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Abstract

In family-based data, association information can be partitioned into the between-family information and the within-family
information. Based on this observation, Steen et al. (Nature Genetics. 2005, 683–691) proposed an interesting two-stage test
for genome-wide association (GWA) studies under family-based designs which performs genomic screening and replication
using the same data set. In the first stage, a screening test based on the between-family information is used to select
markers. In the second stage, an association test based on the within-family information is used to test association at the
selected markers. However, we learn from the results of case-control studies (Skol et al. Nature Genetics. 2006, 209–213) that
this two-stage approach may be not optimal. In this article, we propose a novel two-stage joint analysis for GWA studies
under family-based designs. For this joint analysis, we first propose a new screening test that is based on the between-
family information and is robust to population stratification. This new screening test is used in the first stage to select
markers. Then, a joint test that combines the between-family information and within-family information is used in the
second stage to test association at the selected markers. By extensive simulation studies, we demonstrate that the joint
analysis always results in increased power to detect genetic association and is robust to population stratification.
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Introduction

Currently, the family-based association tests such as the TDT

and its extensions [1–6] are still the most commonly used methods

to detect disease susceptibility loci in family-based GWA studies.

This kind of methods uses the within-family information, but not

the between-family information. The reason is that methods used

between-family information may be subject to bias caused by

population stratification. Recently, based on the observation that

the association information in the family sample can be split into

the between-family component and the within-family component,

Steen et al. [7] proposed a two-stage test for family-based GWA

studies. We call this method Family-based Two-Stage Approach

(FTSA). In the first stage of FTSA, a test based on between-family

information is used to screen markers, that is, choose R ‘‘top’’

markers. In the second stage of FTSA, a family-based association

test based on within-family information is used to test the R

selected markers for association. FTSA is robust to population

stratification because the association is determined by the family-

based association test in the second stage. Furthermore, since the

statistic used in the first stage is statistically independent of that in

the second stage, the overall significance level of the algorithm

does not need to be adjusted for the first stage. In the following

discussion, we call the tests used in the first stage and in the second

stage screening test and association test, respectively.

In case-control studies, several authors have proposed a two-

stage design which utilizes two independent samples [8,9]. The

first stage that uses the first sample is to screen and select SNPs

for association tests. In the second stage, the association tests are

conducted on the selected SNPs by using the second sample, so

that the number of association tests is diminished and the

correction for multiple testing is less severe. Recently, Skol et al.

[10] pointed out that joint analysis in which the test used in the

second stage is the combination of the two tests based on the two

samples is more powerful than replication-based analysis in

which the test used in the second stage is based on the second

sample only. There are some similarities between FTSA and the

two-stage approach in case-control studies. Can we do joint

analysis in FTSA as Skol et al. [10] did for the two-stage

approach in case-control studies. One problem hindering us

from doing joint analysis in FTSA is that the screening test in

FTSA can be susceptible to population stratification and thus the

joint test in joint analysis that combines the screening test and

association test can be also susceptible to population stratifica-

tion. To overcome this problem, we borrow ideas from methods

for case-control studies to construct a screening test that is based

on between-family information and also robust to population

stratification.

In case-control studies, it has been long recognized that

population stratification can seriously confound association

results [11,12]. To overcome this problem, several methods that

use a set of unlinked genetic markers, also called genomic

markers, genotyped in the same samples have been developed to

control for population stratification. These methods can be
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roughly divided into four groups. The first is genomic control

(GC) approach that adjusts the ordinary chi-square test statistic,

X 2. To, X 2 =l and assumes X 2 =l to follow a chi-square

distribution, where l can be estimated using genotypes at

genomic markers [13–15]. The second is ‘‘structured associa-

tion’’ (SA) that uses a set of independent genetic markers to

estimate the number of subpopulations and the ancestry

probabilities of individuals from putative ‘‘unstructured’’ sub-

populations. This information is then used to test for association

[16–19]. The third group is principal components (PC) approach

that summarizes the genetic background through the PC analysis

of genotypes at genomic markers [20–24]. The PCs calculated

from a matrix of genotypes at genomic markers can be further

used to eliminate the effect resulting from population stratifica-

tion. Zhang et al. [20] and Chen et al. [21] modeled the

relationship between trait values, genotype at the candidate

marker, and PCs through a semi-parametric model, where the

trait value is treated as the dependent variable. Recently, Price

et al. [23] presented a linear regression method by regressing

both the trait value and genotype at the candidate marker on the

PCs. Association between the trait and candidate marker is then

tested with the residual correlation. The PC approach is much

simpler and computationally faster than the SA approach and is

more powerful than the GC approach. The fourth is the mixed

linear model (MLM) approach [25,26] that corrects for a wide

range of sample structures by explicitly accounting for pairwise

relatedness between individuals.

In this article, we propose a novel approach to do joint

analysis within the framework of FTSA. We first perform PC

analysis based on parental genotypes at a set of genomic

markers and then use a PC approach to eliminate any effect of

population stratification both in genotypes at the candidate

marker and trait values for all family members. A screening

test is then constructed based on adjusted between-family

information and parental trait values. We use this screening

test which is robust to population stratification to select

markers in the first stage. In the second stage, we do joint

analysis i.e. use a test that is a combination of the screening test

and the association test to test association at the selected

markers. The joint analysis is robust to population stratifica-

tion because both the screening test used at the first stage and

the joint test used at the second stage are robust to population

stratification. We evaluate the performance of our joint

analysis approach by simulation studies under a variety of

population admixture models. Our simulation studies show

that the proposed joint analysis approach is robust to

population stratification and is consistently more powerful

than FTSA proposed by Steen et al. [7].

Methods

Consider a GWA study of n nuclear families with ni. children in

the ith. Family i~1,2, . . . ,nð Þ and L markers have been genotyped

for each sampled individual. For the ith. family, we use yik. and

xik. to denote the trait values and genotypic scores at the candidate

locus of the, kth. member in the ith. family (K = 1 and 2 for the two

parents), where genotypic score is the number of copies of minor

allele.

Screening Test
We assume that the parental phenotypes are available. In this

case, by incorporating parental phenotypes, Feng et al. [27]

proposed a screening test statistic

Tscreen Sn
i~1 Ui =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn

i~1 U2
i

q
, ð1Þ

Where Ui~(xi{x)(yi{y)z S2
k~1 (xik{x)(yik{y); xi~

1
2

xi1ð
z xi2Þ; yi~

1
ni

S
ni z2

k~3
yik; x and y are the overall means of

genotypic scores and trait values, respectively. Feng et al. [27]

have shown that this test is more powerful than one not

incorporating parental phenotypes and is independent of family-

based association tests based on within-family information.

However, this test may be subject to bias caused by population

stratification and thus cannot do joint analysis by combining

Tscreen. with the test statistic of a family-based association test

because the combined test may be also subject to bias caused by

population stratification. We previously suggested using the PCs of

genotypes at genomic markers to represent the genetic background

of unrelated individuals and using the genetic background to

control for population stratification in population-based associa-

tion studies [20–22]. We will use this idea to construct a test based

on between-family information and incorporating parental

phenotypes such that this test is robust to population stratification.

To construct the test, we first randomly choose l markers from the

L markers in GWA panel as genomic markers. For the ith family,

let Xik ~ Xik1, . . . , xikl
Tð Þ denote multiple marker genotypic

scores at the l randomly chosen markers of the kth. member in

the ith. family (k = 1 and 2 for the two parents). We perform a PC

analysis to summarize the genotype data at genomic markers.

Because our data are family data, a naive PC analysis with all

available data will result in biased directions of maximum

variability for the data. Thus, the PC analysis is applied to only

the parents in each family.

Let S~ Sn
i~1 S2

k~1 X ik{X
� �

X ik{X
� �T

denote the variance-

covariance matrix of the genotype data for all of the 2n parents,

where, X . is the overall mean of parental genotypic scores. Let ej

be the jth eigenvector corresponding to the jth largest eigenvalue of

S for j~1, � � � ,l. Then, the jth. PC for the kth member of the ith

family is given by tijk ~ eT
j X ik{X
� �

Here we consider only the

first K PCs (in this study, we use K = 10). Because the PCs represent

the genetic background information, we adjust both the trait and

genotype at candidate loci for this genetic background information

by applying linear regression [23]. That is,

yik ~ b0 z b1 ti1k z � � �z bK tiKk z eik

and

xik ~ ak0 z ak1 ti1k z � � �z akK tiKk z tik,

where eik and tik are random errors for i~1, . . . ,n and k = 1,2. Letbbb0 , bbb1 , . . . , bbbK and baak0,baa k1, . . . , akK be the least square estima-

tors of bbb0 , bbb1 , . . . , bbbK and, ak0 , ak1 , . . . , akK , respectively. The

residuals of the trait values and genotypic scores at the candidate

locus for parents and children of the ith. family are calculated by

y�
ik ~ yik { bbb0 { bbb1 ti1k { � � �{ bbbK tiKk

and

x�ik ~ xik {baa k0 { baak1 ti1k { � � �{baa kK tiKk ,

where i~1, . . . ,n and k~1,2, . . . , ni z2. We can consider y�
ik
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and, x�ik as the trait value and genotypic score of the kth. member

in the, ith. family after adjusted for population stratification.

Based on the adjusted trait values and genotypic scores, we

propose the following screening test, called admixture screening

(Ascreen) test,

TAscreen ~ Sn
i~1 Ui =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn

i~1 U2
i

q
ð2Þ

where Ui ~ x�i { x�
� �

y�i { y�
� �

z S2
k~1 x�ik { x�
� �

y�
ik { y�

� �
;

x�i ~ 1
2

x�i1 z x�i2
� �

; y�i ~ 1
ni

S
ni z2

k~3
y�

ik; x� and y�.are the overall

means of genotypic scores and trait values after adjusted for

population stratification, respectively. Under the null hypothesis,

TAscreen follows a standard normal distribution.

Association Test
We use quantitative pedigree transmission disequilibrium

(QPTD) as our family-based association test [28]. Using the

notation given above, the association test statistic is given by

Ta ~ Sn
i~1 Vi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn

i~1 V2
i

q
, ð3Þ

where Vi ~
1
ni

Sniz2
k~3

xik {xð Þ yik {yð Þ Under the null hypothesis

of no association, Ta. asymptotically follows the standard normal

distribution.

Joint Analysis
In the first stage, we select R markers with the smallest p-values

of the admixture screening test. This selection means that there is a

constant C such that a marker is selected if Tscreenj jwC. In the

joint analysis, a new test statistic

Tjoint ~ TAscreen z Ta ð4Þ

is used to test association in the second stage. Let tjoint. be the

observed value of the statistic Tjoint., Then, in the second stage, the

p-value of the test Tjoint. is given by

Pjoint ~Pr jTjoint jwjtjointjjjTAscreen jwC
� �

:

Let C2~ tjoint

�� �� and T denote the event of TAscreenj jwC. Similarly

to equation (2) in Skol et al. [10], we have

Pjoint~Pr Tjoint

�� ��wC2jT
� �

~

ð{c

{?

P TjointwC2jTAscreen~x
� ��

zP Tjointv{C2jTAscreen~x
� ��

f xjTð Þdx

z

ð?
C

P TjointwC2jTAscreen~x
� ��

zP Tjointv{C2jTAscreen~x
� ��

f xjTð Þdx

~

ð{c

{?

1{W C2{xð ÞzW {C2{xð Þ½ �f xjTð Þdx

z

ð?
c

1{W C2{xð ÞzW {C2{xð Þ½ �f xjTð Þdx,

where W is the cumulative distribution function of the standard

normal distribution; f xjTð Þ is the probability density function of

TAscreen given that TAsreenj jwC i:e: f xjTð Þ~ q(x)
2 1{W Cð Þð Þ

if jxjwC and jxjwC otherwise; w xð Þ is the probability density

function of the standard normal distribution. Thus, the p-value

Pjoint can be calculated numerically. In summary, for the joint

analysis, we first select R top markers using the admixture

screening test TAscreen and then test association for each of the R

selected markers using the joint test Tjoint. For one of the R

selected markers, we declare that this marker is significant at level

a if the p-value of the joint test Pjoint is less than a=R.

Methods Compared
We compare the proposed joint analysis method with two

other methods that is described below. One is FTSA

proposed by Steen et al [7]. In FTSA, the screening test

does not adjust for population stratification. In this study,

we use Tscreen given in equation (1) as the screening test of

FTSA. In the first stage of FTSA, R markers with the

smallest p-values of the screening test Tscreen are selected. In

the second stage, the association test Ta given by equation

(4) is used to test each of the R selected markers. A marker

in the R selected markers is declared significant at level a if

the p-value of the association test Ta is less than a=R. The

other method we compare with is a method called

Admixture Family-based Two-stage Approach (AFTSA)

that is similar to FTSA but replaces the screening test

Tscreen in FTSA by the admixture screening test TAscreen

given by equation (2).

Results

We used simulation studies to compare the performance of the

joint analysis with FTSA and AFTSA. We also compared FTST

with AFTSA to see if adjusting population stratification in the

screening test can improve power of FTSA. The simulation setup

used in this study was similar to that of Zhu et al [29]. We

considered three sets of simulations: a homogeneous population, a

structured population which contained two subpopulations, and

an admixture population that mimicked African American

population.

Set 1: A Homogeneous Population
In this set of simulations, we simulated samples based on the

haplotype data of 120 European chromosomes (CEU) released by

the HapMap project [30]. However, we used only the haplotype

data on chromosome 1 at tagging SNPs. There are 34720 SNPs in

total. To generate the genotype of a parent, we generated two

haplotypes that are the recombinants of the 120 HapMap

chromosomes. To generate a recombinant of the 120 chromo-

somes, we first generated a number of crossovers across the

chromosome by a Poisson process with an average of 6 crossovers

per Morgan. The crossover locations were generated according to

a uniform distribution. The crossover locations divided the

chromosome into segments. Each segment of the recombinant

was a random chosen haplotype from the HapMap chromosomes

in the same segment. The offspring genotypes were generated by

randomly transmitting one of the two haplotypes of the father and

the mother with the crossovers occurring according to the genetic

map. The LD pattern across a chromosome was generally

preserved for the SNPs that are closely located.

To generate trait values under the null hypothesis, for a

nuclear family with m children, let Y1 ~ yF , yMð Þ and

Joint Analysis for GWAS in Family-Based Designs
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Y2 ~ y1 , y2 , . . . , ymð Þ denote the trait values of the parents and

the m children. Assumed that Y1,Y2ð Þ followed a normal

distribution with a mean vector of zero and variance-covariance

matrix of

S~
S11 S12

S21 S22

 !
, where S11 ~

1 0

0 1

 !
,

S12 ~ ST
21 ~

r . . . r

r � � � r

 !
, and S22 ~

1 � � � 0

..

.
P

..

.

r � � � 1

0BB@
1CCA

This covariance structure meant that the father and mother

were independent, and parents with children and children with

children were correlated with the correlation coefficient of r (in

this study, we use r = 0.4). The conditional distribution of

Y2 ~ y1 , y2 , . . . , ymð Þ given parental trait values, Y1 ~ yF , yMð Þ
was a normal distribution with mean vector of mc ~ S21 S{1

11 Y1.

and variance-covariance matrix of Sc~S22{S21S{1
11 S12. To

generate trait values of all individuals in the family, we first

generated the trait value of each parent by using a standard

normal distribution. The trait values of the children can be

generated by a normal distribution with a mean vector of mc and

variance-covariance matrix of Sc, given the trait values of their

parents.

Under the alternative hypothesis, we generated the trait values

of a nuclear family with B members from model
yb ~ xb bz eb b~1,2, . . . ,Bð Þ where xb. was the numerical code

of genotype g at the disease locus and

xb ~
0, if g~aa

1, if g~aA or AA0

(
xb

0, if g~aa or aA

1, if g~AA

(
,

and xb ~

0, if g~aa

1, if g~aA

2, if g~AA

8>><>>:
for a dominant, recessive, and additive model, respectively (a and A

were the two alleles at the disease locus and A was the high risk

allele); b was a constant and e1, . . . ,eB were background trait

values generated under the null hypothesis using aforementioned

method. The value of b was determined by heritability h and was

given by b~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

1{hð Þ 2{pð Þ 1{pð Þ2, b~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h

1{hð Þ p2 1{p2ð Þ
q

,

r
, and

b~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
2 1{hð Þp 1{pð Þ

q
for a dominant, recessive, and additive model,

respectively, where p was the allele frequency of the high risk allele.

Set 2: A Structured Population with Two Subpopulations
In this set of simulations, we simulated samples using the

haplotype data of 120 European chromosomes (CEU) and 120

African chromosomes (YRI) released by the HapMap project [30].

In these simulations, we again used only the haplotype data on

chromosome 1 at the 34720 tagging SNPs. We considered that all

members of a family were from a same subpopulation. The

genotypes can be generated in the same way as that in the

simulation set 1. In this set of simulations, we sampled 70% of

families from European subpopulation and 30% of families from

African subpopulation. We generated the trait values of a nuclear

family with B members from model

yb ~m=5z xb b1 z eb b~1,2, . . . ,Bð Þ

if this family was from European subpopulation and

yb ~ xb b2 z eb b~1,2, . . . ,Bð Þ

if this family was from African subpopulation, where e1, . . . ,eB

were background trait values generated under the null hypothesis

in simulation set 1; xb was the numerical code of genotype at the

disease locus; m was a constant that measured the difference of the

average trait values between the two subpopulations; b1 and b2

can be determined by heritability h and the relationship was given

in simulation set 1. We used the same value of h in the two

subpopulations and thus b1 and b2 may be different due to the

difference of allele frequencies of the high risk allele in the two

subpopulations. Furthermore, we set h = 0 and thus b1~b2~0 for

generating the trait values under the null hypothesis, and h.0 for

generating the trait values under the alternative hypothesis.

Set 3: An Admixture Population with Two Ancestral
Populations

Again, we simulated samples based on the chromosome 1 data

of 120 European chromosomes and 120 African chromosomes

released by the HapMap project [30]. We first generated

haplotype exchange points on the chromosome among the

populations by using a Poisson process, with an average of 6

crossovers per Morgan. This is equivalent to a population that has

been admixed for an average of 6 generations. In each region

between two exchange points, we determined which ancestral

population a haplotype came from based on a distribution of

admixture proportions of Africans and Europeans, which we set to

(0.8, 0.2). We then applied the same method as for simulation set 1

to generate a person’s genotypes from the selected ancestral

population. The method in simulation set 1 for generating

offspring genotypes was also applied.

We generated the trait values of a nuclear family with B
members from model yb~mlzxbb1zeb b~1,2, . . . ,Bð Þ, where

e1, . . . ,eB and xb were the same as in simulation set 2; lb was

European admixture proportion of the bth member in the family; m
and b were constants and b can be determined by heritability h.

Again, we set h = 0 for generating the trait values under the null

hypothesis, and h.0 for generating the trait values under the

alternative hypothesis.

In all of the three sets of simulations, we used 1000 replicated

samples to evaluate the type I error rates and power and

considered nuclear family with one child i.e. trio as the family

structure. To evaluate the type I error, we considered different

sample sizes, different number of markers used to control for

population stratification, and different values of m. However, we

fixed the value of R, the number of markers selected at the first

stage, as 10. We evaluated type I error rates of the three methods

(joint analysis, FSTA, and AFSTA) as well as two screening tests

Tscreen and TAscreenð Þ. For evaluating type I error rates of the joint

analysis, FSTA, and AFSTA, we used 1,000 replicated samples

and thus the standard deviation for the type I error rates wasffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05|0:95=1000

p
&0:007 and the 95% confidence interval was

(0.036, 0.064) for the nominal level of 0.05. For evaluating type I

error rates of Tscreen and TAscreen although we still used 1,000

replicated samples, we performed 34720 tests for each sample

(equivalent to 16200 independent tests calculated using the

Joint Analysis for GWAS in Family-Based Designs
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method of Gao et al. [31]) and thus the standard deviation for type

I error rates was
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05|0:95=1000=16200

p
&0:000054 and the

95% confidence interval was (4.989%, 5.011%) for the nominal

level of 5%.

Table 1, 2, 3 gave type I error rates of the five tests for

simulation set 1 to set 3, respectively. From the three tables, we

can see that type I error rates of the joint analysis, FSTA, and

AFSTA had the same pattern across simulation set 1 to set 3, i.e.

the three tests were slightly conservative. This conservative was

probably due to the fact that we used Bonferroni correction to

adjust for multiple testing in the second stage. Table 1, 2, 3 showed

that although Tscreen was a valid test in a homogeneous population

(Table 1), it would lead to false positive in structured populations

(Table 2, 3). Table 1, 2, 3 also showed that TAscreen was a valid test

in a homogeneous population (Table 1) and it was also a valid test

in structured populations if 800 or more genomic markers were

used to control for population stratification (Table 2, 3). The non-

inflated type I error rates of AFSTA also show that the admixture

screening test TAscreen used in the first stage and Ta used in the

second stage are independent. If TAscreen And Ta are correlated

(either positive or negative correlated), a marker with a small p-

value of TAscreen will have a high probability to have a small p-

value of Ta, and thus, AFSTA will have inflated type I error rates.

For power comparison, we considered different scenarios which

included different values of heritability h, different number of

markers selected at the first stage, different values of m, and

different sample sizes. To evaluate power, in each replication, we

randomly chosen a marker with minor allele frequency (calculated

from European subpopulation in simulation set 2) in the interval

(0.1, 0.3) as the disease locus and the minor allele as the high risk

allele for dominant and additive models while the major allele as

the high risk allele for recessive model. Results of power

comparison were summarized in Figure 1, 2, 3 for simulation set

1 to set 3, respectively. Under simulation set 1, which considered a

homogeneous population, the joint analysis was consistently more

powerful than FSTA and AFSTA. Also, FSTA and AFSTA had

Table 1. Type I error rates (in percentage) of the five tests based on simulation set 1.

Method

S L Joint FTSA AFTSA Tscreen TAscreen

400 200 3.3 4 3.7 4.99713 5.0091

400 3.8 2.8 3.1 4.99812 5.00628

800 2.7 3.5 3.6 4.98895 5.01246

600 200 3.5 3 3.4 4.99385 5.00721

400 3.3 3.3 3.7 4.98347 5.00162

800 3.2 3.7 3.8 4.98031 5.01397

800 200 3.5 4.1 5.3 4.99007 4.99439

400 4.4 4.4 5.0 4.99462 5.01143

800 2.9 3.8 3.8 4.99412 5.01168

Significant level is 5%.
Note: S denotes sample size in trios; L denotes the number of genomic markers used to control population stratification.
doi:10.1371/journal.pone.0021957.t001

Table 2. Type I error rates (in percentage) of the five tests based on simulation set 2.

m = 1 m = 2

S L Joint FTSA AFTSA Tscreen TAscreen Joint FTSA AFTSA Tscreen TAscreen.

400 200 3.7 3.3 4.2 69.9 5.41605 4.3 4.5 4.3 80.3 6.53089

400 3.4 4.2 4.9 69.9 5.15228 3.5 3.9 4.2 80.4 5.4674

800 4.1 2.8 4.6 69.9 5.00927 3.3 3.1 4.5 80.3 5.0182

600 200 3.6 2.9 3.3 75.3 5.5889 4.0 3.2 4.4 83.9 7.29293

400 3.9 3.8 3.1 75.3 5.18648 4.1 3.6 4.0 83.9 5.6435

800 3.4 4.4 4.5 75.3 5.00261 4.2 4.1 4.9 83.9 5.01144

800 200 3.5 3.9 3.6 78.5 5.77735 3.7 3.9 3.1 85.9 7.99526

400 4.5 4.6 4.6 78.4 5.20667 4.8 5.2 5.7 85.9 5.81495

800 3.7 3.2 3.8 78.4 5.01154 3.4 4.1 3.1 85.9 5.01228

Significant level is 5%.
Note: S denotes sample size in trios; L denotes the number of genomic markers used to control population stratification.
doi:10.1371/journal.pone.0021957.t002
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almost the same power (Figure 1). These results indicate that the

admixture screening test, robust to population stratification, did

not lose power when compared to the traditional screening test. In

simulation set 2, we considered a structured population with two

subpopulations. In this set of simulations, the joint analysis was

again consistently more powerful than the other two methods, and

AFSTA was consistently more powerful than FSTA, which

showed that using the admixture screening test instead of

traditional screening test increased power in the presence of

population stratification (Figure 2). In simulation set 3, we

considered an admixture population with two ancestral popula-

tions which also leaded to the problem of population stratification

but not as strong as that in simulation set 2. In this set of

simulations, the pattern of power comparison was very similar to

that in simulation set 2, but the power difference between FSTA

and AFSTA was not as large as that in simulation set 2 (Figure 3).

In summary, the joint analysis was consistently the most powerful

one among the three methods we considered. Comparing the

other two methods, AFSTA had almost identical power with

FSTA in the case of no population stratification and was more

powerful than FSTA in the presence of population stratification.

Discussion

In this article, we proposed a novel method to perform joint

analysis within the framework of the family-based two-stage

analysis. In the joint analysis, we first constructed a screening test

that was based on between-family information and was robust to

Table 3. Type I error rates (in percentage) of the five tests based on simulation set 3.

m = 1 m = 2

S L Joint FTSA AFTSA Tscreen TAscreen Joint FTSA AFTSA Tscreen TAscreen

400 200 4.1 2.9 3.3 5.5 5.31204 4.2 3.6 3.6 7.0 6.06805

400 3.8 4 4.5 5.5 5.17645 4.2 3.8 3.8 7.0 5.56551

800 3.4 3.8 3.3 5.5 5.01086 4.2 3.8 3.5 7.0 5.01277

600 200 4.4 3.2 3.8 5.8 5.34633 6.5 4.7 4.7 8.1 6.37518

400 4.7 4.1 2.9 5.8 5.23698 6.5 5.3 2.9 8.1 5.75471

800 2.9 4.1 2.8 5.8 5.00985 4.1 7.1 3.5 8.1 5.01071

800 200 3.5 3.8 4.2 6.0 5.48167 5.9 5 5.4 9.1 6.85698

400 3.7 4.2 3.4 5.7 5.30941 5.0 6.6 4.4 8.7 6.01961

800 3.3 3.6 3 6.1 5.01124 5 5.1 4.4 9.1 5.01138

Significant level is 5%.
Note: S denotes sample size in trios; L denotes the number of genomic markers used to control population stratification.
doi:10.1371/journal.pone.0021957.t003

Figure 1. Power comparison under simulation set 1 when m = 2. In the first row, we compare power of the three methods for different values
of heritability under the three disease models while sample size is 600 trios and the number of markers selected at the first stage is 10. In the second
row, we compare power of the three methods for different numbers of markers selected at the first stage under the three disease models while
sample size is 600 trios and heritability is 0.05. In the third row, we compare power of the three methods for different sample sizes under the three
disease models while heritability is 0.05 and the number of markers selected at the first stage is 10. In each case, we use 800 genomic markers to
control for population stratification in the admixture screening test.
doi:10.1371/journal.pone.0021957.g001

Joint Analysis for GWAS in Family-Based Designs

PLoS ONE | www.plosone.org 6 July 2011 | Volume 6 | Issue 7 | e21957



population stratification. In the first stage, we used this screening

test to select markers. In the second stage, we did joint analysis i.e.

used a test that was a combination of the screening test and the

association test to test association at the selected markers. The joint

analysis was robust to population stratification because both the

screening test and the association test are robust to population

stratification. Our simulation studies showed that the joint analysis

was consistently more powerful than two-stage approaches in

which the association test used in the second stage was only based

on within-family information.

Although we have discussed the joint analysis, in which we only

tested the selected markers in the second stage, it is straightforward

to extend the joint analysis to the p-value weighting scheme

[32,33] in which, instead of testing selected markers only, all

markers are tested in the second stage and the resulting p-values

are weighted using the p-values of the screening test. Using the p-

value weighting scheme, the following steps can be used to

perform the joint analysis. (1) Test all SNPs using the admixture

screening test TAscreen and order SNPs according to their p-values

of the test. (2) Divide the SNPs into groups with the first group

Figure 2. Power comparison under simulation set 2 when sample size is 600 trios. In the first row, we compare power of the three
methods for different values of heritability under the three disease models while m = 2 and the number of markers selected at the first stage is 10. In
the second row, we compare power of the three methods for different numbers of markers selected at the first stage under the three disease models
while m = 2 and heritability is 0.05. In the third row, we compare power of the three methods for different values of m under the three disease models
while heritability is 0.05 and the number of markers selected at the first stage is 10. In each case, we use 800 genomic markers to control for
population stratification in the admixture screening test.
doi:10.1371/journal.pone.0021957.g002

Figure 3. Power comparison under simulation set 3 when sample size is 600 trios. In the first row, we compare power of the three
methods for different values of heritability under the three disease models while m = 2 and the number of markers selected at the first stage is 10. In
the second row, we compare power of the three methods for different numbers of markers selected at the first stage under the three disease models
while m = 2 and heritability is 0.05. In the third row, we compare power of the three methods for different values of m under the three disease models
while heritability is 0.05 and the number of markers selected at the first stage is 10. In each case, we use 800 genomic markers to control for
population stratification in the admixture screening test.
doi:10.1371/journal.pone.0021957.g003
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containing k1 SNPs and the ith group containing ki~2i{1k1

SNPs. (3) Let ps
ij denote the p-value of the admixture screening test

at the jth SNP in the ith group and pij~1=ps
ij : Define an

importance measure Iij~pij=pi and a weight wij~Iij= 2ikið Þ for

the jth SNP in the ith group, where pi~ pi1z . . . zpiki
ð Þ=ki (4)

Test each SNP using the joint test statistic Tjoint~TAscreenzTa:
Denote pij the p-value of the joint test at the jth SNP in the ith

group. Then, declare the jth SNP in the ith group to be significant

at a level of a if pijƒawj : For the method of Ionita-Laza et al [32],

Iij~1 Furthermore, for simplicity, we discussed our method using

nuclear families. Our method can be also applied to general

pedigrees. In fact, both the screening test Tscreen given by equation

(1) and association test Ta given by equation (3) are applicable to

general pedigrees [27,28].

It should be noted that the PC approach used in TAscreen to

control for population stratification may be not as strongly

resistant to stratification bias as the approach in Steen et al. [7]

in which the significant association totally depends on the family-

based association test used in the second stage. Other problems of

the PC approach include (1) there is no standard as to how many

PCs should be used; (2) the PC approach uses additive coding to

code the population structure and also assumes additivity between

the effects of the PCs and the effects of the genomic markers.

According to our experience of using the PC approach, however, if

we use all markers in a GWAS as genomic markers, the first 10

PCs can capture subtle population structures such as the

population structure in European Americans.

One remaining question is choosing the value of R, the number

of markers selected in the first stage. Although there is no unique

answer in choosing an optimal value of R, our simulations indicate

that 10 is a good choice of R which is consistent with the results of

Steen et al [7]. However, we need further investigations on

choosing the optimal value of R in general.
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