

Published: xx xx xxxx

OPEN

mailto:sparapur@uwo.ca


www.nature.com/scientificreports/

2Scientific Reports | 7: 812  | DOI:10.1038/s41598-017-00845-x

TGF-β decreases the levels of Phosphatase and tensin homolog (PTEN) in several transformed cell lines, 
including HaCaT, PANC-1 and CAPAN-1, and also in primary glomerular mesangial cells10–13. Crucially, PTEN 
is capable of regulating TGF-β signaling as a co-factor for Smad2/3 phosphatase14 and is now considered a major 
regulator of ECM deposition15. Deletion of the Pten gene in dermal fibroblasts of mice induces excess collagen 
deposition/fibrosis in vivo, while in vitro overexpression of PTEN in dermal fibroblasts from scleroderma patients 
decreases collagen production, reversing the fibrotic phenotype16. Inhibition of PTEN activity in fibroblasts also 
increases collagen deposition17. Additionally, decrease in PTEN levels has been reported in many fibrotic diseases, 
including rheumatoid arthritis18 and pulmonary fibrosis19.

PTEN is a dual phosphatase and its major function is to dephosphorylate phosphatidylinositol 
3,4,5-trisphosphate (PIP3) to phosphatidylinositol 4,5-bisphosphate20, thus inhibiting the PI3-kinase/AKT signaling 
pathway. PTEN is also known to dephosphorylate focal-adhesion kinase, and Src homology 2 domain containing 
transforming protein21. By regulating these signaling pathways, PTEN is able to modulate multiple cellular activities, 
including contractility, survival, apoptosis, migration and, cell-ECM interaction and signaling21. PTEN expression 
and activity is controlled by several mechanisms, including miRNAs, non-coding RNAs, phosphorylation, acetyl-
ation, oxidation, S-nitrosylation, and ubiquitylation22. These numerous and intricate modes of regulation of PTEN 
expression and activity indicate fundamental role of PTEN in regulating dynamic ECM remodeling in tissues.

Regular homeostatic ECM remodeling that occurs in most tissues1, 23 results in a rate of collagen turnover 
which is usually slow, with collagen half-life estimated to be 15 years in the skin and 117 years in the cartilage24. 
Conversely, under homeostatic conditions, accumulating evidence indicates that remodeling of ECM in the trabec-
ular meshwork (TM) tissue is nearly continuous25. The TM, located at the irido-corneal angle, consists of TM cells 
and their porous extracellular matrix through which the aqueous humor, the clear fluid in the anterior segment of 
the eye, drains into the episcleral veins. Appropriate resistance to the drainage of aqueous humor through the TM 
is vital for homeostatic intraocular pressure (IOP). The TM tissue, thus occupies a high stress environment with 
fluctuations in mechanical and fluid shear forces26, 27. Continuous remodeling of ECM is crucial for appropriate 
resistance to aqueous humor drainage and maintenance of normal IOP. Indeed, it is expected that previously unde-
scribed cell signaling mechanisms drive the dynamic and continuous ECM remodeling in the TM.

In contrast to the scenario in healthy eyes, fibrosis of the TM can result in primary open-angle glaucoma 
(POAG), the most common type of glaucoma which affects nearly 74% of the 70 million glaucoma patients world-
wide28. Any increase in ECM deposition in the TM increases the resistance to aqueous humor drainage leading to 
an increase in IOP and is associated with optic nerve degeneration and blindness in POAG patients29–32. Lowering 
the IOP is the only medical strategy known to delay onset and slow progression of vision loss in glaucoma33, 34. 
One strategy to lower the IOP is to prevent the fibrosis of the TM; however, this has not yet been accomplished35.

Increased levels of active TGF-β2 in the aqueous humor of POAG patients36 are implicated in the fibrosis 
of the TM37. However, inhibiting TGF-β signaling is not a solution as TGF-β is also vital for maintaining the 
immune-privilege of the eye38. Moreover, TGF-β is present in the normal aqueous humor and TM cells both 
express and secrete this cytokine36, 39–42 and yet does not cause fibrosis of the TM. Indeed, induction of ECM 
deposition by TGF-β concurrently stimulates localized ECM digestion at invadosomes by increasing matrix 
metalloproteinase-2 activity in TM cells8. Thus, there is still a need to further delineate the elements in the TGF-β 
signaling pathway in normal and fibrotic TM, taking into account their potential to regulate the expeditious 
deposition or degradation of ECM in normal TM. While many of the mechanisms that drive ECM remodeling in 
TM are known43, there still could exist novel fundamental signaling mechanisms that enable pro-fibrotic TGF-β 
to expeditiously contribute to the continuous remodeling of ECM by TM cells.

In this study, we have investigated the modulation and regulation of PTEN levels/activity by TGF-β in human 
TM cells. We report that, in TM cells, TGF-β-induced increase in collagen expression is associated with the phos-
phorylation of PTEN at residues Ser380/Thr382/383. Phosphorylation of PTEN at these residues is known to 
suppress the activity of PTEN. Exogenous overexpression of mutant form of PTEN with enhanced phosphatase 
activity prevented TGF-β-induced collagen expression by TM cells. We propose rapid alteration of PTEN activity 
through changes in its phosphorylation status to be a unique mechanism that regulates the continuous remode-
ling of ECM in the normal TM. PTEN or elements in its signaling pathway could serve as a therapeutic target with 
high potential to alleviate fibrosis of the TM in glaucoma.

Results
TGF-β induces an increase in levels of PTEN and its phosphorylation.  Levels of TGF-β2 in the 
aqueous humor range from ~0.5 ng/ml to ~8 ng/ml36, 42, whereas glaucomatous aqueous humor have higher levels 
of total as well as active TGF-β236. To explore the effect of TGF-β on ECM deposition, we treated TM cells with 
1 ng/ml, 5 ng/ml, or 10 ng/ml of TGF-β2 to simulate physiological and pathological levels of TGF-β2 in the aque-
ous humor. Since TGF-β is a major inducer of fibrosis, addition of TGF-β to cultured human embryonic TM cells, 
as expected, increased collagen mRNA levels (Fig. 1A). Increase in COL1A1 mRNA is seen at 12 h, rising further 
to a 3.6 and 4.1 fold increase in mRNA levels at 24 h after 1 ng/ml and 5 ng/ml TGF-β treatment, respectively. 
A corresponding increase in collagen 1 protein levels are also seen in TM cells treated with TGF-β (Fig. 1C,D). 
Surprisingly, TGF-β also significantly increased the levels of PTEN mRNA in TM cells, with a significant 2.2 fold 
increase after treatment with 5 ng/ml TGF-β for 24 h (Fig. 1B). There is also an increase in PTEN protein levels in 
TM cells following TGF-β treatment for 24 h and 48 h; a nearly two fold increase is seen after 48 h of TGF-β treat-
ment (Fig. 1E–G). However, the increase in PTEN protein levels was also accompanied by a concomitant increase 
in phosphorylation of residues Ser380/Thr382/383 in the PTEN tail region, with almost a 1.6 fold increase at 48 h 
(Fig. 1E,F,H). Phosphorylation of PTEN at these residues is indicative of inactivation of PTEN44–48. The increase 
in levels/phosphorylation of PTEN after TGF-β treatment was reproduced when TM cells were cultured on either 
tissue culture plastic or on collagen/pronectin-coated elastomer plates (data not shown).
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Association of PI3-kinase and PTEN in TGF-β-mediated collagen expression.  Non-canonical 
TGF-β type I receptor (ALK5)/Smad-independent signaling is associated with enhanced collagen deposi-
tion49–52. In our experiments, we assessed the PI3-kinase pathway not only because active PTEN prevents the 
PI3-kinase-mediated AKT signaling, but also because PI3-kinase is able to block PTEN activity53, 54. We found 
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Figure 1.  TGF-β induces an increase in levels of PTEN and its phosphorylation in human TM cells. (A,B) 
Real-time PCR analysis of COL1A1 and PTEN mRNA levels in TM cells treated with TGF-β2 (1 or 5 ng/ml). 
RNA was extracted at 12 and 24 h. mRNA expression levels were normalized to EUK18S. A two-way ANOVA 
with Bonferroni’s post-hoc was used to determine statistical significance. *p < 0.05, **p < 0.01, ****p < 0.0001. 
N = 3. (C,D) Western blot analysis of collagen levels in TM cells treated with TGF-β (T1, T5, T10 indicates 1, 
5 or 10 ng/ml TGF-β2). Protein was extracted at 24 and 48 h. TGF-β receptor signaling was inhibited using the 
inhibitor SB431542 (SB; 20 μM). D7278- representative human donor. (E,F) Western blot analysis of PTEN 
levels and its phosphorylation (pPTEN- ser380/thr382/383) in TM cells treated with TGF-β and SB431542. 
Protein was extracted at 24 and 48 h. D7278- representative human donor. (G,H) Densitometry was performed 
on PTEN and pPTEN Western blot data at 48 h using ImageJ software. Statistical significance was determined 
using one-way ANOVA with Tukey’s post-hoc. *p < 0.05, **p < 0.01, ***p < 0.001. N = 3. (I,J). TGF-β-
mediated induction of PTEN levels and its phosphorylation was confirmed in TM cells from an adult human 
donor, aged 26 yrs (Adult 26Y).



www.nature.com/scientificreports/

4Scientific Reports | 7: 812  | DOI:10.1038/s41598-017-00845-x

that addition of TGF-β induced the phosphorylation of AKT (Ser473) in TM cells, indicating again that the 
phosphorylation of PTEN following TGF-β treatment has inactivated its phosphatase activity. A 4.7 fold increase 
in phosphorylation of AKT is observed following 1 ng/ml TGF-β treatment for 24 h (Fig. 2A,B). Inhibition of 
PI3-kinase signaling by ZSTK474 and LY294002 almost completely eliminated the TGF-β-induced phosphoryl-
ation of AKT. Both PI3-kinase signaling inhibitors also significantly suppressed TGF-β-induced collagen expres-
sion. We found a corresponding attenuation of PTEN and its phosphorylation at residues Ser380/Thr382/383 to 
levels similar to that of controls (Fig. 3A,B).

Inhibition of PTEN and overexpression of PTEN in TM cells modulates collagen expres-
sion.  Since our results are consistent with the hypothesis that TGF-β regulates collagen deposition by modu-
lating PTEN/AKT levels and phosphorylation, we further investigated whether inhibition of PTEN activity and 
its overexpression affected collagen expression by TM cells. PTEN activity was inhibited using VO-OHpic55; in 
TM cells application of 5 µM VO-OHpic increased the expression of collagen by nearly 4 fold after 48 h of treat-
ment. VO-OHpic-induced increase in collagen levels was also accompanied by an increase in PTEN levels and its 
phosphorylation (Fig. 4). This further reinforces that changes in levels of PTEN/phosphorylation affects collagen 
expression. We also assessed the effect of mutant PTEN on collagen expression by transfecting TM cells with 
enhanced PTEN (ePTEN) which has an approximately eightfold increased ability to suppress PIP3 signaling, and 
by also transfecting PTEN with defective lipid phosphatase activity (C124SPTEN)56. Overexpression of ePTEN 
completely prevented TGF-β mediated upregulation of collagen expression by TM cells while decreasing PTEN/
phosphorylation to levels similar to that of controls. Overexpression of C124SPTEN enhanced TGF-β-induced 
collagen expression by nearly 1.5 fold and enhanced the levels of PTEN/phosphorylation (Fig. 5). Preliminary 
experiments also indicate that overexpression of ePTEN and C124SPTEN has similar effects on the induction 
of fibronectin by TGF-β (Supplementary data Fig. 1); regulation of fibronectin expression by PTEN has been 
previously reported57.

Discussion
TGF-β is a well-established inducer of collagen deposition by activation of canonical Smads and through 
non-canonical PI3-kinase and p38 MAPK signaling pathways49–52, 58, 59. However, the regulation of PTEN by 
TGF-β10, 11, 13, 60 and the increasingly key role of PTEN in the modulation of ECM deposition are recent find-
ings14, 17, 61, 62. The role of PTEN in TGF-β signaling becomes crucial as it regulates TGF-β-induced collagen 
deposition by modulating Smad signaling14. Nuclear PTEN protects protein phosphatase, Mg2+/Mn2+ dependent 
1 A (PPM1A, a Smad2/3 phosphatase) from degradation induced by TGF-β signaling. Any decrease in PTEN 
is thought to destabilize PPM1A, allowing Smad2/3 to remain phosphorylated in the nucleus, thus promoting 
TGF-β signaling14. We chose collagen I as the ECM protein to investigate as it is present in the striated collagen 
fibrils of the trabecular core, the basement membrane of the trabecular beams and in the loose aggregates in the 
juxtacanalicular tissue63 and is expressed by TM cells in culture64. Collagen I expression is also induced by TGF-β 
in TM cells65 and its accumulation causes increased IOP and progressive loss of optic nerve axons66, 67.

In this study we report that TGF-β treatment of TM cells induced expression of collagen despite an increase 
in the levels of PTEN. This is contrary to previous reports that an increase in the levels of PTEN reduced col-
lagen deposition17, 61, 68. Our data suggest that TGF-β induced the expression of collagen by TM cells because 
the increase in PTEN levels is antagonized by an increase in its phosphorylation at Ser380/Thr382/383 in the 
C-terminal tail region. Phosphorylation at these residues is known to reduce PTEN activity48 and causes folding 
of the C-terminal tail on to the membrane-binding region, thus preventing translocation of PTEN to cell mem-
brane, suppressing its enzymatic activity44–48. The inactivation of PTEN due to phosphorylation and its associ-
ation with increase in collagen expression by TM cells is further supported by previous reports that Pten gene 
deletion or PTEN inhibition increased deposition of collagen17, 61.

The continuous remodeling of ECM in the TM reflects its adaptation to a high-stress mechanical stress envi-
ronment and the necessity to maintain normal IOP, despite the persistent fluctuations of IOP26. Expeditious 
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Figure 2.  TGF-β induces phosphorylation of AKT in human TM cells. (A) Western blot analysis of AKT and 
its phosphorylation (pAKT- ser473) in TM cells treated with TGF-β2 (1, 5 or 10 ng/ml). Protein was extracted 
at 24 h. TGF-β receptor signaling was inhibited using SB431542 (SB; 20 μM). D7278- representative human 
donor. (B) Densitometry was performed on AKT and pAKT Western blot data using ImageJ software. Statistical 
significance was determined using one-way ANOVA with Tukey’s post-hoc. *p < 0.05. N = 3.
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Figure 3.  Inhibition of PI3-kinase/AKT signaling prevents TGF-β-induced increase in levels of collagen and 
PTEN/phosphorylation in human TM cells. (A,B) Human TM cells were treated with TGF-β2 (1 ng/ml) and PI3-
kinase signaling inhibited using ZSTK474 (Z2, Z5- 2 μM or 5 μM) or LY294002 (LY20, LY30- 20 μM or 30 μM). 
Protein was extracted at 24 h and collagen, PTEN, pPTEN (ser380/thr382/383), AKT and pAKT detected by 
Western blot. Densitometry was performed on collagen, PTEN and pPTEN Western blots using ImageJ software 
and shown as graphs. Statistical significance was determined using one-way ANOVA with Tukey’s post-hoc. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. N = 3. D5975, D5987- representative human donors.
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activation and deactivation of PTEN through alteration of phosphorylation status could be one of the fundamen-
tal signaling mechanisms that allow for continuous remodeling of ECM in TM tissue. Our study demonstrates for 
the first time that treatment with TGF-β is associated with phosphorylation of PTEN. Hitherto, TGF-β has only 
been known to decrease PTEN levels10–13, 60 in experiments mostly on transformed cell lines, representing tissues 
that do not need continuous ECM remodeling.

Reversible control of phosphorylation allows cells to respond rapidly to fluctuating changes in its environ-
ment69. Other factors present in the aqueous humor could balance the TGF-β-induced phosphorylation of PTEN. 
For example, Hepatocyte growth factor (HGF) is present in the normal aqueous humor70. HGF is known to 
inhibit TGF-β-induced decrease in PTEN levels71 and also antagonize the fibrotic actions of TGF-β72. Alternative 
isoform of TGF-β receptor II in TM cells could also explain the difference in TGF-β signaling mechanism in TM 
cells73. In this context, it is noteworthy that, in TM cells, TGF-β not only increases ECM deposition, but concur-
rently induces localized ECM digestion at invadosomes by increasing matrix metalloproteinase-2 activity8.

The increase in PTEN levels at 24 and 48 hours that we found following TGF-β treatment, could represent a 
feed-back mechanism to compensate for an early decrease in PTEN activity due to phosphorylation. Our pre-
liminary experiments (Supplementary data Fig. 2) indicate an early increase in PTEN phosphorylation at 15 to 
30 minutes after TGF-β treatment. This increase appears to attenuate at one hour after TGF-β treatment. The early 
increase in PTEN phosphorylation coincides with known peak phosphorylation of Smad3 at 30 minutes after 
TGF-β treatment74, 75, and is relevant as PTEN is known to regulate Smad signaling through Smad2/3 phosphatase 
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Figure 4.  Inhibition of PTEN increases levels of collagen in human TM cells. Human TM cells were treated 
with VO-OHpic, a potent inhibitor of PTEN at varying concentrations. VO-OHpic at 5 μM caused a nearly 
4-fold (N = 3) increase in collagen levels at 48 h. A corresponding increase in the levels of PTEN and 
phosphorylated PTEN was noted. D5975- representative human donor.
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Figure 5.  PTEN activity modulates collagen expression in human TM cells. TM cells were treated with TGF-β2 
(5 ng/ml) and transfected with control GFP-vector (Cv), enhanced PTEN-GFP vector (ePv) or C124SPTEN-
GFP vector (C124SPv). Enhanced PTEN has eight-fold increased ability to suppress PIP3 signaling, while 
C124SPTEN has defective lipid phosphatase activity. Densitometry was performed on collagen Western blots 
using ImageJ software. Statistical significance was determined using one-way ANOVA with Tukey’s post-hoc. 
*p < 0.05, **p < 0.01, ****p < 0.0001. N = 3. D5975- representative human donor. Transfection with enhanced 
PTEN decreased the levels of TGF-β-induced collagen to that of controls, while reducing the levels of PTEN and 
its phosphorylation. Transfection with C124SPTEN enhanced TGF-β induced increase in collagen levels and 
this was accompanied by an increase in the levels of PTEN and phosphorylated PTEN.
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PPM1A14. Moreover, being a highly regulated protein22, activation and recruitment to the membrane is known 
to rapidly degrade PTEN44, while phosphorylation at Ser380/Thr382/Thr383 increases its stability48. Thus, the 
increase in PTEN levels could also be a mechanism that promptly compensates for any activity-induced degra-
dation of PTEN.

We further showed that, in TM cells, the increase in collagen after TGF-β treatment is associated with an 
increase in phosphorylation of AKT at Ser473. Since PTEN inhibits the PI3-kinase/AKT signaling pathway76, the 
increase in pAKT yet again indicates a reduction in PTEN activity. Conversely, we demonstrate that inhibition 
of the PI3-kinase pathway resulted in almost complete elimination of AKT phosphorylation by TGF-β, and also 
prevented TGF-β-induced increase in collagen levels. The decrease in AKT phosphorylation and collagen expres-
sion following inhibition of PI3-kinase pathway indicates an increase in PTEN activity. Activation of PTEN with 
inhibition of PI3-kinase pathway has been previously reported53, 77, 78. Moreover, inhibition of PI3-kinase pathway 
reduced TGF-β-induced increase in PTEN levels and phosphorylation. This again indicates a rapid degradation 
of PTEN following its activation and recruitment to the membrane44.

Additionally, we show that PTEN inhibition increased collagen production by TM cells. Furthermore, over-
expression of ePTEN, with approximately eight-fold increased ability to suppress PIP3 signaling56, prevented 
TGF-β-induced collagen and fibronectin expression. In contrast, overexpression of PTEN with defective lipid 
phosphatase activity56 further enhanced TGF-β-induced collagen and fibronectin expression in TM cells. 
Considering that even a 20% reduction in PTEN levels induces early lethality and cancer susceptibility79, it is 
highly plausible that even a modest therapeutic increase in PTEN activity could effectively reduce fibrosis of TM 
in glaucoma.

New therapeutic approaches are critical, as progressive vision loss is common among glaucoma patients 
despite effective current treatments80. However, no new drug classes have been approved worldwide to treat glau-
coma for nearly two decades81, 82. Several new drugs are currently in clinical trials but they have varying efficacies 
and side-effect profiles and strategies of treatment are still evolving81, 82. Our results indicate that PTEN has high 
potential to emerge as an effective therapeutic treatment for glaucoma. Several therapeutic drugs that indirectly 
enhance PTEN activity are currently available83, and may be used to prevent PTEN phosphorylation, increase 
PTEN activity or modulate elements associated with its signaling to alleviate fibrosis of TM.

Methods
Cell culture.  For all experiments human trabecular meshwork cells at passage 4 were used. Donor cells 7278, 
5975, and 5987 were of embryonic origin (ScienCell Research Laboratories, Carlsbad, CA). Phenotype of donor 
cells was further confirmed by immunostaining for von-Willebrand factor (data not shown) and by detection of 
myocilin after dexamethasone treatment (Supplementary data Fig. 3). Cells were cultured in low glucose DMEM 
(Life Technologies, Burlington, ON, Canada) supplemented with 10% FBS with 1% Penicillin-Streptomycin 
(Life Technologies) on either tissue culture-treated plastic or on Bioflex pronectin/collagen-coated (Flexcell 
International Corporation, Burlington, NC) plates. Cells were in low serum medium (0.5% FBS) for at least 
6–12 h and nearly confluent when treated with human recombinant TGF-β2 (R&D Systems, Inc, Minneapolis, 
MN). When small molecule inhibitors of cell signaling were used [SB431542, VO-OHpic (Tocris Bioscience, 
Minneapolis, MN), LY294002, or ZSTK474 (Selleck Chemicals, Houston, TX)] the cells were pretreated for 
30 min to 1 h.

Real-time PCR.  Total RNA was isolated using the RNeasy RNA extraction kit (Qiagen, Mississauga, ON) and 
quantity and integrity of RNA sample was checked using a Nanodrop 2000 (Thermo Scientific, Waltham, MA). 
25 ng of total RNA was reverse-transcribed and amplified using one-step RT-qPCR master mix (qScript XLT 
One-step RT-qPCR ToughMix, ROX; Quanta Biosciences, Beverly, MA) and detected with ABI Prism 7900HT 
(Applied Biosystems/Thermo Scientific). TaqMan Assay-on-Demand primers (Applied Biosystems/Thermo 
Scientific) were used and samples were run in triplicate. Levels of PTEN and COL1A1 mRNA expression in sam-
ples were normalized to values of control 18S and fold change determined using the 2−ΔΔCt method.

Western blots.  Since increase in PTEN expression was surprisingly accompanied by an increase in its phos-
phorylation, Western blots to probe the expression of PTEN and phosphorylated PTEN were initially conducted 
separately (Supplementary data Fig. 4). This was to avoid any technical problem associated with stripping and 
reprobing the blots. Once the concomitant increase in both PTEN and phosphorylated PTEN was established, 
further experiments probed the same blot, first for phosphorylated PTEN and then followed by PTEN. Following 
detection of phosphorylated PTEN, blots were stripped and checked for any residual HRP-conjugated secondary 
antibody before being probed for PTEN.

Proteins were extracted using IP lysis buffer (Pierce; Thermo Scientific) and protein estimation was performed 
using the Micro BCA Protein Assay kit (Thermo Scientific). Proteins were resolved on polyacrylamide gels and 
blotted on to nitrocellulose membranes and probed with anti-PTEN rabbit pAb (AF847) (R&D Systems, Inc), 
anti-phosphoPTEN Ser380/Thr382/383 rabbit mAb (44A7) (Cell Signaling Technologies, Danvers, MA), anti-Akt 
(pan) rabbit mAb (C67E7) (Cell Signaling Technologies), anti-phosphoAkt Ser473 (D9E XP) rabbit mAb (Cell 
Signaling Technologies), anti-collagen type 1 rabbit mAb (EPR7785) (Abcam, Cambridge, UK) and anti-GAPDH 
mouse mAb (9B3: sc-66163) (Santa Cruz Biotechnology, Santa Cruz, CA). HRP conjugated anti-mouse and 
anti-rabbit antibodies were used in conjunction with an ECL imaging system. Densitometric analysis of western 
blot bands was performed using ImageJ software.
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Overexpression of PTEN.  TM cells were transfected using the Polymag Neo Magnetofection Kit (OZ 
Biosciences Inc, San Diego, CA) according to manufacturer’s instructions. TM cells were transfected with 1 µg 
of either IRES GFP84 (Addgene, Cambridge, USA), ePTEN-GFP or C124SPTEN-GFP56 in pcDNA3.1 backbone, 
followed by addition of 5 ng/ml TGF-β2, 20–24 h after transfection. Protein was extracted at 24 and 48 h after 
addition of TGF-β to transfected TM cells.

Statistical analysis.  Two-way ANOVA with Bonferroni’s post-hoc test or one-way ANOVA with Tukey’s post 
hoc test was applied to determine the statistical significance in differences between treatment groups. Differences 
were considered statistically significant when P < 0.05. GraphPad Prism software (version 6.0, GraphPad 
Software, San Diego, CA) was used for all statistical analyses.
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