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Abstract

Background: P-glycoprotein (P-gp) is an ATP-dependent membrane transporter that plays a pivotal role in eliminating
xenobiotics by active extrusion of xenobiotics from the cell. Multidrug resistance (MDR) is highly associated with the over-
expression of P-gp by cells, resulting in increased efflux of chemotherapeutical agents and reduction of intracellular drug
accumulation. It is of clinical importance to develop a P-gp inhibition predictive model in the process of drug discovery and
development.

Methodology/Principal Findings: An in silico model was derived to predict the inhibition of P-gp using the newly invented
pharmacophore ensemble/support vector machine (PhE/SVM) scheme based on the data compiled from the literature. The
predictions by the PhE/SVM model were found to be in good agreement with the observed values for those structurally
diverse molecules in the training set (n = 31, r2 = 0.89, q2 = 0.86, RMSE = 0.40, s = 0.28), the test set (n = 88, r2 = 0.87,
RMSE = 0.39, s = 0.25) and the outlier set (n = 11, r2 = 0.96, RMSE = 0.10, s = 0.05). The generated PhE/SVM model also showed
high accuracy when subjected to those validation criteria generally adopted to gauge the predictivity of a theoretical
model.

Conclusions/Significance: This accurate, fast and robust PhE/SVM model that can take into account the promiscuous nature
of P-gp can be applied to predict the P-gp inhibition of structurally diverse compounds that otherwise cannot be done by
any other methods in a high-throughput fashion to facilitate drug discovery and development by designing drug
candidates with better metabolism profile.
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Introduction

P-glycoprotein (P-gp), which belongs to the ATP-binding

cassette (ABC) super family of transporters, utilizes the energy

that is released during the hydrolysis of ATP to actively translocate

a wide range of structurally unrelated compounds across the cell

membrane [1]. P-gp, which is encoded by human MDR1 (ABCB1)

gene and localized to chromosome 7q21, can be found in a variety

of normal human tissues, including liver, kidney, small and large

intestines, pancreas, brain, ovary and testes [2–4]. It is believed

that P-gp-mediated efflux plays an essential role in cellular

protection as well as in secretion and/or disposition by extruding

xenobiotics from mammalian cells [5]. For instance, it has been

found that oral absorption and central nervous system entry of

various drugs can be limited by the P-gp expression in

gastrointestinal tract (GIT) and brain capillary endothelial cells,

respectively [6]. As a result, P-gp exerts profound effects on the

absorption, distribution, metabolism, excretion and toxicity

(ADME/Tox) of an administrated drug [7].

In addition to expression in normal tissues, P-gp is also widely

expressed in many human cancers, causing multidrug resistance

(MDR), in which a given non-drug resistant cell or cell line becomes

cross-resistant to other diverse drugs after being treated by a single

drug. This will result in the reduction of intracellular drug

accumulation by active extrusion of drugs from the cell [5]. For

example, the efficacy of a variety of antitumor agents, such as

doxorubicin, paclitaxel, etoposide and vincristine, is diminished once

the tumor cells overexpress P-gp [8]. Furthermore, there is a healthy

body of studies to support the fact that P-gp plays a critical role in

drug resistance in infectious diseases [9,10], brain diseases [11],

rheumatoid arthritis [12] and cancers [13], resulting in impairing

chemotherapeutic treatment. For instance, 17-allylamino-17-de-

methoxygeldanamycin (17-AAG) is the first-generation inhibitor of

molecular chaperone heat shock protein 90 (Hsp90), which has been

proposed to be a novel therapeutic target for a variety of cancers [14]

because of its pivotal role in cancer progression and tumor survival

[14]. Nevertheless, the efficacy of 17-AAG is limited by its sensitivity

to MDR [15]. As such, novel Hsp90 inhibitors that can inhibit P-gp

are under clinical development [16–18]. Thus, MDR can increase

efflux of chemotherapeutical agents, reduce intracellular drug

accumulation, and create a supreme hurdle in the effective

chemotherapy of many disorders [19].

Inhibition of P-gp have broad and profound drug metabolism

and pharmacokinetics (DM/PK) implications [20] since it can
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either reduce the hepatic and renal clearance or increase the

bioavailability, resulting in adverse drug–drug interactions [21].

Thus, some MDR modulators may alter not only the concentra-

tion of chemotherapeutic agents in cells, but also their plasma

concentrations. For example, a clinical study unequivocally

demonstrated that the plasma concentration of orally administered

digoxin was dramatically reduced in combination with co-

administrated rifampin due to the P-gp mediated drug–drug

interactions [22]. Therefore, the inhibition of P-pg plays a

clinically important role in modern chemotherapy since it is

hoped to find specific P-gp modulators that can efficaciously

reverse MDR in resistant cell lines, restore sensitivity to

chemotherapy, and thus improve treatment results [23].

In silico approach has been proven to be a feasible and efficient

way to drug ADME/Tox assessments [24]. Of various modeling

techniques, pharmacophore modeling, which develops a predictive

model based on the combination of chemical features to mimic the

interactions between ligands and the target protein, is often

adopted [25]. In fact, numerous pharmacophore hypotheses have

been proposed to predict the P-gp inhibition [26–33]. Neverthe-

less, it is believed that P-gp is a highly flexible protein [34] as

manifested by the fact that it can interact with a broad range of

structurally and functionally diverse compounds [35,36]. The

highly promiscuous nature of P-gp that is a common characteristic

of membrane proteins [37] can be further illustrated by the

published crystal structures of the bacterial lipid transporter MsbA

[38] and homology models [39,40]. Furthermore, the mouse P-pg,

whose sequence shares 87% identity with human P-gp, is also

highly flexible as demonstrated by Figure 1, in which the crystal

structures [41], unbounded (PDB code: 3G5U) as well as co-

complexed with QZ59-RRR (PDB code: 3G60) and QZ59-SSS

(PDB code: 3G61), are superimposed. These proteins exhibit

significant structural discrepancies, especially the amino acid

residues Tyr303, Phe332, Phe339, Phe724, Leu758, Phe974 and

Tyr949. In addition, promiscuity is not only the hallmark of P-gp

conformation but also its inhibitors since it has been observed that

P-gp can have multiple binding sites, viz. polyspecificity [42,43],

suggesting that inhibitors can interact with P-pg using different

chemical features.

Accordingly, no single predictive model will suffice to accurately

describe the interactions between this promiscuous protein and

those highly diverse inhibitors [27], otherwise the derived

predictive models can only be applied to some specific chemo-

types, which, in turn, will produce substantial prediction errors

once the test molecules are located outside the domain of those

chemotypes. This perplexing situation can be further illustrated by

the P-gp substrates, whose binding sites are blocked by most of

inhibitors [44] despite of the fact that substrates and inhibitors can

have different binding regions [45]. There is a growing consensus

in favor of using pharmacophore ensemble to model the

interactions between P-gp and substrates in order to take into

consideration its promiscuous nature [46,47], suggesting that it is

plausible to accurately model the interactions between P-gp and

inhibitors using pharmacophore ensemble.

Nevertheless, the promiscuous nature of P-gp and its inhibitors

can be resolved using a novel scheme recently derived by Leong

[48], in which a panel of plausible pharmacophore hypothesis

candidates were adopted to construct a pharmacophore ensemble

(PhE), which, in turn, was treated as input for regression analysis

via support vector machines (SVM) and the PhE/SVM scheme

can be illustrated by Figure 3 of Chen et al [49]. Unlike any other

analog-base modeling scheme, each pharmacophore member in

the PhE symbolizes a single protein conformation or a group of

spatially similar protein conformations. As such, the promiscuous

nature of target protein can be taken into consideration and,

practically importantly, it has been shown that the PhE/SVM

model executed better than the consensus prediction of multiple

pharmacophore models [48] Consequently, a number of systems,

whose target proteins are highly promiscuous, were also accurately

modeled, including the case studies of the liability of human ether-á-

go-go related gene (hERG) [48] as well as CYP2A6– [50] and

CYP2B6–substrate interactions [51]. Additionally, the developed

PhE/SVM model revealed a possible new protein conformation

that was never reported before in the investigation of CYP2A6–

substrate interactions [50], and it performed better than the

pharmacophore ensemble [48]. The aim of this investigation was

to develop an accurate, fast and robust in silico model based on the

PhE/SVM scheme to predict the binding affinity of P-gp

inhibitors. This shall facilitate drug discovery and development

by designing drug candidates with better metabolism profile.

Materials and Methods

Data compilation
To construct quality data for this investigation, comprehensive

literature search was carried out to retrieve EC50 values of 130

compounds, which were compiled from different source [28,52–

54], to maximize the structural diversity. In order to warrant a

better consistency, the average values were taken in case there

were two or more EC50 values in very close range for a given

inhibitor. Furthermore, all chemical structures were examined and

only those with definite stereochemistry were enrolled. All

molecules assembled in this investigation and references to the

literature are listed in Table S1 (Supporting Information).

Conformation search
The conformational flexibility of studied molecules was taken

into account by creating multiple conformers since three-

dimensional conformations of ligands are of critical importance

in developing pharmacophore models [55]. As such, all selected

molecules were subjected to conformation search to generate the

low-lying conformations, which were carried out using the mixed

Monte Carlo multiple minimum (MCMM) [56]/low mode [57] by

Figure 1. Superposed murine P-gp proteins. The superposition of
three murine P-gp proteins, whose PDB codes are 3G5U, 3G60 and
3G61 and color-coded by gray, green and maroon, respectively.
doi:10.1371/journal.pone.0033829.g001
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MacroModel (Schrödinger, Portland, OR). MMFFs [58] was chosen

as force field and the truncated-Newton conjugated gradient

method (TNCG) was set as the energy minimization method.

Furthermore, the hydration effect and the solvation effect were

taken into consideration by using the GB/SA algorithm [59] and

water as solvent with a constant dielectric constant, respectively.

The number of selected unique structures was up to 255 with an

energy cutoff of 20 Kcal/mol (or 83.7 KJ/mol).

Sample partition
The chemical and biological characteristics of selected samples in

the training set play a pivotal role in determining the predictivity of

a generated pharmacophore hypothesis, which can be manifested

by the fact that different compound selections can produce different

pharmacophore models [60]. The critical factor to constructing a

perfect training set is to let HypoGen, which was the program

employed for automatic pharmacophore generation (vide infra),

‘‘learn’’ new knowledge from the input. For examples, structurally

similar compounds with significantly different biological activities or

structurally distinct compounds with similar biological activities are

expected to serve as perfect entries. Conversely, any redundancy in

the predictive models, viz. overfitting or overtraining, can be yielded

when structurally similar compounds with similar biological

activities are selected as the training set.

Ideally, an ideal training set should consist of at least 16

molecules to warrant its statistical significance, at least 4 orders of

magnitude in biological activity, approximately equal compounds

in each order of magnitude and novel information concerning

structure-activity relationship. More detailed selection criteria

have already been discussed elsewhere [61,62].

Thirty-one molecules, which totally consisted of 7142 confor-

mations, were deliberately selected from all collected molecules by

visually scrutinizing their chemical structures and activities to

constitute the training set for automatic pharmacophore genera-

tion and regression and their associated biological activities

spanned 7 orders of magnitude. The generated hypotheses were,

in turn, validated by those remaining eighty-eight molecules,

whose biological activities varied over 5 log units. In addition,

those molecules assayed by Labrie et al. [63] were deliberately

designated as the outlier set to assess the extrapolation capacity of

the developed model, viz. the level of robustness, since those

samples can mimic the real challenges to a predictive model in real

situation. Table S1 lists molecules selected for the training set, test

set and outlier set and their corresponding pEC50, respectively.

Pharmacophore generation
The HypoGen module in Discovery Studio (Accelrys, San Diego, CA)

was employed for automatic pharmacophore generation. It produces

and ranks the pharmacophore hypotheses, which quantitatively

correlate the three-dimensional arrangement of selected chemical

features mapped onto those molecules in the training set with the

corresponding activities through three phases, namely construction,

subtraction and optimization as compared with any other QSAR

techniques [64,65], which normally rely on regression to generate

predictive models. During the construction phase, HypoGen generates

common conformational alignment among those most active

molecules in the training set. The less useful pharmacophore

hypotheses such as common to most inactive molecules are

eliminated from the collection in the subtractive phase. The survived

pharmacophore hypotheses are further improved using the stimulat-

ed annealing scheme in the optimization phase. The theory and

principle of HypoGen have been describe in detail elsewhere [62].

Hydrogen bond donor (HBD), hydrogen bond acceptor (HBA)

and hydrophobic (HP) chemical features, which depict the

intermolecular interactions between an H atom on the ligand and

a highly electronegative atom such as an O, N or F atom on the

protein, between a highly electronegative atom on the ligand and an

H atom on the protein and between nonpolar moieties on both ligand

and protein, respectively, were chosen for pharmacophore hypothesis

development using different feature combination and minimum,

maximum and total numbers for each selected chemical feature as

well as total features. In addition, the chemical feature weights and

tolerances were varied in order to maximize the hypothesis diversity.

SVM calculations
Each single predicted pEC50 value by those pharmacophore

hypotheses in the PhE was fed as the input of SVM for further

regression. In other words, those predicted pEC50 values were treated

as descriptors for QSAR model development. As such, the

dimensionality of the SVM input space corresponds to the number

of pharmacophore models in the ensemble. Furthermore, the

regression calculations were carried out by the SVM package

LIBSVM (software available at http://www.csie.ntu.edu.tw/,cjlin/

libsvm) using the svm-train module and the developed SVM models, in

turn, were validated by those compounds in the test set using the svm-

predict module. The runtime parameters, namely cost C, the width of

the kernel function c and e and n in case of e-SVR and n-SVR

regression modes, respectively, were automatically scanned using an

in-house perl script by the systemic grid search algorithm [66].

Model validation
A number of statistical parameters, namely the correlation

coefficient (r2) between the predicted and observed values,

standard deviation (s), root-mean-square error (RMSE), maximum

residual (DMax) and mean absolute error (MAE) were used to

evaluate the predictivity of a built model. A 10-fold cross-

validation scheme, yielding the cross-validation coefficient (q2), was

also employed for internal validation.

All generated models were subjected to validations by those

criteria, which were initially proposed by Golbraikh et al. [67] and

adopted by Development of Environmental Modules for Evalu-

ation of Toxicity of pesticide Residues in Agriculture (DEME-

TRA) [68], shown as follows,

r2
w0:6,

q2
w0:5,

r2{r2
o

� ��
r2

v0:1 and 0:85ƒkƒ1:15,

r2
o{r’2o
�� ��v0:3

where r2
o and k are the correlation coefficient and slope of the

regression line (predicted vs. observed values) through the origin,

respectively, and r’2o is the correlation coefficient of the regression

line (observed vs. predicted values) through the origin.

Furthermore, the newly proposed modified version of r2 [69],

which is defined as follows,

r2
m~r2 1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2{r2

o

�� ��q� �
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was also adopted to evaluate the quality of a predictive model,

which should be large than 0.5 to be an acceptable model.

Results

PhE
Of all generated pharmacophore models using various selections

of chemical features and runtime parameters, three hypotheses,

denoted by Hypo A, Hypo B and Hypo C (listed in File S1), were

assembled to construct PhE based on their prediction performances

on every single molecule in the training set and test set as listed by

Table S1 and their corresponding statistical evaluations as listed by

Table 1. These three candidate models in the ensemble consist of a

variety of combinations of chemical features, namely one HBD and

four HPs in Hypo A; one HBA, one HBD and two HPs in Hypo B

and one HBD and three HPs in Hypo C.

In addition to various combinations of chemical features in

these three pharmacophore models, their spatial arrangements are

also different as exhibited by Figure 2. It can be found that one

HBD and two HPs are common features among them and the

closest distance between one HBD and one HP and that between

two HPs are 6.374 Å and 8.716 Å in Hypo A, respectively,

whereas the same measurements vary to 7.081 Å and 10.365 Å in

Hypo B as well as 6.506 Å and 8.515 Å in Hypo C, respectively.

The discrepancies among these three models can also be rendered

by the bond angle centered at one HP and connecting to one HBD

and another HP varies from 55.7u in Hypo A to 63.2u and 50.6u in

Hypo B and Hypo C, respectively. Figure 3 demonstrates the

superposition of these three models, and it can be observed that

these three models are different not only in absolute coordinates

but also in the relative relationships.

The three pharmacophore models, in general, predicted those

molecules in the training set well as asserted by their less significant

residuals (Table S1) and their corresponding statistical evaluations,

namely parameters RMSE, MAE and s (Table 1). In addition, all

of the correlation coefficients, viz. r2 values, are larger than 0.80,

suggesting their statistical significance, which can be further

confirmed by inspecting the scatter plot of observed vs. predicted

pEC50 values as illustrated in Figure 4.

The maximum residuals in the training set generated by Hypo

A and Hypo B were resulted from the prediction of 17 with values

of 21.06 and 21.34, respectively, whose residual was only 20.76

by Hypo C. On the other hand, the prediction residuals of 50 were

only 20.15 and 20.58 by Hypo A and Hypo B respectively,

whereas Hypo C produced the maximum deviation of 21.00.

Conversely, 84 was perfectly predicted by Hypo A, Hypo B and

Hypo C with only residuals of 0.15, 0.00 and 0.13, respectively.

When applied to 89, Hypo A only yielded a residual of 20.15 and

Hypo B and Hypo C showed modest errors of 0.44 and 0.33,

respectively. Nevertheless, these three models adopted different

conformations to bind to P-gp as illustrated in parts A–C of

Figure 5, and this discrepancy becomes more pronounced by the

superposition of these three conformations as depicted in part D of

Figure 5, which clearly illustrates the need to construct a PhE to

address the variations in protein conformation.

These three hypotheses in the PhE, in general, also executed

well for those molecules in the test set as shown in Tables S1 and 1

and Figure 6, which displays the scatter plot of observed vs.

predicted pEC50 values for those molecules in the test set.

Therefore, it can be affirmed that Hypo A, Hypo B and Hypo C

are qualified to constitute PhE based on the their performances in

the training set and the test set as well as their statistical

evaluations as mentioned above despite the fact that modest

performance deteriorations from the training set to the test set can

be observed as suggested by all statistical parameters. The r2 value

evaluated by Hypo A, for example, was lowered to 0.73 in the test

set, viz. a decrease of 0.12 from the training set. Similar

observations can also apply to Hypo B and Hypo C. Similar to

those observations found in the training set, prediction discrepan-

cies among these three pharmacophore models can also be found

in the test set. For instance, Hypo C produced the maximum error

from the prediction of 82 with an error of 1.58, whereas Hypo A

and Hypo B only yielded residuals of 0.07 and 0.67, respectively.

In fact, all of these three models showed various levels of

overtraining, albeit marginally, as depicted by their decreases in r2

values and other parameters from the training set to the test set.

PhE/SVM
The final PhE/SVM model was generated by the SVM

regression of those three pharmacophore hypotheses in the

ensemble, yielding the number of the SVM input components

(dimensionality) three. The optimal parameters for running SVM,

which were selected based on the prediction results of those

samples in the training set and cross-validation as listed in Table

S1, are summarized in Table 2. It can be observed that the PhE/

SVM model executed better than all of those individual

hypotheses in the PhE for those molecules in the training set as

further demonstrated by the scatter plot of observed vs. the

predicted pEC50 values as shown in Figure 4, in which those points

obtained from the SVM model are generally closer to the

regression line than those obtained from the Hypo A, Hypo B and

Hypo C. As a result, the PhE/SVM yielded the largest r2 and the

smallest RMSE, DMax, MAE and s among those four predictive

Table 1. Statistical evaluations, namely correlation coefficient
(r2), RMSE, maximum residual (DMax), mean absolute error
(MAE), standard deviation of residual (s) and cross-validation
coefficient (q2) in the training set, test set and outlier set
predicted by Hypo A, Hypo B, Hypo C and PhE/SVM.

Hypo A Hypo B Hypo C PhE/SVM

Training set

r2 0.85 0.81 0.86 0.89

RMSE 0.46 0.52 0.45 0.40

DMax 1.06 1.34 1.00 0.97

MAE 0.35 0.40 0.36 0.29

s 0.30 0.34 0.29 0.28

q2 N/A{ N/A N/A 0.86

Test set

r2 0.73 0.72 0.74 0.87

RMSE 0.58 0.57 0.52 0.39

DMax 1.49 1.39 1.58 1.01

MAE 0.38 0.40 0.36 0.30

s 0.43 0.41 0.38 0.25

Outlier set

r2 0.79 0.70 0.84 0.96

RMSE 0.14 0.12 0.13 0.10

DMax 0.36 0.39 0.28 0.13

MAE 0.08 0.05 0.08 0.09

s 0.12 0.11 0.11 0.05

{Not applicable.
doi:10.1371/journal.pone.0033829.t001
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models (Table 1). In addition, it can also be observed that the

PhE/SVM model yielded residuals, which are smaller than the

maximal errors produced by those hypotheses in the PhE for most

of molecule in the training set and the smallest in some cases,

suggesting that the PhE/SVM model is the most accurate model.

The predictions of 2 by Hypo A, Hypo B, Hypo C and PhE/

SVM, for example, gave rise to residuals of 0.30, 0.48, 20.28 and

20.02, respectively.

When subjected to 10-fold cross-validation, the PhE/SVM

model yielded the correlation coefficient q2 of 0.86, which only

decreased from the parameter r2 by a value of 0.03, viz. a tiny

difference between both correlation coefficients. Thus, it can be

asserted that this PhE/SVM model exhibits highly statistical

significance between the predicted values and the input data and,

more importantly, it is highly possible that this SVM model is a

statistically authentic model.

When applied to those molecules in the test set, PhE/SVM only

shows negligible performance decreases from the training set as

compared with all models in the PhE, which can be depicted by

the parameters r2, DMax and MAE (Table 1). The MAE value, for

instance, only raised from 0.29 in the training set to 0.30 in the test

set despite of the fact that the sample size in the latter was ca. 2-

fold more than that in the former. In fact, the parameters RMSE

and s indicate that PhE/SVM executed better in the test set than

in the training set. Thus, it can be assured that the PhE/SVM

model is a better predictor than any of pharmacophore models in

the ensemble for those molecules in the test set as shown by

Figure 6. Most importantly, those negligible differences between

both r2 values and between r2 and q2 values as well as the small and

consistent RMSE values in both sets manifest the fact that PhE/

SVM is a well-trained predictive model since it will otherwise

produce at least one substantial difference in case of overtraining.

External validation
Eleven molecules, whose inhibition activities of P-gp were

investigated by Labrie et al. [63], were deliberately selected as the

outliers to further challenge the extrapolation power of generated

models since they are completely positioned outside the perimeter of

Figure 2. Pharmacophore models in the ensemble. Generated pharmacophore models (A) Hypo A, (B) Hypo B and (C) Hypo C, in which
hydrophobic, hydrogen-bond acceptor and hydrogen-bond donor features are represented by light blue blobs, magenta blobs and arrows, and
green blobs and arrows, respectively. The interfeature distances and angles among features, depicted in white, are measured in Ångstroms and
degrees, respectively.
doi:10.1371/journal.pone.0033829.g002
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Figure 3. Superposed pharmacophore models. Superposition of three pharmacophore models Hypo A, Hypo B and Hypo C, denoted in red,
blue and green, respectively.
doi:10.1371/journal.pone.0033829.g003

Figure 4. Observed vs. predicted pEC50 values in the training set. Observed pEC50 vs. the pEC50 predicted by Hypo A, Hypo B, Hypo C and
SVM model for those molecules in the training set. The solid line, dashed lines and dotted lines correspond to the SVM regression of the data, 95%
confidence interval for the SVM regression and 95% confidence interval for the prediction, respectively.
doi:10.1371/journal.pone.0033829.g004

Prediction of P-Glycoprotein Inhibition
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the training set in the chemical space [70], spanned by the first three

principal components, which explain 88.6% of the variance in the

original data, as demonstrated by Figure 7, suggesting that they serve

as a good metric for the robustness evaluation of a predictive model.

The prediction results of those molecules in the outlier set are

listed in Table S1 and their associated statistical evaluations are

summarized in Table 1. Hypo A, Hypo B and Hypo C yielded r2

values of 0.79, 0.70 and 0.84, respectively, in the outlier set,

implying various performance decreases from the training set.

Conversely, RMSE, DMax, MAE and s indicated that the

performances of Hypo A, Hypo B and Hypo C increased from

the training set to the outlier set because of lowered values of those

parameters. However, this seemingly unusual characteristic for a

predictive model can be realized by the fact that, of 11 molecules

in the outlier set, the inhibition activities of 10 molecules are in the

same log unit, viz. very close activities.

Similar to the observations found in the training set and test set,

this PhE/SVM model performed better than any of pharmaco-

Figure 5. Superposition of pharmacophore models and 89. Pharmacophore models (A) Hypo A, (B) Hypo B and (C) Hypo C fitted to 89 and (E)
overlay of these three models, which are color-coded by red, blue and green, respectively. The chemical features are described in Figure 2.
doi:10.1371/journal.pone.0033829.g005
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phore models in the ensemble in the outlier set as indicated by

those statistical parameters (Table 1) as well as the scatter plot of

observed vs. predicted pEC50 values (Figure 8). Furthermore, the

predictions by PhE/SVM are in extremely good agreement with

observed values for all of molecules in the outlier set as manifested

by the fact that the RMSE, DMax, MAE and s values are only 0.10,

0.13, 0.09 and 0.05, respectively, which are also smaller than their

counterparts in the training set. The parameter r2 evaluated by

PhE/SVM even increased from 0.89 in the training set to 0.96 in

the outlier set. These statistical evaluations assert the fact that

PhE/SVM is completely insensitive to the outliers, suggesting that

it is a very robust predictive model as a result, which is of pivotal

importance to practical applications.

Predictive evaluations
The predictivity of generated PhE/SVM model was further

evaluated by those validation requirements proposed by Golbraikh

et al. [67] as well as Roy and Roy [69] in the training set, test set and

outlier set. The results, summarized in Table 3, indicate that PhE/

SVM not only yielded high statistical values but also met all

validation requirements, suggesting that this predictive model is

highly accurate and predictive. Furthermore, this PhE/SVM model

can maintain similar performances regardless in the training set, test

set and even outlier set as depicted by the little variations among

different data set. As a result, it is plausible to expect, based on the

facts mentioned above, that no substantial prediction errors will be

generated when applied to structurally novel compounds.

Discussion

It has been experimentally proven that P-gp has multiple binding

sites [71]. As a result, Ekins et al. produced four pharmacophore

hypotheses, which consisted of different combinations of chemical

features, based on different sets of samples [30]. More importantly,

the discrepancies in feature selections among these four models are

consistent with the fact that Hypo A, Hypo B and Hypo C in the

PhE also employed different chemical features, suggesting that

different chemotypes of inhibitors can interact with P-gp using

different chemical interactions, which completely agrees with the

observation of Pajeva et al. [29,32]. Thus, only a group of fixed

Figure 6. Observed vs. predicted pEC50 values in the test set. Observed pEC50 vs. the pEC50 predicted by Hypo A, Hypo B, Hypo C and SVM
model for those molecules in the test set. The solid line, dashed lines and dotted lines correspond to the SVM regression of the data, 95% confidence
interval for the SVM regression and 95% confidence interval for the prediction, respectively.
doi:10.1371/journal.pone.0033829.g006

Table 2. Optimal runtime parameters for the SVM Model.

Parameter Value

SVM type e-SVR

Kernel type Radial basis function

c 0.008

Cost 4

e 0.001

doi:10.1371/journal.pone.0033829.t002

Figure 7. Sample distribution in the chemical space. Molecular
distribution for those samples in the training set (filled circle), the test
set (open triangle) and the outlier set (gray square) in the chemical
space spanned by three principal components.
doi:10.1371/journal.pone.0033829.g007
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chemical features, viz. a single pharmacophore hypothesis, cannot

fully take into account the promiscuous nature of P-gp.

Furthermore, those four pharmacophore models developed by

Ekins et al. collectively consisted of HBD, HBA, HP and ring

aromatic (RA) as compared with PhE/SVM, which was

collectively composed of HBD, HBA and HP, indicating that

the only qualitative difference between those 4 models and PhE/

SVM is the absence of RA in the latter. Statistically, the lack of RA

does not deteriorate the performance of PhE/SVM as compared

with those four pharmacophore models. For instance, those four

predictive models generated the r2 values of 0.77, 0.88, 0.86 and

0.76 in the training set, whereas PhE/SVM produced a value of

0.89, suggesting that the chemical feature RA is not a ncecssity to

develope a predictive model. As a result, it is plausible to replace

RA by HP, which can be manifested by the fact that the

pharmacophore model developed by Palmeira et al. [33], which

comprised one HBA and two RAs, predicted that the two RAs

fitted onto the aromatic rings of propafenone, which, in turn, were

depicted as hydrophobic by the predictive model proposed by

Pajeva and Wiese [29]. In fact, none of published predictive

inhibition models enrolled the chemcial feature RA except those

developed by Ekins et al. [30,31] and Palmeira et al. [33].

Furthermore, at least one HBA and one HP can always be

found among all published pharmacophore hypotheses for P-gp

inhibitors [26–29,31,32] except those models proposed by Ekins

et al. [30] and Palmeira et al. [33]. Collectively, PhE/SVM also

consisted of the chemical features HBA, HBD and HP.

Nevertheless, only Hypo B adopted the chemical feature HBA

among those three models in the PhE. This seemingly paradox can

be understood by the fact that one of predictive models developed

by Ekins et al. [30] did not employ the chemical feature HBA,

suggesting that not all inbitors interact with P-gp using HBA. In

other words, it is not necessary to always take into account HBA.

As a result, it is plausible to observe that not all of hypotheses in

the ensemble selected the chemical feature HBA.

Langer et al. developed a pharmacophore hypothesis, which was

composed of the chemical features (aromatic) HP, HBA and

positive ionizable (PI) [28]. Of 106 samples in the test set, whose

experimental values were no larger than 207 mM, 34 molecules

were projected as inactive since their predictive values were larger

than 3,100,000 mM. These substantial discrepancies between the

obseved values and predictions indicate their indiscriminations

against these samples that was plausibly due to the lack of some

key chemical features [28]. Conversely, the PhE/SVM model,

which was collectively comprised of the chemical features HBD,

HBA and HP, yielded residuals of no more than 1 log unit for

those same 34 molecules, asserting that PhE/SVM is a much more

accurate model and those important features were completely

taken into consideration. The most pronounced discrepancy

between both theoretical models are resulted from the prediction

of 24, which yielded residuals of 4.63 and 0.52 by the model

derived by Langer et al. and PhE/SVM, respectively. Thus, it is

presumable to attribute the qualitative differences between both

theoretical models to the fact that Langer et al. enlisted the

chemical feature PI without taking into account HBD, whereas

Figure 8. Observed vs. predicted pEC50 values in the outlier set. Observed pEC50 vs. the pEC50 predicted by Hypo A, Hypo B, Hypo C and SVM
model for those molecules in the outlier set. The solid line, dashed lines and dotted lines correspond to the SVM regression of the data, 95%
confidence interval for the SVM regression and 95% confidence interval for the prediction, respectively.
doi:10.1371/journal.pone.0033829.g008

Table 3. Validation verification based on prediction
performance of those molecules in the training set, test set
and outlier set.

Training set Test set
Outlier
set

n 31 88 11

r2
o

0.89 0.87 0.95

k 1.00 1.04 0.99

r2
m

0.89 0.87 0.86

r2.0.6 x x x

q2.0.5 x N/A{ N/A

(r22r2
o)/r2,0.1 & 0.85#k#1.15 x x x

|r2
o2r’2o |,0.3 x x x

r2
m.0.5 x x x

{Not applicable.
doi:10.1371/journal.pone.0033829.t003
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PhE/SVM chose HBD over PI, suggesting that HBD plays a key

role in inhibitor–P-gp interaction. The importance of HBD can be

further manifested by 13, for example, whose hydroxyl group can

be perfectly fitted to the chemical feature HBD in Hypo A, Hypo

B and Hypo C as illustrated by Figure 9.

In addition, numerous studies have demonstrated the impor-

tance of HBD in determining the interaction between inhibitor

and P-gp. For instance, Ekins et al. [30] and Pajeva et al. [29,32]

recruited the chemical feature HBD to develop their pharmaco-

phore hypotheses. Wang et al. [72], Zalloum and Taha [73] and

Chen et al. [74] employed HBD related descriptor to construct

their QSAR models; and even the CoMSIA model proposed by

Labrie et el. [75] also used the field HBD. Accordingly, it is

plausible to assume that the chemical feature HBD plays a critical

role in determining the interaction between inhibitor and P-gp.

Otherwise, any theoretical model may give rise to substantial

prediction errors for some molecules.

Conclusion
P-gp inhibition is vital for drug metabolism and pharmacoki-

netics profiling since it can lead to adverse drug-drug interactions

or even toxicity. A predictive model can be greatly valuable to

drug discovery and development. Nevertheless, any in silico model

that fails to take into account the promiscuous nature of P-gp

cannot accurately model the interactions between structurally

distinct inhibitors and P-pg. In this study, a quantitative predictive

model, derived from a novel scheme by assembling a panel of

pharmacophore hypothesis candidates to construct pharmaco-

phore ensemble, which takes into consideration protein plasticity,

and support vector machine, which generates a regression model,

was developed to predict the P-gp inhibition. This developed PhE/

SVM showed excellent prediction accuracy for those structurally

diverse 31 and 88 molecules in the training set and test set,

respectively, with excellent predictivity and statistical significance.

It also executed extremely well when applied to those molecules in

the outlier set, which were structurally dissimilar to those in the

training set, as compared with any other conventional pharma-

cophore models, which adopted fixed selections of chemical

features and can be only used to model molecules of specific

chemical structures, substantially limiting their applicability as a

result. Furthermore, the PhE/SVM model can elucidate the

discrepancies among all published pharmacophore models,

suggesting its superiority over the other theoretical models. Thus,

it can be asserted that this PhE/SVM model can be adopted as an

accurate and reliable predictive tool, even in the high throughput

fashion, to facilitate drug discovery and development by designing

Figure 9. Superposition of pharmacophore models and 13. Pharmacophore models (A) Hypo A, (B) Hypo B and (C) Hypo C fitted to 13. The
chemical features are described in Figure 2.
doi:10.1371/journal.pone.0033829.g009
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drug candidates with better pharmacokinetic profile in terms of

better absorption, higher bioavailability and more efficacy.
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