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Yun Xu,1,2,11 Jiesong Wang,3,11 Chenxin Li,4 Yong Su,5,6 Hewei Peng,7 Lanyan Guo,8 Shaojun Lin,1,2 Jingao Li,5,6

and Dan Wu9,10,12,*
SUMMARY

Nasopharyngeal carcinoma (NPC) has highmetastatic potential and is hard to detect early. This study aims
to develop a deep learning model for NPC diagnosis using optical imagery. From April 2008 toMay 2021,
we analyzed 12,087 nasopharyngeal endoscopic images and 309 videos from 1,108 patients. The pre-
trained model was fine-tuned with stochastic gradient descent on the final layers. Data augmentation
was applied during training. Videos were converted to images for malignancy scoring. Performance met-
rics like AUC, accuracy, and sensitivity were calculated based on the malignancy score. The deep learning
model demonstrated high performance in identifying NPC, with AUC values of 0.981 (95% confidence of
interval [CI] 0.965–0.996) for the Fujian Cancer Hospital dataset and 0.937 (0.905–0.970) for the Jiangxi
Cancer Hospital dataset. The proposed model effectively diagnoses NPC with high accuracy, sensitivity,
and specificity acrossmultiple datasets. It shows promise for early NPC detection, especially in identifying
latent lesions.

INTRODUCTION

Nasopharyngeal carcinoma (NPC)1 is an epithelial malignancy that exhibits a distinct geographical distribution. In 2018, it was estimated to

have affected 130,000 patients globally, with over 70% of the cases occurring in Southeast Asia, particularly in southern China.2–4 Unlike other

head and neck carcinomas, over 70% of NPC patients are diagnosed with locoregionally advanced disease at presentation. This is largely

attributed to the hidden anatomical site and nonspecific symptoms.5,6 Despite the use of intensity-modulated radiotherapy and induction

chemotherapy, approximately 5%–15% experience recurrence, and 15%–30% are at risk of distant metastasis.7 Therefore, early diagnosis

is the key to improving the prognosis of NPC.

Endoscopy with histopathological examination of suspectedmucosal lesions is the gold standard for NPC diagnosis. Magnetic resonance

imaging is advised for T and N classification.8 However, NPC biopsy and diagnosis are affected by many factors, such as submucosal lesions

with blurred images and multifocal distribution of NPC. Moreover, nasopharyngeal lesions concealed in mucosa or with normal lymphoid

hyperplasia also hinder diagnosis. Therefore, it is essential to identify a reliable method of accurately detecting primary tumors to assist in

NPC diagnosis.

Since 2012, significant advancements have been made in image recognition benchmarks due to deep learning9–13 This progress is attrib-

uted to the amalgamation of computational power, algorithms, data, and application scenarios.14–20 Deep learning has found extensive ap-

plications in the medical field, particularly in clinical image diagnosis, where it has achieved remarkable success in traditional pathology

tasks.21–24 Numerous AI models based on endoscopic images have been published, but the majority of these models are primarily

focused on digestive diseases.25–29 While some studies have utilized other types of images (e.g., biopsies, MRI, and CT images) to train a

diagnostic model for NPC30–37 there are only a few studies that have used endoscopic images for the same purpose. The application of
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deep learning, particularly with endoscopic images, holds immense potential for aiding in the diagnosis of NPC due to its wide availability.

However, the methodology for this application is still under development and requires further validation.38–40

In this study, our objective is to develop a deep learning model for the optical diagnosis of NPC. We have used pathological examination

results as the gold standard for NPC diagnosis. As shown in Figures 1, 2 and 3, the developed deep network, which is named with NPCNet,

was independently evaluated on two testing sets comprised of static images and one testing set comprised of video data.41,42

RESULTS

Baseline characteristics of the training and test datasets

Between April 2008 and May 2021, 12,087 nasopharyngeal endoscopic images were available for this study, including 6,203 images from 573

individuals at Fujian Cancer Hospital (FCH) and 5,884 images from 535 individuals at Fujian Cancer Hospital (JCH). FCH also provided 309

videos from 309 individuals for this study. No videos were available from JCH. The training set consisted of 8,431 images from 704 individuals,

including 6,056 images from 490 NPC patients and 2,375 images from 214 non-NPC patients. Male sex accounted for 74.9% (367/490) in the

NPC patient group versus 60.7% (130/214) in the control group. The average age of the NPC patient group was 50 versus 52 of the control

group. For NPC patients, 1.6% had stage I disease, 16.5% had stage II disease, 36.7% had stage III disease, 41.5% had stage IV disease, and

3.7% had no TNM stage information.

The validation set consisted of 1,476 static images of 204 patients from FCH and 2,180 static images of 200 patients from JCH as well as 309

videos of 309 patients from FCH. The latter consisted of 98 videos from individuals with histologically confirmedNPC, 106 videos from healthy

nasopharyngeal patients (control group 1) and 105 videos from recuperated patients after radiotherapy (control group 2) who had achieved

clinical complete response without residual tumors. The baseline characteristics of the training set and three test sets are shown in Table 1.

Performance of the proposed deep models on test sets

The processes displayed in Figure 4 include the initial phase of developing the deep learningmodel, where data is inputted and themodel is

trained to recognize patterns related to postoperative lung cancer prognosis. This is followed by the validation phase where the model is

tested on new data to evaluate its accuracy in predicting the prognosis. This step-by-step visualization offers a clear understanding of

how deep learning models are developed and validated in the medical field.

The model achieved high performance in identifying NPC patients in the validation set with area under the curve (AUC) values of 0.981

(95% confidence of interval [CI] 0.965–0.996) and 0.937 (0.905–0.970) for the FCH and JCH image datasets, respectively, and 0.953 (0.927–

0.980) for the FCH video dataset (Figure 5).

For the FCH image dataset, the accuracy was 0.956 (0.918–0.980), the sensitivity was 0.948 (0.884–0.983), and the specificity was 0.963

(0.907–0.990). For the FCH video dataset, the accuracy was 0.906 (0.868–0.936), the sensitivity was 0.847 (0.757–0.909), and the specificity

was 0.934 (0.891–0.963). For the JCH image dataset, the accuracy was 0.880 (0.827–0.922), the sensitivity was 0.931 (0.864–0.972), and the spec-

ificity was 0.827 (0.737–0.896). The performance of the model on the three test sets is shown in Table 2.
Figure 1. Flowchart illustrating the patient inclusion process for a retrospective diagnostic study conducted using endoscopic images and videos from

Fujian Cancer Hospital and Jiangxi Cancer Hospital

The study involved patients aged 12–85 years who underwent pathological examination, with a separate healthy control group.
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Figure 2. Hematoxylin and Eosin (HE) pathological images of patients with nasopharyngeal carcinoma and nasopharyngeal mucosal inflammation of

NPC after radiotherapy

(A) Microscopic morphology of mucosal inflammation after radiotherapy for NPC (20x).

(B and C) Microscopic morphology of NPC (20x and 40x).

(D) CK immunohistochemistry was strongly positive in nasopharyngeal carcinoma.

(E) EBER in situ hybridization was positive in nasopharyngeal carcinoma.
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Notably, when using 106 videos from healthy nasopharynx as the control (control group 1), the model achieved an AUC of 0.967 (95% CI

0.942–0.991) for detecting NPC in 98 patients, and this AUC value is greater than obtained using postradiotherapy patients as the control

(control group 2) [AUC 0.940 (0.908–0.972)] (Figure 6).

Performance of NPCNet in different gender and age groups

NPCNet achieved a higher AUC in the female group than in themale group on all three test sets. In the FCH image dataset, NPCNet achieved

an AUC of 0.944 (95%CI 0.903–0.984) for themale group and 0.995 (0.987–1.000) for the female group. In the FCH video dataset, the AUCwas

up to 0.933 (0.896–0.970) for the male group and 0.988 (0.972–1.000) for the female group. In the JCH image dataset, the AUC was 0.931

(0.889–0.973) for the male group and 0.957 (0.912–1.000) for the female group (Figure 7; Table 3).

Patients were stratified based on age into >50 and %50-year-old groups. In the FCH image dataset, NPCNet achieved an AUC of 0.986

(0.969–1.000) for the >50-year-old group and 0.975 (0.949–1.000) for the%50 years old group. In the FCH video dataset, the AUC was 0.946

(0.912–0.980) for the >50-year-old group and 0.957 (0.915–0.998) for the %50-year-old group. In the JCH image dataset, the AUC was 0.944

(0.903–0.984) for the >50-year-old group and 0.934 (0.885–0.983) for the %50-year-old group (Figure 8; Table 4).

Visual explanation of the decision made by NPCNet

We calculated the score of NPC images after partly erasing pixels and subtracted this score from the original score to derive a visual expla-

nation by localizing the image area that most influenced the decision made by NPCNet. Representative NPC images with accompanying

heatmaps highlighting the features that most influenced NPCNet prediction are shown in Figure 9. The endoscopists from FCH agreed

that the heatmaps captured the regions of malignant NPC lesions.

DISCUSSION

Our study underscores the efficacy of our model in the automated diagnosis of NPC using a comprehensive dataset of images and videos

from various hospitals in China. The model demonstrated high accuracy, sensitivity, and specificity in real-world settings, outperforming ex-

isting models that predominantly rely on biopsies, MRI, and CT images.30–37,43,44 By integrating optical diagnosis during endoscopy, our

approach facilitates earlier treatment planning, enhances NPC detection rates, and reduces missed diagnoses due to hidden lesions or
iScience 27, 110590, September 20, 2024 3



Figure 3. DenseNet architectures for ImageNet

The growth rate for all the networks is k = 32. Note that each ‘‘conv’’ layer shown in the table corresponds the sequence BN-ReLU-Conv.
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clinician errors. This study significantly contributes to the literature on NPC diagnostic models and underscores the potential of optical diag-

nosis in improving patient outcomes.

Early diagnosis of NPC is challenging due to several factors: (1) The similarity in symptoms between benign andmalignant tumors can lead

to a lack of specificity and potential misdiagnosis. (2) Nasopharyngeal lesions are difficult to detect, resulting in missed diagnoses. (3) Naso-

pharyngeal biopsy requires expertise and is typically performed by senior doctors. False negative results may necessitate repeated biopsies,

thereby delaying treatment. A study by Baran H et al. revealed that only 10.67% of patients had malignancy in nasopharyngeal biopsy, with
Table 1. Baseline characteristics

Variables

Training set Fujian test set (image) Fujian test set (video) Jiangxi test set (image)

NPC non-NPC NPC non-NPC NPC non-NPC NPC non-NPC

Patients 490 214 98 106 98 211 100 100

Images 6056 2375 793 683 98 211 1174 1006

Male sex 367 130 79 27 79 103 70 72

Images 4532 1498 641 185 79 103 759 723

Female sex 123 84 19 79 19 108 30 28

Images 1524 877 152 498 19 108 415 283

Age (years) 50 (12–80) 52 (15–80) 50 (18–75) 48 (14–74) 50 (18–75) 49 (12–74) 52 (12–84) 51 (15–78)

Age >50years male) 177 (35.6%) 71 (14.3%) 42 (39.6%) 12 (11.3%) 42 (23.1%) 52 (28.6%) 44 (31.0%) 33 (23.2%)

Age (%50years male) 190 (38.2%) 59 (11.9%) 37 (34.9%) 15 (14.2%) 37 (20.3%) 51 (28.0%) 26 (18.3%) 39 (27.5%)

Age >50years female) 58 (28.0%) 49 (23.7%) 5 (5.1%) 34 (34.7%) 5 (3.9%) 46 (36.2%) 14 (24.1%) 17 (29.3%)

Age (%50years female) 65 (31.4%) 35 (16.9%) 14 (14.3%) 45 (45.9%) 14 (11.0%) 62 (48.9%) 16 (27.6%) 11 (19.0%)

TMN staging

I 8 (1.6%) . 3 (3.1%) . 3 (3.1%) . 0 .

II 81 (16.5%) . 11 (11.2%) . 11 (11.2%) . 12 (12%) .

III 180 (36.7%) . 30 (30.6%) . 30 (30.6%) . 27 (27%) .

IV 203 (41.5%) . 52 (53.1%) . 52 (53.1%) . 61 (61%) .

Missing 18 (3.7%) . 2 (2.0%) . 2 (2.0%) . 0 .
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Figure 4. The processes of development and validation of the deep-learning model for NPC diagnosis

The model is trained on data, then tested for accuracy. This depiction offers an insight into the systematic construction and validation of deep learningmodels in

medicine.
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various pathological results.45 Our internally validated NPCNet model has the potential to significantly facilitate early NPC diagnosis if exter-

nally validated.

Ourmodel achieved lower AUC values in the FCH video validation set (AUC: 0.953, 0.927–0.980) compared to the FCH image validation set

(AUC: 0.981, 0.965–0.996). This may be attributed to the presence of irrelevant images outside of the nasopharynx in the video set, as it cap-

tures the entire nasopharyngoscopy process, unlike the more focused images taken by doctors. Furthermore, the control group in the FCH

video dataset included two subgroups: healthy individuals and post-radiotherapy patients whose NPCs had resolved and whosemucosa had

recovered. We included post-radiotherapy patients to account for the challenge of distinguishing recurrences based solely on mucosal

appearance, as the nasopharyngeal mucosa can appear dirty and have secretions attached after radiotherapy for NPC.

The performance of the NPCNet model in distinguishing NPC through optical diagnosis varied when comparing two different control

groups. When videos from healthy individuals were used as controls, the model achieved a higher AUC compared to when videos from

post-radiotherapy patients were used. This difference in performance could be attributed to the varying appearances of the nasopharyngeal

mucosa in these two groups. Healthy mucosa appears clean, smooth, and uniformly red, while mucosa in post-radiotherapy patients is often

atrophic and may be covered by thick and unclean secretions if nasal irrigation is inadequate. Additionally, post-radiotherapy patients may

have undetected microscopic residual lesions. It is crucial to compare these groups as the NPCNet model, an artificial intelligence method,
iScience 27, 110590, September 20, 2024 5



Figure 5. Graphical representation of the model’s performance in identifying NPC patients in the validation set

Performance of the NPCNet model in identifying patients with NPC using three test sets.

(A) Performance using the Fujian image dataset.

(B) Performance using the Fujian video dataset.

(C) Performance using the Jiangxi image dataset.
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can provide additional information on residual and post-radiotherapy changes that may not be captured by standard MRI examinations. This

is particularly valuable for radiotherapy doctors or less-experienced physicians.

In our model, the female group exhibited a higher AUC than the male group (Figure 2). Some researchers have observed that female NPC

patients tend to have a better prognosis than male patients, possibly due to intrinsic factors specific to female patients, such as hormones.

However, the underlying mechanism remains largely unknown.46–49

We calculated the score of NPC images after partially erasing pixels and subtracted this score from the original score to derive a visual

explanation. This process localized the image area that most influenced the decision made by NPCNet. The endoscopists concurred that

the heatmaps captured the regions of malignant NPC lesions. The interpretability of NPCNet may assist doctors in identifying NPC lesions

in the future.50–52

Prior to the pathology report, it is challenging to determine whether MRI or nasopharyngeal endoscopic images are more effective for

NPC diagnosis. Nasopharyngoscopy, when combined with biopsy, is a simple and cost-effective method for identifying NPC. However, our

model demonstrates high accuracy, sensitivity, and specificity in the Fujian video test set, indicating its potential for real-time video diag-

nosis. This method could significantly reduce doctors’ workload, provide faster diagnosis for patients, and improve the detection rate of

hidden lesions.

Our study had several limitations. We lacked image data from northern China, which may have resulted in the model learning less about

mucosal features in different regions. The training dataset included only 704 individuals and 8,431 images, smaller than those used in other

similar cancer diagnosis models. Most patients in our dataset had advanced stages, so there is uncertainty about the model’s performance in

detecting small tumors. Increasing data size and including real-world data from other areas could improve our model’s performance. Pro-

spective, multicenter, large-scale trials are needed for validation. Additionally, our study did not explore the correlation of stage and prog-

nosis, which are crucial factors in the treatment regimen selection based on MRI and EB-DNA copy number, among other factors. It is impor-

tant to note that we have not included othermalignancies that can affect the nasopharynx, such as lymphomas or minor salivary gland tumors.

These are significant potential conditions that could play a role in the nasopharynx, and their exclusion from the study is an important limi-

tation that needs to be thoroughly discussed. This omission could potentially impact the overall generalizability of the deep learning model
Table 2. Performance metrics for NPCNet on three test sets

Fujian image dataset Fujian video dataset Jiangxi image dataset

Accuracy (95% CI) 0.956 (0.918–0.980) 0.906 (0.868–0.936) 0.880 (0.827–0.922)

Sensitivity (95% CI) 0.948 (0.884–0.983) 0.847 (0.757–0.909) 0.931 (0.864–0.972)

Specificity (95% CI) 0.963 (0.907–0.990) 0.934 (0.891–0.963) 0.827 (0.737–0.896)

Positive Prediction Value (95% CI) 0.958 (0.897–0.989) 0.856 (0.770–0.919) 0.848 (0.768–0.909)

Negative Prediction Value (95% CI) 0.954 (0.895–0.985) 0.929 (0.886–0.960) 0.920 (0.843–0.967)

Kappa (95% CI) 0.912 (0.853–0.961) 0.783 (0.709–0.850) 0.759 (0.671–0.849)

F1 (95% CI) 0.953 (0.923–0.981) 0.851 (0.798–0.899) 0.888 (0.840–0.928)

6 iScience 27, 110590, September 20, 2024



Figure 6. Performance of NPCNet using the Fujian video dataset

(A) Performance using videos from patients with healthy nasopharynx.

(B) Performance using videos from recuperated patients after chemotherapy.
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that has been developed to distinguish NPC from these other nasopharyngeal pathologies. It’s crucial to consider these factors because they

could potentially alter the effectiveness of the model when applied in a broader context, which includes these other types of nasopharyngeal

conditions.

The newly developed NPCNet model demonstrated high accuracy, sensitivity, and specificity in identifying patients with NPC. The per-

formance of our model indicates that this method is valuable and has the potential to assist in clinical diagnosis. In the future, this diagnostic

model should be tested in independent datasets and prospective clinical trials.

Conclusions

This study demonstrates that NPCNet, tested on two image datasets and one video dataset, can achieve high accuracy, sensitivity, and spec-

ificity in automated NPC diagnosis in a real-world setting. The optical model holds promise for early detection of NPC, particularly in detect-

ing latent lesions.
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Figure 7. Performance of NPCNet in the male group and female group

(A) Performance on the male group from the Fujian image dataset.

(B) Performance on the female group from the Fujian image dataset.

(C) Performance on the male group from the Fujian video dataset.

(D) Performance on the female group from the Fujian dataset.

(E) Performance on the male group from the Jiangxi image dataset.

(F) Performance on the female group from the Jiangxi image dataset.
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Table 3. Performance metrics of NPCNet of Fujian Video dataset

Healthy nasopharynx as control Patients after chemotherapy as control

Accuracy (95% CI) 0.917 (0.870–0.951) 0.877 (0.824–0.919)

Sensitivity (95% CI) 0.867 (0.784–0.927) 0.847 (0.760–0.912)

Specificity (95% CI) 0.962 (0.906–0.990) 0.905 (0.832–0.953)

Positive Prediction Value (95% CI) 0.955 (0.889–0.988) 0.892 (0.811–0.947)

Negative Prediction Value (95% CI) 0.887 (0.814–0.938) 0.864 (0.785–0.922)

Kappa (95% CI) 0.832 (0.753–0.902) 0.753 (0.651–0.842)

F1 (95% CI) 0.869 (0.813–0.919) 0.909 (0.865–0.950)
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Figure 8. Performance of NPCNet in the >50-year-old group and %50-year-old group

(A) Performance on the >50-year-old group from the Fujian image dataset.

(B) Performance on the %50-year-old group from the Fujian image dataset.

(C) Performance on the >50-year-old group from the Fujian video dataset.

(D) Performance on the %50-year-old group from the Fujian video dataset.

(E) Performance on the >50-year-old group from the Jiangxi image dataset.

(F) Performance on the %50-year-old group from the Jiangxi image dataset.
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Table 4. Performance metrics of NPCNet on >50years old group and %50 years old group

Fujian image dataset

>50years % 50 years

Fujian video dataset

>50years % 50 years

Jiangxi image dataset

>50years % 50 years

Accuracy (95% CI) 0.957 (0.894–0.988) 0.955 (0.898–0.985) 0.903 (0.842–0.946) 0.915 (0.862–0.953) 0.880 (0.803–0.934) 0.891 (0.809–0.947)

Sensitivity (95% CI) 0.936 (0.825–0.987) 0.960 (0.863–0.995) 0.830 (0.692–0.924) 0.882 (0.761–0.956) 0.898 (0.792–0.962) 1.000 (0.933–1.000)

Specificity (95% CI) 0.978 (0.885–0.999) 0.951 (0.863–0.990) 0.938 (0.870–0.977) 0.930 (0.866–0.969) 0.857 (0.728–0.941) 0.796 (0.657–0.898)

Positive Prediction

Value (95% CI)

0.978 (0.882–0.999) 0.941 (0.838–0.988) 0.867 (0.732–0.949) 0.849 (0.724–0.933) 0.883 (0.774–0.952) 0.811 (0.680–0.906)

Negative Prediction

Value (95% CI)

0.938 (0.828–0.987) 0.967 (0.885–0.996) 0.919 (0.847–0.964) 0.946 (0.887–0.980) 0.875 (0.748–0.953) 1.000 (0.926–1.000)

Kappa (95% CI) 0.914 (0.826–0.978) 0.909 (0.828–0.981) 0.776 (0.658–0.882) 0.803 (0.694–0.895) 0.757 (0.631–0.869) 0.785 (0.662–0.908)

F1 (95% CI) 0.957 (0.909–0.990) 0.950 (0.897–0.990) 0.848 (0.765–0.920) 0.865 (0.792–0.929) 0.891 (0.824–0.944) 0.896 (0.825–0.951)
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Nasopharyngeal endoscopic images and videos Fujian Cancer Hospital (FCH) and

Jiangxi Cancer Hospital (JCH)

N/A

Pathological examination reports FCH and JCH pathology departments N/A

Deposited data

Raw and analyzed data This paper N/A

Software and algorithms

R R Foundation for Statistical Computing https://www.r-project.org/

caret package CRAN https://cran.r-project.org/web/packages/

caret/index.html

pROC package CRAN https://cran.r-project.org/web/packages/

pROC/index.html

DenseNet Huang et al 201753 N/A

Other

PENTAX Medical endoscope (Model No.

VNL-1190STK, VNL-1070STK,

VNL-1570STK)

PENTAX Medical N/A

Endoscopy capture recorder (Model No.

EPK-i5000)

PENTAX Medical N/A
RESOURCE AVAILABILITY

Lead contact

Dan Wu wudan_0729@163.com.

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The nasopharyngeal endoscopic images and videos used in this study are not publicly available due to patient privacy concerns. How-

ever, these datamay be available from the corresponding author upon reasonable request and with appropriate data use agreements.

� The code used for training and evaluating the NPCNet model will be available from the corresponding author upon reasonable

request.
� Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This retrospective diagnostic study analyzed nasopharyngeal endoscopic images and videos from 1108 participants (predominantly Han

Chinese, aged 12–85 years) at Fujian Cancer Hospital (FCH) and Jiangxi Cancer Hospital (JCH). The dataset, randomly divided into training

and validation sets at the patient level, included 704 individuals in the training set (NPC patients: mean age 50 years, 74.9% male; controls:

mean age 52 years, 60.7% male). The validation set comprised 1476 static images from 204 FCH patients, 2180 static images from 200 JCH

patients, and 309 videos from FCH (98 NPC patients, 106 healthy controls, 105 post-radiotherapy patients). Nasopharyngoscopies were

performed by a senior radiologist with over 15 years of experience in radiation oncology, while an instrumentation engineer extracted

the images and videos. Pathological examination reports were obtained from both hospitals’ pathology departments. All data, including

a distinct healthy control group in the video test set, were anonymized before analysis. The study subject inclusion process is illustrated

in Figure 1.
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METHOD DETAILS

Study design and participants

We carried out a retrospective diagnostic study utilizing endoscopic images and videos from FujianCancer Hospital (FCH) and Jiangxi Cancer

Hospital (JCH) in China. A senior radiologist, with over 15 years of experience in radiation oncology, conducted the nasopharyngoscopies,

while an instrumentation engineer was responsible for the extraction of the images and videos. The amassed image dataset was randomly

segregated into training and validation sets at the patient level, ensuring there was no overlap between the two sets. The study encompassed

patients aged between 12 and 85 years who had undergone pathological examination, with a distinct healthy control group included in the

video test set. Pathological examination reports were procured from the pathology departments at FCH and JCH. All data and reports were

anonymized prior to their utilization in the research. The process of study subject inclusion is illustrated in Figure 1.

This study was approved by the institutional review board (IRB) of both hospitals and undertaken according to the Declaration of Helsinki.

Informed consent from patients with NPC and controls was not required by the IRB given the retrospective nature of this study.
Procedures

All nasopharyngeal endoscopic images were procured from the Imaging Databases at Fujian Cancer Hospital (FCH) and Jiangxi Cancer Hos-

pital (JCH). The static images were provided in JPEG format, while the video streams were in AVI format. The endoscopic equipment utilized

for the nasopharyngeal examination was manufactured by PENTAX Medical. The images were captured using an endoscope (Model No.

VNL-1190STK, VNL-1070STK, VNL-1570STK) and an endoscopy capture recorder (Model No. EPK-i5000). The image quality control process

involved the removal of out-of-focus and blurred images based on the review by the endoscopist.

All participants in this study underwent a pathological examination, which included a control group of healthy nasopharynx and patients

who had undergone radiotherapy. The control group comprised 106 healthy patients and 105 patients who had completed radiotherapy with

a minimum duration of six months. These patients had been clinically evaluated and demonstrated complete tumor elimination. Post-radio-

therapy, changes in the nasopharynx, such as inflammation and mucosal atrophy, were commonly observed. Figure 2 illustrates Hematoxylin

and Eosin (HE) pathological images of NPC patients and inflammation in the nasopharyngeal mucosa post-radiotherapy.

In previous studies, a deep convolutional neural network model for colorectal cancer was trained based on DenseNet,53 a neural network

framework. The model was pretrained with 464,105 colonoscopic images. In this NPC image research, we fine-tuned the last two layers of this

model, setting the last two layers of the model as fully connected layers for training.54 The number of classes was set to 2 (i.e., benignity and

malignancy determined from pathological reports). The parameters of the last two layers of the pretrainedmodel were updated by stochastic

gradient descent with a momentum of 0.9, a learning rate of 0.0001, and a batch size of 256 for 30 epochs, while the parameters of the other

layers were frozen.38,55–57 The data augmentations included random resized crops, random horizontal flipping, color jittering, andmixup. The

architecture of DenseNet we use is illustrated in Figure 3.

Upon completion of the model training, we computed the malignancy score for each individual in the validation sets. Videos were con-

verted to images with one image per frame. After importing the net and weights, all images of the test sets were read to calculate the ma-

lignancy score. Each patient had multiple images, resulting in multiple scores. After comparing the average value and weighted average

value, we selected the highest score as the patient malignancy score, which was used to calculate the Area Under the Curve (AUC), accuracy,

and sensitivity. The malignancy score was computed as follows:

p = max
�
p1;p2;p3;p4;.;pn

�

We also calculated the score of NPC images after partly erasing pixels and subtracted this score from the original score to derive a visual

explanation by localizing the image area that most influenced the decision.
QUANTIFICATION AND STATISTICAL ANALYSIS

The performance of our deep learning model (NPCNet) was evaluated using Receiver Operating Characteristic (ROC) curve analysis, a stan-

dard method for assessing binary classification models. The ROC curve was constructed by plotting the true positive rate (sensitivity) against

the false-positive rate (1-specificity) across a range of probability thresholds. This approach allows for a comprehensive evaluation of the

model’s discriminative ability at various operating points. The Area Under the ROC Curve (AUC) was calculated to quantify the overall per-

formance of the model, with values ranging from 0.5 (no discriminative power) to 1.0 (perfect discrimination).

To provide ameasure of statistical uncertainty, we calculated 95% confidence intervals (CIs) for sensitivity and specificity using theClopper-

Pearson method. This method, also known as the exact binomial method, is particularly suitable for proportion data and provides conserva-

tive interval estimates. Sensitivity, specificity, and accuracy were calculated at various thresholds to assess the model’s performance under

different operating conditions, allowing for a nuanced understanding of its strengths and limitations.

A confusion matrix was constructed to provide a detailed breakdown of the model’s predictions, reporting true positives (correctly iden-

tified NPC cases), false positives (non-NPC cases incorrectly classified as NPC), false negatives (NPC cases missed by the model), and true

negatives (correctly identified non-NPC cases). This matrix offers insights into the types of errors made by the model and helps in assessing

its clinical utility.

All statistical analyses were performed using R software (version 4.1.2, R Foundation for Statistical Computing, Vienna, Austria), a widely-

used platform for statistical computing and graphics. We utilized the ’caret’ package for calculating performance metrics such as AUC,
14 iScience 27, 110590, September 20, 2024
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accuracy, sensitivity, and specificity. The ’pROC’ package was employed for ROC curve analysis and visualization, providing a robust frame-

work for model evaluation.

To assess the model’s performance across different patient subgroups, we conducted stratified analyses based on demographic factors

(such as age and gender) and clinical characteristics (including disease stage and histological subtypes). These subgroup analyses help iden-

tify any variations in model performance that might be clinically relevant and guide future refinements.

For comparisons between subgroups or different models, we employed appropriate statistical tests, including McNemar’s test for paired

nominal data andDeLong’s test for comparing AUCs. A p-value threshold of 0.05 was used to determine statistical significance, balancing the

risks of Type I and Type II errors. All analyses were performed in accordance with established guidelines for reporting diagnostic accuracy

studies, ensuring transparency, reproducibility, and adherence to best practices in biomedical research.
iScience 27, 110590, September 20, 2024 15
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