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Bacterial contamination of fermented foods is a serious global food safety challenge that requires effective control strategies. This
study characterized presumptive E. coli isolated from Obushera, a traditional fermented cereal beverage from Uganda.Thereafter,
the antimicrobial effect of lactic acid bacteria (LAB) previously isolated from Obushera, against the E. coli, was examined. The
presumptive E. coli was incubated in brain heart infusion broth (pH� 3.6) at 25°C for 48 h. The most acid-stable strains were
clustered using (GTG)5 rep-PCR fingerprinting and identified using 16S rRNA sequencing. E. coli was screened for Shiga toxins
(Stx 1 and Stx 2) and Intimin (eae) virulence genes as well as antibiotic resistance. The spot-on-the-lawn method was used to
evaluate antimicrobial activity. Eighteen isolates were acid stable and are identified as E. coli, Shigella, and Lysinibacillus.The Stx 2
gene and antibiotic resistance were detected in some E. coli isolates. The LAB were antagonistic against the E. coli. Lactic acid
bacteria from traditional fermented foods can be applied in food processing to inhibit pathogens. Obushera lactic acid bacteria
could be used to improve the safety of fermented foods.

1. Introduction

There is an increased consumption of fermented cereal-
based foods such asObushera [1]. Obushera is a traditionally
fermented sorghum and/or millet beverage from Uganda.
Traditionally, the beverage is spontaneously fermented
predominantly by lactic acid bacteria (LAB) [2]. However,
given the challenges of spontaneous fermentations, pure
starters like Lactobacillus (Lb.) plantarum MNC 21, Lacto-
coccus (L.) lactis MNC 24, and Weisella (W.) confusa MNC
20 were developed [2, 3]. These starters are rapid and ex-
cellent lactic acid producers that can lower the pH to <4.5 in
just 12 h of fermentation. The resultant lactic acid produced
in such fermentations can inhibit pathogens [4, 5]. In fact,
rapid product acidification (pH≤ 4.0) in lactic-fermented
products is recommended since it is very inhibitory to
pathogens [6]. However, it appears that some foodborne
pathogens are very acid tolerant. Recently, Byakika et al. [1]
reported the presence of presumptive E. coli in Obushera

(pH≤ 4.0 and titratable acidity� 0.1–3.1%). Indeed, several
reports of undesirable microorganisms in various acidic
foods exist [7–11]. This is of great concern because the
tolerance to acid stress by pathogens aggravates their vir-
ulence [12, 13].

Outbreaks involving acidic foods have increased the
attention given to the acid tolerance properties of pathogens
[14]. Bacteria may acquire acid tolerance by horizontal gene
transfer [15]. Upon exposure to low pH, they use an acid-
induced tolerance response (ATR) to survive [16, 17]. The
ATR is a phenomenon where microorganisms show in-
creased resistance to acid stress following the exposure to
mildly acidic environments [18, 19]. So, for adequate
pathogen inhibition, high LAB counts are needed to rapidly
lower the pH below 4 [20–22]. Given the increasing demand
for safe foods, cultures that are inhibitory to foodborne
pathogens are inevitable, more so, since the successful use of
antibiotics in the treatment of foodborne illnesses is no
longer guaranteed. This is due to overuse and misuse of
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antibiotics which have created resistance among pathogens
[23]. Therefore, this study evaluated the antimicrobial effect
of Lb. plantarum MNC 21, L. lactis MNC 24, W. confusa
MNC 20, and Lb. rhamnosus yoba 2012 against acid-re-
sistant, antibiotic-resistant and potentially pathogenic E. coli
isolated from Obushera.

2. Materials and Methods

2.1. Materials

2.1.1. Lactic Acid Bacteria. Lb. plantarum MNC 21 (Gene
bank accession number: JF512470), L. lactis MNC 24 (Gene
bank accession number: JF512471), andW. confusaMNC 20
(Gene bank accession number: JQ754455) were isolated
from Obushera [2]. Lb. rhamnosus yoba 2012 (originally
named Lb. rhamnosus GG) (Yoba for Life Foundation
Amsterdam, the Netherlands) was obtained from the Uganda
Industrial Research Institute (IURI), Kampala, Uganda. Stock
cultures were stored at − 20°C in Ringer’s solution containing
15% glycerol. The LAB strains were independently propagated
according to the procedure described by Mukisa et al. [3].
Briefly, from the stock cultures, 0.1mL of each strain was
separately delivered into 100mL of sterile MRS broth (Lab-
oratorios CONDA, Madrid, Spain) and incubated anaerobi-
cally at 30°C for 24h. The cells were washed and recovered by
centrifugation (7,500×g for 10min). The cell pellets were
suspended in 100mL of sterile Ringer’s solution (Oxoid Ltd,
Basingstoke, Hampshire, England).

2.1.2. E. coli. Presumptive E. coli (n� 32) previously isolated
from Obushera by Byakika et al. [1] was used. From the stock
cultures, 0.1mL was separately inoculated in 100mL of sterile
brain heart infusion (BHI) broth (Laboratorios CONDA,
Madrid, Spain) and incubated at 30°C for 24 h. The cells were
washed and recovered by centrifugation (7,500×g for 10min).
The cell pellets were suspended in 10mL of sterile Ringer’s
solution (Oxoid Ltd., Basingstoke, Hampshire, England).

2.2. Biochemical Characterization. The isolates were char-
acterized by Gram staining, catalase, oxidase, and indole
tests using standard methods.

2.3. AcidTolerance. The acid tolerance of the presumptive E.
coli isolates was determined by adding each cell suspension
to 10mL of lactate acidified BHI broth (pH� 3.6, titratable
acidity� 1.5%) to give a final cell concentration of about
107 cfu/mL. The broth was incubated at 25°C. The cells were
enumerated at intervals of 0, 24, and 48 h. E. coli was
enumerated by pour plating using E. coli-coliforms chro-
mogenic agar (Laboratorios CONDA, Madrid, Spain) and
incubating at 37°C for 24 h. Only isolates that survived the
acidified broth for up to 48 h were used for further analyses.

2.4. DNA Extraction, PCR, and Sequencing. Genomic DNA
of the pure presumptive acid-tolerant E. coli isolates was
extracted from pure colonies using the GenElute bacterial

genomic DNA kit (Sigma-Aldrich, St. Louis, Missouri, USA)
following manufacturer’s instructions. The extracted DNA
was used for (1) (GTG)5-Rep-PCR, (2) detection of virulence
genes, and (3) 16S rRNA sequencing.

For the (GTG)5-Rep-PCR, the protocol was carried out
following the manufacturer’s instructions. The 25 μL re-
action consisted of 12.5 μL 1x master mix with standard
buffer (New England Biolabs Inc., MA, U.S.A), 0.2 μM
(GTG)5 primer (5′GTGGTGGTGGTGGTG3′) supplied by
Macrogen, Inc., Seoul, South Korea, 2 μL DNA template, and
sterile nuclease-free water. The amplification conditions
were as follows: initial denaturation at 95°C for 10min, 35
cycles of 95°C for 30 s, 40°C for 1min, 65°C for 3min, and a
final elongation step at 65°C for 8min. The amplified DNA
products were analyzed by electrophoresis in a 2% agarose
gel (Sigma-Aldrich, St. Louis, Missouri, USA). The gel was
visualized by a UV transilluminator (Syngene G: Box gel
documentation system, Fredrick, MD, USA). To generate the
dendrogram, TIFF image analysis was carried out using GelJ
version 1.0 software [24]. Similarities were calculated using
the DICE correlation coefficient and the unweighted pair
group method with arithmetic mean (UPGMA). Based on
results from the dendrogram, representative strains were
selected from each group that indicated similarity in the
banding patterns.

Amplification of the 16S rRNA gene was carried out as
described by Mukisa et al. [2]. Universal primers 1F
(5′GAGTTTGATCCTGGCTCAG3′) and 5R/1492R (5′
GGTTACCTTGTTACGACTT 3′) supplied byMacrogen, Inc.,
Seoul, South Korea, were used. The PCR was set up in a total
volume of 50μL comprising of 0.2μMof each primer, 25μL 1x
master mix with standard buffer (New England Biolabs Inc.,
MA, U.S.A), 4μL DNA, and sterile nuclease-free water. The
initial denaturation step was performed at 94°C for 3min,
followed by 30 cycles of denaturation (94°C, 30 s), annealing
(55°C, 30 s), extension (72°C, 3min), and final extension (72°C,
10min). The extracted DNA was purified using a QIAquick
PCR purification kit (Qiagen, Hilden, Germany) following the
manufacturer’s instructions. The pure DNA was sequenced
with the same primers, using the BigDye® Terminator v3.1
Cycle sequencing kit (Applied Biosystems) and ABI 3730xl
DNA analyzer (Applied Biosystems). Sequencing was per-
formed by Macrogen Europe, Amsterdam, the Netherlands,
and the identification was done by performing a nucleotide
sequence database search at National Centre for Biotechnology
Information (NCBI) using the Basic Local Alignment Search
Tool (BLAST) program.

TheDNA of the presumptive E. coli isolates was screened
for presence of virulence genes: Shigatoxin I (Stx 1), Shi-
gatoxin 2 (Stx 2), and intimin (eae). The 50 μL reaction
consisted of 25 μL, 1Xmaster mix with standard buffer (New
England Biolabs Inc, MA, U.S.A.), 0.2 μM each of forward
and reverse virulence gene primers, 4 μL DNA template, and
sterile nuclease-free water. Table 1 shows the primers and
PCR conditions used.

2.5. Antibiotic Resistance. The susceptibility of the con-
firmed E. coli isolates to thirteen antibiotics was examined
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according to the Kirby–Bauer disk diffusion method [27].
The antibiotics were obtained from Bioanalyse (Ankara,
Turkey) and included ampicillin (10 μg), amoxicillin (25 μg),
amoxicillin-clavulanic acid (30 μg), cephalexin (30 μg),
ceftriaxone (30 μg), gentamicin (10 μg), kanamycin (30 μg),
tetracycline (30 μg), chloramphenicol (30 μg), ciprofloxacin
(5 μg), levofloxacin (15 μg), trimethoprim-sulphamethox-
azole (25 μg), and nitrofurantoin (300 μg). For the test, fresh
culture suspensions were standardised to 0.5 McFarland
(equivalent to 8 log cfu/mL). Using sterile cotton swabs,
sterile prepoured plate count agar (PCA) (Laboratorios
CONDA, Madrid, Spain) plates were swabbed with stand-
ardised culture suspensions and incubated at 37°C for 1 h.
Antibiotic discs were then placed on the agar surface and
incubated at 37°C for 24 h. The diameter of the inhibition
zone was measured in mm (Figure 1). Isolates were cate-
gorized as resistant, intermediate, or susceptible according
to the guidelines of the Clinical and Laboratory Standard
Institute [27]. The multiple antibiotic resistance (MAR)
index was computed as a/b, where a is the number of an-
tibiotics the isolate was resistant to and b is the total number
of antibiotics to which the isolate was exposed [28].

2.6. Antimicrobial Activity. The antimicrobial activity of the
LAB starters against E. coli was tested using the spot-on-the
lawn method as described by Byaruhanga et al. [29] with a
few modifications. Briefly, sterile prepoured plate count agar
(Laboratorios CONDA, Madrid, Spain) plates were spotted
with 10μL of 6 log cfu/mL of each LAB and incubated at 30°C
for 24 h. About 10mL of molten PCA (45°C) seeded with 4
log cfu/mL of E. coli was used as the overlay medium and
incubated at 30°C for 24 h. The level of inhibition was de-
termined by measuring the diameter (mm) of zone of
clearing around the producer colonies (Figure 2).

2.7. Statistical Analyses. The data were analyzed using one-
way Analysis of variance (ANOVA) to test for significant
differences (p< 0.05) among treatments. Mean comparisons
were done using the least significant difference (LSD). The
statistical analyses were done using XLSTAT software
(version 2010.5.02, Addinsoft, France).

3. Results and Discussion

3.1. Biochemical Characterization of Presumptive E. coli
Isolates. Results showed that all the presumptive isolates
were Gram negative, indole positive, catalase positive, and
oxidase negative which were typical of E. coli [30].

3.2. Acid-Tolerant Strains. Figure 3 shows the counts of
presumptive E. coli counts in BHI broth (pH� 3.6,
T.A� 1.5%) at 0 and 48 h. The average initial cell count was
7.6 log cfu/mL. At 48 h, counts ranged between 0 and 2.5
log cfu/mL with only 18 out of 32 still detectable.

At pH� 3.6, the main inhibitory component in the BHI
broth was lactic acid (titratable acidity� 1.5%). Acid levels in
some foods could exceed 1% (w/v) in some foods resulting in
an ultimate pH of 3.5–4.5 [31, 32]. According to Raybaudi-
Massilia et al. [4] and Davidson [33], organic acids inhibit
pathogens by entering into cells in an undissociated form
and dissociating within the cytoplasm. This lowers the in-
tracellular pH, and to maintain balance, the cell uses ATP to
expel the excess hydrogen ions. This exhausts the cell of
energy required for growth and other metabolic processes
resulting in death. To counteract this, some pathogens
employ ATR to survive acid stress. This acid adaptation
involves initial sublethal acid shock resulting in changes in
gene expression. There is upregulation of numerous rescue
proteins: F0F1-ATPase, glutamic acid decarboxylase, groEL,
groES, and σ factors all of which shield the pathogens from
the lethal effects of the acid [34–36]. Several authors have
implicated ATR in the facilitation of pathogen virulence
[36–38]. Leyer et al. [8] noted the acid tolerance of E. coli
O157 :H7 as a key factor in its virulence because it protected
the cells from the lethal effects of gastric acid. In another
study, Gorden and Small [39] observed more acid tolerance
among enteroinvasive and enteropathogenic E. coli than in
the nonpathogenic strains. Acid adaptation is not only
problematic in facilitating virulence but also induces cross-
protection against other environmental stresses such as heat
and salt that may be encountered in food processing [40, 41].
Shen et al. [42] noted that acid adaptation reduced the
susceptibility of Salmonella Typhimurium to low tempera-
ture and other detrimental factors in lactic-fermented milk
products.

In this study, the presumptive E. coli was isolated from
Obushera (pH� 3.2–5.6; T.A� 0.1–3.1%) Byakika et al. [1]
showed acid tolerance but to varying extents (Figure 3). It is
postulated that some of the isolates could have employed the
ATR to survive in the acidified beverage. The ATR could
have been triggered during fermentation of the beverage
because substrate acidification is a gradual process that could
facilitate adaptation. In contrast, inoculation in BHI broth
(pH� 3.6, T.A� 1.5%) without prior exposure to mild acid
conditions could explain the rapid inhibition of some iso-
lates (Figure 3). Therefore, it is possible that isolates that
survived for 48 h in BHI broth had high acid tolerance.There
are several reports supporting the survival and adaptation of

Table 1: Primers and PCR conditions used for detection of virulence genes in E. coli isolated from Obushera.

Gene Primers PCR conditions Base pairs References

stx 1 5′CTTCGGTATCCTATTCCCGG3′
3′GGATGCATCTCTGGTCATTG5′ 30 cycles (94°C, 30 s; 56°C, 30 s; 72°C, 30 s) 448 [25]

stx 2 5′CCATGACAACGGACAGCAGTT3′
3′CCTGTCAACTGAGCAGCACTTTG5′ 30 cycles (94°C, 30 s; 56°C, 30 s; 72°C, 30 s) 779 [25]

eae 5′GTGGCGAATACTGGCGAGACT3′
3′CCCCATTCTTTTTCACCGTCG5′ 30 cycles (94°C, 30 s; 55°C, 30 s; 72°C, 1min) 891 [26]
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food pathogens such as E. coli, Staphylococcus aureus, Lis-
teria monocytogenes, and Salmonella spp. to acidic envi-
ronments [8, 14, 43–45]. In fact, outbreaks of diseases by E.
coli O157 :H7 and Salmonella enterica in apple cider and
orange juice (pH� 3.5 to 4.0) have been reported [9, 10].
This suggests that there is no guarantee for pathogens to be
inhibited at stressful acid conditions.Therefore, the ability of
lactic acid to induce the ATR in pathogens should be
considered by food processors and other mechanisms put in
place to prevent the growth of acid-resistant pathogens in
acidified foods.

3.3. (GTG)5 Rep-PCR Genetic Fingerprinting and
Identification. Based on their banding patterns, the different
presumptive E. coli isolates were clustered based on 70%
similarity as shown in Figure 4. Results from the 16S rRNA
sequencing (Table 2) showed that three of the representative
isolates from cluster analysis were closest relatives of E. coli
(%ID� 97–98%, Evalue� 0.0). The rest were closest relatives
of Shigella sonnei, Shigella flexneri, or Lysinibacillus mac-
roides (%ID� 97–98%, E value� 0.0).

Repetitive extragenic palindromic (rep)-PCR has pre-
viously been shown to have high discriminatory power for E.

coli strains of diverse origins [46, 47]. (GTG)5 Rep-PCR in
particular is widely used as a high throughput genotyping
tool for E. coli because the amplification of DNA sequences
flanked between the polynucleotide (GTG)5 repetitive se-
quences generates typical DNA fingerprints for discrimi-
nating [48, 49]. Presumptive E. coli isolates were efficiently
discriminated by (GTG)5-rep-PCR fingerprinting as shown
in Figure 4.This means that E. coli isolates studied were from
different sources and possess genetic variations and hence
could express differences in virulence.

Some of the isolates with E. coli characteristic appearance
on E. coli-Coliforms chromogenic agar were actually Shigella
spp. (Table 2). In similarity with E. coli, some Shigella spp.
have β-D glucuronidase which cleaves X-glucuronide in the
chromogenic mixture of the agar resulting in the formation
of blue colonies [50]. Like Shigella, Lysinibacillus macroides
may also produce β-D glucuronidase enzyme, characteristic
to E. coli. Shigella is known to cause Shigellosis, an acute
invasive enteric infection clinically manifested by bloody
diarrhea [51]. It is an endemic infection in many developing
countries and is associated with considerable morbidity and
mortality. For instance, between December 1999 and March
2000, about 4,000 cases of bloody diarrhea due to Shigella
dysenteriae serotype 1 were reported in Kenama, Sierra

Figure 1: Measurement of the inhibition zone diameter to determine antibiotic susceptibility/resistance using the Kirby–Bauer disk
diffusion method. Image showing inhibition zones of ceftriaxone (30 μg) against E. coli BMC 4.

Figure 2: Measurement of inhibition zone diameter to determine antimicrobial activity using the spot-on-the lawnmethod. Image showing
the inhibition zone of Lb. plantarum MNC 21 (colony in the center) against E. coli BMC 4.
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Figure 4: Cluster analysis of (GTG)5-Rep-PCR fingerprints of presumptive E. coli isolates. Dotted line shows clusters of isolates that showed
70% similarity which was the threshold for closely related isolates.

Table 2: Identities of presumptive E. coli isolates based on 16S rRNA sequencing.

Presumptive identity Code Closest relatives Identity score, % sequence similaritya E value
BMC∗

Escherichia coli 4, 8, 19 Escherichia coli 97-98 0.0
25 Shigella sonnei, Shigella flexneri 97 0.0
30 Shigella flexneri 97 0.0
31 Lysinibacillus macroides 98 0.0

aPercent similarity with related sequences from the NCBI database. ∗Numerical code for a specific isolate.
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Leone [52]. Although it is expected that lactic acid and other
antimicrobial compounds in fermented foods can inhibit
pathogens, Shigella has the potential of developing pro-
tective mechanisms towards acidic environments [53]. In
contrary, Lysinibacillus spp. are pervasive bacteria rarely
associated with human disease and merely regarded as
environmental contaminants [54]. Nonetheless, some spe-
cies such as Lysinibacillus sphaericus are reported to cause
bacteremia in immune-compromised persons. For instance,
the organism caused bacteremia in children with cancer and
those undergoing bone marrow transplants in Italy [54].
Therefore, like E. coli, the presence of acid-resistant Shigella
spp. and Lysinibacillus spp. in Obushera is a serious food
safety concern and may indicate the survival of other po-
tential pathogens in similar fermented cereal-based
beverages.

3.4. VirulenceGenes in E. coli. The Stx 2 gene was detected in
E. coli BMC 4 and E. coli BMC 8, whereas none of the three
genes considered in this study (Stx 1, Stx 2, and eae) were
detected in E. coli BMC 19.

E. coli is among the most important causes of foodborne
illness worldwide [55, 56]. Different virulent genes exist and
are crucial for the pathogenicity of any bacterium. Among
other serotypes of E. coli, the Shiga toxin producing E. coli
(STEC) is the most important cause of foodborne diseases
[57]. Shiga toxin producing E. coli (STEC) harbor many
types of virulent factors particularly Shiga toxins (Stx 1 and
Stx 2), intimin (eae), and hemolysin (hlyA). These genes are
responsible for settlement, adhesion, and invasion of the
gastrointestinal mucosa by STEC [55, 56]. The toxins
encoded by these genes inhibit protein synthesis and cause
cell apoptosis [58]. They are also responsible for endothelial
damage by causing cell swelling and separation from the
basal membrane, fibrin, and thrombi. This narrows the
capillary lumen and reduces blood flow to the glomeruli,
resulting in renal failure [59]. In effect, STEC is responsible
for diarrhea, hemolytic uremic syndrome, and hemorrhagic
colitis [60]. The presence of virulence genes in our isolates
agrees with other authors’ results who reported similar genes
in microorganisms isolated from acidic foods [23, 61, 62].

Byakika et al. [1] attributed the occurrence of E. coli and
other undesirable microorganisms in Obushera to poor
production hygiene. In addition to poor production hygiene,
most of the Obushera processors do not pasteurize their
product after fermentation. The raw materials, food pro-
cessors, and packaging materials were also reported as
possible sources of the contamination.

3.5. Antibiotic Susceptibility. Table 3 shows the number of E.
coli that were susceptible, intermediately susceptible, and
resistant to the different antibiotics. Two of the three isolates
were resistant to ampicillin, amoxicillin, gentamicin, and
trimethoprim-sulphamethoxazole. Only one of the isolates
was resistant to ceftriaxone and tetracycline.

Table 4 shows the antibiotic resistant profiles and
multiple antibiotic resistance (MAR) indices of the isolates,

respectively. The MAR index for E. coli BMC 4, E. coli BMC
8, and E. coli BMC 19 was 0.00, 0.46, and 0.23, respectively.

Am: ampicillin 10 μg; Ax: amoxicillin 25 μg; Cro: cef-
triaxone 30 μg; Cn: gentamicin 10 μg; Te: tetracycline 30 μg;
Stx: trimethoprim-sulphamethoxazole 25 μg. A total of 13
antibiotics were tested.

O’Bryan et al. [63] reported that bacteria may possess
innate resistance to antibiotics or may acquire it from other
microorganisms. The acquisition of the resistance results
from chromosomal mutation or gene transfer from one
organism to another by plasmids. Bacterial pathogens can
also employ biochemical types of resistance such as anti-
biotic inactivation, target modification, or removal of the
antibiotic from the cell by efflux pumps. Antibiotic re-
sistance is a serious global concern because a resistant in-
fection can spread from one person to many others [64].
Antibiotic resistance genes can also be transferred between
bacteria in the food chain. Walsh and Duffy [65] reported
the transfer of ampicillin resistance genes from Salmonella
typhimurium to Salmonella agona and E. coli K12 in pas-
teurized milk and minced beef.

The resistance of our isolates to the different antibiotics is
in agreement with findings of other authors [23, 56, 66–71].
The occurrence of MAR among foodborne pathogens (Ta-
ble 4) has also been previously documented [65, 69]. Illnesses
associated with MAR microorganisms are challenging to
treat [65].TheMAR index of E. coli BMC 8wasmuch greater
than 0.2 possibly indicating that it originated from a high
risk source of contamination where antibiotics are often
used [72]. The resistance of E. coli BMC 8 to a number of
human-based antibiotics (Table 2) implies that it was of
anthropogenic origin. The link between human-based an-
tibiotic resistance of foodborne pathogens and transmission
by food handlers was previously suggested [23, 56, 67, 70].
This suggests that the processors may be involved in the
cross-contamination ofObusherawith antibiotic-resistant E.
coli.

3.6.AntimicrobialActivity. The extent of inhibition of E. coli
by LAB is shown in Figure 5. All the E. coli were inhibited
(inhibition zone diameter> 11mm), but there was no spe-
cific trend observed. Lb. plantarum MNC 21 and Lb.
rhamnosus yoba 2012 had the highest (24.5mm) and lowest
(16.8mm) inhibition (p< 0.05) against E. coli BMC 4, re-
spectively. In the same context, L. lactis MNC 24 exhibited
the highest inhibition (24.8mm) against E. coli BMC 8.

The use of LAB to inhibit food pathogens has been
previously reported [73]. Lactic acid produced by LAB is the
major organic compound in pathogen inhibition [4, 33]. Lb.
plantarumMNC 21,W. confusaMNC 20, and L. lactisMNC
24 are fast and high lactic acid producers [2, 3]. Therefore,
their ability to inhibit E. coli (Figure 5) is primarily attributed
to the lactic acid. It is known that organic acids are most
effective when in high levels, so for sufficient pathogen
inhibition, large numbers of LAB are required [31, 74].
Previous studies have shown that pathogens do not survive
well in prefermented foods in which LAB exist in large
numbers (log 6-7) and pH≤ 4 [21, 75]. In contrast, the same
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inhibitory effect may be jeopardized where LAB and
pathogens are introduced in the food simultaneously
[31, 76]. Therefore, the antimicrobial effect of acid fer-
mentations should be seen as an adjunct to good hygiene
practices rather than a substitute [31].

The objective of this study was to evaluate the antimi-
crobial effect of Lb. plantarum MNC 21, L. lactis MNC 24,
W. confusa MNC 20, and Lb. rhamnosus yoba 2012 against
acid-resistant, antibiotic-resistant, and potentially patho-
genic E. coli isolated from Obushera. Findings indicated that
the LAB starter cultures can inhibit growth of E. coli im-
plying that they can be used to improve the safety of
Obushera and other cereal-based beverages. The findings of

this study should be validated by conducting food-based
matrix studies. Further research should also explore the
inhibitory effect of the LAB as co-cultures.
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