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Gliomas are the most common primary brain cancer. While it has been known that
calcium-related genes correlate with gliomagenesis, the relationship between calcium-
related genes and glioma prognosis remains unclear. We assessed TCGA datasets of
mRNA expressions with differentially expressed genes (DEGs) and enrichment analysis to
specifically screen for genes that regulate or are affected by calcium levels. We then
correlated the identified calcium-related genes with unsupervised/supervised learning to
classify glioma patients into 2 risk groups. We also correlated our identified genes with
immune signatures. As a result, we discovered 460 calcium genes and 35 calcium key
genes that were associated with OS. There were 13 DEGs between Clusters 1 and 2 with
different OS. At the same time, 10 calcium hub genes (CHGs) signature model were
constructed using supervised learning, and the prognostic risk scores of the 3 cohorts of
samples were calculated. The risk score was confirmed as an independent predictor of
prognosis. Immune enrichment analysis revealed an immunosuppressive tumor
microenvironment with upregulation of checkpoint markers in the high-risk group.
Finally, a nomogram was generated with risk scores and other clinical prognostic
independent indicators to quantify prognosis. Our findings suggest that calcium-related
gene expression patterns could be applicable to predict prognosis and predict levels
of immunosuppression.

Keywords: calcium-related genes, risk signature, glioma, immunosuppressive microenvironment, unsupervised/
supervised learning
INTRODUCTION

Gliomas are the most common primary cancer of the central nervous system (CNS). Based on the
2016 diagnostic criteria of the World Health Organization (WHO), glioma is classified into 4 grades
primarily through molecular pathology. Grade I has the lowest proliferative ability with the best
prognosis, while grades II–IV demonstrate increasing malignancy with worsening prognosis.
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Therefore, diffuse glioma samples, including grades II–IV, were
employed in the research. Grade IV tumors comprise
glioblastoma (GBM), which is a highly aggressive brain tumor
that comprises 47.1% (1) of the CNS malignant tumors. GBMs
are highly aggressive and are resistant to traditional interventions
including surgical resection followed by chemotherapy and
radiotherapy. The 5-year survival rate is 5.1% (1), and the 10-
year survival rate is 0.17% (2).

Calcium ions play a vital role not only in normal physiological
processes but also in many cancers including gliomas. Calcium
plays an important role in intracellular cell signaling (3–5), ion
channel potentials (6, 7), cell death andproliferation (5, 8), calcium-
binding proteins (3, 8, 9), cellular homeostasis (10), autophagy
(11, 12), and synaptic plasticity/junctions (10, 13, 14). These
calcium-mediated processes also play an important role in the
tumorigenesis of cancers such asGBM.Néant’s study (15) reported
that calcium ion signaling would be an important regulator of
tumorigenesis in GBM. The transition from glioma proliferation to
quiescencewould involve themodificationof thekinetics of calcium
ion influx due to an increased capacity of the mitochondria of
quiescent GSLC (glioblastoma stem-like cells) to capture calcium
ions, which would benefit to new therapeutic strategies. Therefore,
we hypothesized that calcium-related genes could be closely
associated with the progression and prognosis of gliomas. A
comprehensive study associating calcium-related genes in glioma
patients with OS has yet to be explored.

Therefore, this study screened calciumgenes inTCGAcohort to
assess for associations with overall survival (OS) from the most
prevalent calcium-related pathways. A multigene-independent
prognostic indicator was generated following unsupervised/
supervised learning in both the training (TCGA) cohort and 2
independent external validation (CGGA, Rembrandt) cohorts. We
also followed this upwith immune-related enrichment analysis.We
also attempted to create a prognostic predictive tool to predict
survival and propensity for immunosuppression.
MATERIALS AND METHODS

Datasets and Samples
TCGA mRNA HTseq Counts and FPKM datasets, including
clinical information, were downloaded from TCGA website
(https://portal.gdc.cancer.gov) by R project (v 4.0.2) and R
package “TCGAbiolinks” (v2.16.4). Three hundred and twenty-
five-CGGA-glioma mRNA expression datasets and corresponding
clinical information were downloaded from the CGGA website
(https://www.cgga.org.cn). The Rembrandt dataset involving
mRNA microarray and clinical data was downloaded from
Betastasis (http://www.betastasis.com/). Glioma and control
tissues were those of clinical excision brain obtained from the
Tianjin Medical University General Hospital. These tissue
samples underwent immunohistochemistry (IHC) to study the
immune microenvironment of glioma.

Differential Expression Gene Analysis
TCGA HTSeq-Counts cohort was divided into lower-grade
glioma (LGG), GBM, and (normal control tissue) NT groups
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according to clinical information; differential expression genes
(DEGs) were compared in LGG-NT, GBM-NT, and GBM-LGG
groups by “DESeq2”. p.adjust < 0.05 and |log2(FoldChange)| > 2
were set as the cutoff thresholds to screen DEGs. We screened for
1,171 DEGs (TCGA-DEGs) in the GBM-LGG (GL) group, 4,077
in the GBM-NT (GN) group, and 1,858 in the LGG-NT (LN)
group. We finally selected TCGA-DEGs in the FPKM dataset for
future analysis.

Enrichment Analysis
All gene enrichment analyses were done with R package
“clusterProfiler” (v 3.16.0), including Gene ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene
set enrichment analysis (GSEA) with the GO/KEGG database.
Significantly changed calcium-related biological processes (BP),
molecule function (MF), and pathways were screened. We then
obtained union sets of GO terms in calcium-related BPs/MFs,
and genes involved in those terms were obtained. Protein–
protein interaction network (PPI) analysis was performed with
selected genes in our study via the STRING database (https://
string-db.org).

Unsupervised Learning
We performed unsupervised learning to cluster glioma samples
into several clusters with consensus clustering by R package
“ConsensusClusterPlus”(v 1.52.0). We set 10,000 iterations, a
resample rate of 85%, clustering algorithm of “k-means,” and
distance function of “euclidean” to conduct consensus clustering.
The best clustering number, k value, was verified by both
consensus clustering result and validation testing by R package
“fpc”(v 2.2-8). When the cutoff threshold was set as 0.8 with
method of “k-means,” the best k value was 2, which followed the
consensus clustering result. Next, we performed principal
component analysis (PCA) and t-distributed stochastic
neighbor embedding (tSNE) with R package “PCAtools”
(v 2.0.0) and “Rtsne” (v 0.15), to verify consensus and to
further study the calcium key genes (CKGs) expression
patterns in different glioma Clusters 1 and 2.

Supervised Learning
To estimate and predict OS with crucial genes and prognostic
indicators, the cox proportional hazard regression model was
used. Univariate Cox (Uni-Cox) regression analyses were
operated with R package “survival”(v 3.2-3) to screen calcium-
related genes that were statistically significant (p < 0.001) in their
association with prognosis. Finally, thirty-five genes were
acquired, as calcium key genes (CKGs), for further analysis.
The Lasso regression algorithm was conducted with R package
“glmnet”(v 4.0-2) to develop a survival prediction model with a
potential risk signature. The best penalty parameter l was
selected and associated with the smallest cross-validation error
within the training set. We then obtained 10 genes as calcium
hub genes (CHGs). The prediction algorithm in R package
“stats” was used to calculate risk scores for each sample among
the training cohort (TCGA) and external independent validation
cohorts (CGGA and Rembrandt). We divided glioma samples
into 2 groups based on the median of risk scores produced by the
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Lasso regression algorithm and found 9 DEGs in calcium hub
genes (CHGs) between those 2 groups. Finally, lasso risk scores
were combined with univariate Cox (Uni-Cox) regression to
screen for clinical features. According to the Uni-Cox results, the
Multivariate-Cox (Multi-Cox)/logistical regression model was
constructed for prognostic estimation via R package “rms”(v
6.0-1). The calibration curve was created with R package
“Hmisc”(v 4.4-0).

Statistics
The DESeq2 algorithm was used to compare calcium gene
expression levels in different classifications. We assessed the
overall survival (OS) of each cohort mentioned above and
removed samples without OS or survival status (SS). Survival
analysis was conducted by the Kaplan–Meier method with a
2-tailed log-rank test to compare OS in samples with different
groups. The median gene expression value was conducted as a
cutoff threshold for survival analysis. The Mantel–Cox test was
performed for survival-related analysis, with p < 0.05 considered
statistically significant. Survival analysesweredoneonRprojectwith
R package “survival” and “rms.” The predicted efficiency of the risk
signature for 1/3/5-year survival was tested by the receiver operating
characteristic (ROC) curve with R package “survivalROC” (v 1.0.3).
Pearson correlation coefficients for CKGs were calculated via R
package “stats” (v 4.0.2). Statistics hypothesis testingwas validated in
SPSS 21.0 (IBM Corporation, 1 New Orchard Road Armonk, NY
10504, USA) and was accordant with the R project.
RESULTS

Calcium Key Genes Were Screened via
Multiple-Enrichment Analysis and
Prognosis-Related Analysis
Lower-grade glioma (LGG) samples, GBM samples, and normal
control tissue samples (NT) were examined for analysis. Three
groups were matched against each other: GBM versus LGG (GL),
GBM versus NT (GN), and LGG versus NT (LN). Gene expression
count values were compared between each group, and genes
matching criteria of p.adjust < 0.05 and |log2Foldchange| > 2
were regarded as differentially expressed genes (DEGs). In total,
7,942 genes in the group of GN, 3,970 genes in GL, and 2,765 in LN
(Supplementary Figure 1A) were screened. 289 intersect DEGs
were screened among 3 groups mentioned above (Figure 1B and
Supplementary Figure 1B). The intersection DEG (TCGA-DEG)
heatmap (Figure 1A) shows a differential gene expression pattern
according to survival status (SS), OS, and IDH status.

Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were conducted
separately with TCGA-DEGs in the GN, GL, and LN groups.
Significantly enriched biological process (BP), molecular function
(MF), and pathways were regarded as p.adjust < 0.05 and were
recorded for further analysis. Terms of BP and MF related to
calcium were selected (Figures 1C, E). There were 23 BP/5 MF
terms of GN, 13 BP/5 MF terms of LN, and 4 BP/3 MF terms of
GL. There are 4 intersected BP terms (Figure 1D), GO0055074
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(calcium ion homeostasis), GO0006874 (cellular calcium ion
homeostasis), GO0006816 (calcium ion transports), and
GO0070588 (calcium ion transmembrane transport), and 3
intersected MF terms: GO0015085 (calcium ion transmembrane
transporter activity), GO0005262 (calcium channel activity), and
GO0005245 (voltage-gated calcium channel activity). The gene
expression patterns of calcium MF/BP terms in 3 groups were
shown in the enrichment heatmap (Figure 1E and
Supplementary Figure 1E). Hsa04020 (calcium signaling
pathway) was also enriched in KEGG (Supplementary
Figure 1C). Of note, hsa04961 (endocrine and other factor-
regulated calcium reabsorption pathway) was enriched only in
the LN group (Supplementary Figure 1D).

Gene-set enrichment analysis (GSEA) was performed with all
genes, and terms with p.adjust < 0.05 were regarded as
significantly enriched. We obtained 18 BP/2 MF terms in GN
(Figure 1G and Supplementary Figure 1F-I), 17 BP/2 MF terms
in LN (Figure 1F and Supplementary Figure 1F-II).

To obtain the calcium genes, we selected the calcium-related
union terms of GO results and GSEA results (Supplementary
Table 2). There were 312 calcium-related genes in union genes of
GO terms and 330 in GSEA terms. Then, union genes between
these 2 sets were screened. As a result, we obtained 460 genes as
calcium genes (Figure 2A). We found that these 460 calcium
genes were also collected by the Reactome database with the
calcium-related pathway (https://reactome.org/).

Univariate Cox (Uni-Cox) regression analysis was performed
to screen calcium genes that were significantly related to OS.
Thirty-five genes (p < 0.001) were selected as calcium key genes
(CKGs) (Figure 2D and Supplementary Table 1), and TCGA-
DEGs in 3 groups were marked via a heatmap.

Clustering of CKGs Identified Cluster 1/2
Related With Clinical Prognosis
Based on the consensus expression pattens of CKGs, glioma
samples were clustered into several clusters (Figure 2B and
Supplementary Figures 2A–F). In the CDF curve, which was
designed to measure the stability of consensus matrices, the
lower left portion represents samples that rarely clustered
together while the upper right portion represents samples that
always clustered together. The middle portion represents those
with ambiguous assignments in different clustering runs. The
lowest proportion of ambiguous clustering (PAC) was “k = 6,”
which was followed by “k = 2.” However, from the consensus
matrix we found when selecting “k = 6,” there was a lower
correlation within the cluster than the matrix with “k = 2,” as well
as some clusters with “very small samples.” Therefore, we
decided to use another method to determine what would be
the best “k” value. “Prediction Strength” created by Robert
Tibshirani et al. was developed to solve this situation. We used
the same central algorithm of “k-means” as consensus clustering
and the classification method of “centroid” to calculate the mean
prediction value of “k” which varied from 2 to 9. When the cutoff
was set to the default value (0.8), the largest number of clusters
better than the cutoff was two. As such, we determined the
optimal matrix setting of k = 2 (Figure 2C) and clustered the
May 2022 | Volume 12 | Article 708272
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TCGA glioma samples into two clusters: Cluster 1 and Cluster
2 cohorts.

To evaluate whether the results of unsupervised learning are
clinically significant, we performed chi-square tests to compare
the distribution of gender, grade, age, IDH status, 1p19q co-
deletion status, MGMT promoter methylated, and the Karnofsky
Frontiers in Oncology | www.frontiersin.org 4
Performance Scale (KPS) between clusters 1 and 2 (Figure 3E).
Cluster 2 demonstrated findings consistent with lower grade
(p < 0.00001), IDH1 mutant (p < 0.00001), 1p19q co-deletion
status (p < 0.00001), MGMT promoter methylated (p < 0.001),
age < 65 years old (p < 0.05), and higher KPS scores (p < 0.05).
Notably, Cluster 2 also had better overall survival (OS) than
A

B
D

E

F G

C

FIGURE 1 | Screening calcium-related enrichment terms for obtaining calcium genes. (A, B) Intersect DGEs (TCGA-DEGs, p < 0.05, log2(FoldChange) > 2) of
GBM-NT, LGG-NT, and GBM-LGG. (C–E) Enrichment analysis of the DEGs in significantly (p < 0.05) enriched calcium-related GO biological processes terms.
(C) The count of enriched terms among the GBM-NT/GBM-LGG/LGG-NT groups. (D) The gene count of each calcium-related term was marked on each color bar
(green = GBM-LGG, red = GBM-NT, purple = LGG-NT). (E) Enrichment analysis heatmap of the TCGA-DEGs in significantly (p < 0.05) enriched calcium-related GO
molecular function terms. (F, G) Gene-set enrichment plots show enriched calcium-related terms (p < 0.05) in the GBM-NT group (G) and LGG-NT (F).
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Cluster 1 (Figure 3C). In short, samples associated with better
prognosis were found in Cluster 2 based on unsupervised
learning. Evidence from Sankey analysis (Figure 3A) also
confirmed that Cluster 2 includes more LGG samples
(especially, in grade 2) and more IDH1 mutant samples, which
are both better prognostic indictors.
Frontiers in Oncology | www.frontiersin.org 5
We also performed principal component analysis (PCA) and
t-distributed stochastic neighbor embedding (tSNE) to compare
the transcriptional profile in CKGs. Similarly, in PCA
(Figure 3D-I) and tSNE (Figure 3D-II), glioma samples were
gathered into 2 subgroups (especially in PC1 and tSNE1). The
blue color ellipse and points in yellow-green color are the Cluster
A

B

D

C

FIGURE 2 | Screening calcium key genes (CKGs) followed by unsupervised learning. (A) Calcium Genes expression and clinical features heatmap among normal
control tissues, grade 2, grade 3, and grade 4 glioma. (B) Unsupervised learning of consensus clustering with CKGs, (I.) Consensus CDF line chart, (II.) Consensus
delta area line chart, (III–VIII.) Consensus matrixes when k value varies from 2 to 7. (C) External validation method of consensus clustering, bar in yellow color is
prediction value greater than threshold value (0.8). (D) Heatmap for CKGs extremely associated with overall survival (p < 0.001, Univariate Cox regression) and
marked in DEGs. *p < 0.05.
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2 samples that are mostly composed of LGGs (in shape of square
and round).

The discoveries above strongly suggest that consensus
clustering results are closely related with patient prognosis with
glioma. To further study the expression pattern of calcium key
Frontiers in Oncology | www.frontiersin.org 6
genes, we did a correlation analysis and found more than half of
those genes to have the trend of correlation (Figure 3B).
Furthermore, we compared the CKG correlation with Cluster
1/2. The links in blue color are negative with Cluster 1/2, and
links in yellow color are positive with Cluster 1/2 (Figure 3B).
A B

D

E

F

C

FIGURE 3 | Validation of unsupervised learning. (A) Alluvial diagram of CKG clustering distribution in groups with different clusters, glioma grade, IDH status, 1p19q
codeletion status, and survival outcomes. (B) Correlation among CKGs was exhibited in a heatmap. Correlation between CKGs and clusters was exhibited on
colored (positive correlation = yellow, negative correlation = blue) links with p values as size of line. (C) Kaplan–Meier curves for Cluster 1/2 in TCGA cohort. Log-rank
test, p = 0.0001. (D) External unsupervised learning method of (I.) PCA and (II). tSNE-validated consensus clustering. Clusters 1/2 and glioma grades were mapping
in different colors and shapes of the points. (E) Heatmap of CKGs with clinical features and clusters. TCGA-DEGs were marked. (F) CKG expression values with
significant expression between Cluster 1/2 (I–V.). *p < 0.05; ***p < 0.001; ****p < 0.0001; *****p < 0.00001; ns p > 0.05.
May 2022 | Volume 12 | Article 708272
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We found those genes to have a similar expression feature with
Cluster 1/2.

Next, we selected CKGs that belong to the union set of DGEs
and compared their expression within Cluster 1/2. Six genes were
significantly changed (p < 0.05), between Clusters 1 and 2
(Figure 3F). The expression values of CACNG3, and PRKCG
in Cluster 1 are higher than Cluster 2 with p < 0.05. However, the
expression values of RYR2, SYT1, and TRPC5 in Cluster 1 are
lower than those in Cluster 2. As we described above, patients in
Cluster 1 have poorer survival than those in Cluster 2. Based on
that, we hypothesized that the genes of CACNG3 and PRKCG
are probably promoting gliomagenesis while genes RYR2, SYT1,
and TRPC5 are probably suppressing gliomagenesis.
Constructing Prognostic Risk Signature
Followed by Screening Calcium
Hub Genes
We performed differential expression calcium key gene
(DECKG) analysis between Clusters 1 and 2 and found 13
DECKGs by setting threshold p.adjust < 0.05 (Figure 4A).
Then, we used those genes with TCGA cohort (n = 608)
glioma patients’ OS and SS (as the training cohort) to build the
prognosis risk signature model via the lasso regression
algorithm. We regarded l as the best when partial likelihood
deviance is at the minimum value (Figure 4B). We then found 10
genes (marked as calcium hub genes, CHGs) that were screened
by this algorithm with each gene’s coefficient, which could be
further used to calculate the risk score for each sample. The mean
expression values of CHGs, which demonstrate a differential
expression between low-/high-risk groups with Cluster 1/2
grades, were displayed on circus plots (Figure 4D I–II).

The ROC curve shows that the risk score of each glioma
sample can satisfactorily predict 1-year (AUC = 0.769), 3-year
(AUC = 0.813), and 5-year (AUC = 0.799) survival rates
(Figure 4E). Furthermore, we also compared SS based on risk
score and significantly found that deceased patient samples had a
much higher risk score than alive patient samples with the T-test
(p < 0.0001) (Figure 4C). The median of TCGA glioma samples’
risk score was used as a cutoff to divide TCGA glioma samples
into a low-risk group and high-risk group (Figure 4F).
Meanwhile, we further compared the relationship with Cluster
1/2 and the risk score. Results showed that the Cluster 2 samples
with good prognosis correlated with the low-risk group and more
than half of the Cluster 1 samples were in the high-risk group by
the T-test (p < 0.0001) (Figure 4H). The survival curve based on
high-/low-risk groups also showed significantly (p < 0.0001)
longer OS in the low-risk group than in the high-risk
group (Figure 4I).

We then compared, by the chi-square test, the KPS, age,
grade, Cluster 1/2, IDH status, 1p19q codeletion, MGMT
promoter methylation status, TERT promoter status, and
ATRX status between low-/high-risk groups, and results were
shown on a heatmap (Figure 4G). Significant differences
between the high-/low-risk groups are KPS (p < 0.01), age
(p < 0.00001), grade (p < 0.01), Cluster 1/2 (p < 0.0001), IDH
Frontiers in Oncology | www.frontiersin.org 7
status (p < 0.00001), 1p19q codeletion (p < 0.00001), and MGMT
promoter methylation status (p < 0.00001), but not TERT
promoter status and ATRX status. A larger number of missing
values (Figure 4G) result in no significant differences in TERT
promoter status (missing values on the heatmap are shown in
gray). DEG analysis of 10 CHGs was conducted between the
high-/low-risk groups by their count values, and 9 genes with
p.adjust < 0.05 were marked with asterisks on the heatmap
(Figure 4G). Expression features were transformed into
normal distribution and were also shown on row annotation
in the heatmap. The gene expression distribution shows genes
of CBARP (fold change, FC = 1.78), RCVRN (FC = 1.77),
SLC25A12 (FC = 1.02, p.adjust = 0.58), and TMTC2
(FC = 2.00) which were upregulated in the high-risk group and
SEPTIN5 (FC = 0.67, also shown as SEPT5 in other datasets),
SYT2 (FC = 0.38), GRIN2A (FC = 0.52), SYT10 (FC = 0.26),
BEST1 (FC = 0.66), and SPARC (FC = 0.73) in the low-
risk group.
Risk Score Efficiently Predicts Prognosis
In order to confirm whether risk scores can better predict the
prognosis of glioma patients, we first performed Uni-Cox
regression with risk score, clinic-related features, and Cluster
1/2. The forest plot of Uni-Cox regression shows that age, GBM,
grade (higher), TERT promoter status of mutant, Cluster 1, and
risk score (higher) are harmful to prognosis, with hazard ratios
(HR) > 1 (Figure 5A). Glioma pathologies of astrocytoma,
oligoastrocytoma, and oligodendroglioma which are usually
cosigned as LGGs are correlated with better prognosis than
GBM. IDH and ATRX mutant status also demonstrated a
positive correlation with OS with HR < 1. MGMT promoter
methylation status and 1p19q co-deletion are molecular features
of good prognosis in glioma, and patients with methylation on
MGMT promoters usually have a better response to
chemotherapy. Their HRs are both > 1. Cluster 2 shows better
prognosis (HR < 1) while Cluster1 is associated with poorer
prognosis with HR > 1. The KPS is used to classify the patients’
health status, and a higher score represents a better prognosis
(16). In this study, we validated that the HR of KPS is less than 1
(Figure 5A). All variates that we used in Uni-Cox regression had
a p value less than 0.05. Meanwhile, we selected risk scores and
clinical–pathological variates that were related to prognosis with
p < 0.001 for Multi-Cox regression. We observed that only age,
grade, IDH status mutant, and risk score remain significantly
associated with OS (Figure 5B). The correlation network
between 10 calcium hub genes was computed by “Pearson”
correlation, and SEPTIN5 (also SEPT5), SLC25A12, and
GRIN2A were the node genes in this network (Figure 5H).
Interestingly, the gene of SPARC had the most negative
relationship with the other genes, which indicates that this
gene has the opposite function as compared with the others.
SPARC has a higher expression among lower grade
(Supplementary Figure 3A), Cluster 2 (Supplementary Figure
3B), low-risk group (Supplementary Figure 3C), IHD status of
mutant (Supplementary Figure 3D), GBM subtype of
May 2022 | Volume 12 | Article 708272
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mesenchymal (Supplementary Figure 3E), and IDH status of
mutant in LGG (Supplementary Figure 3E) groups.

We also calculated the risk score in both of the CGGA-325
and Rembrandt validation cohorts. The survival curves of these 2
Frontiers in Oncology | www.frontiersin.org 8
cohorts show a significant difference (p < 0.0001) between high-
and low-risk groups (Supplementary Figures 4A, F).
Meanwhile, we observed that the ROC curves of risk score in
both the CGGA-325 (1/3/5-year AUC = 0.629/0.698/0.745) and
A B

D

E

F

G
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C

FIGURE 4 | Supervised learning of DEGs in CKGs between Cluster 1/2. (A) 13 DEGs were found in CKGs between Cluster 1/2 (p.adjust < 0.05). Upregulated
genes were marked in red color, and downregulated genes were marked in green color. (B) Supervised learning with Lasso–Cox arithmetic (I.) and (II.) l was
selected when partial likelihood deviance came to smallest (II. left green line). (C) Diagram of survival outcomes with risk score (p < 0.001). (D) Mean expression
values of DEGs in calcium hub genes (CHGs) between high/low-risk groups (I.) and among glioma grades (II.). (E) ROC curve showed the predictive efficiency of the
1/3/5-year survival rate on risk score (1-year AUC = 0.769, 2-year AUC = 0.813, 3-year AUC = 0.799). (F) Distribution of risk score with risk rank (upper plot) and
overall survival (lower plot). (G) The heatmap shows the expression levels of the CHGs in low/high-risk groups and the significantly (p < 0.05) changed gene was
marked. The distribution of clinical features was compared between the low-risk and high-risk groups. (H) Risk score levels with Cluster 1/2. (I) Kaplan–Meier overall
survival curves for high/low-risk groups. Log-rank test, p < 0.0001. n.s. p ≥ 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and *****p < 0.00001.
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Rembrandt (1/3/5-year AUC = 0.634/0.705/0.681) cohorts had
satisfactory outcomes for 1/3/5-year survival prediction
(Supplementary Figures 4B, G). Robust evidence correlating
risk score with prognosis was observed from Multi-Cox
Frontiers in Oncology | www.frontiersin.org 9
regressions (Supplementary Figures 4D, I) in CGGA-325 (p <
0.001) and Rembrandt (p < 0.01). Through these results, we
confirmed that the risk score is an independent predictor of
prognosis in patients with glioma.
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FIGURE 5 | Nomogram constructed with independent predictor of risk core, 1p19q, IHD, Grade and age. (A) Forest plot shows indicators HR values calculated by
Uni-Cox regression. HR < 1 is in green color and HR > 1 is in purple color. (B) Forest plot shows P and HR values calculated by Multi-Cox regression with clinical
indicators (Age, Grade, IDH, ATRX, 1p19q, MGMT) and risk score. HR < 1 is in green color and HR > 1 is in red color. Indicators with P < 0.05 are considered as
glioma independent predictor. (C) Multi-Cox regression Nomogram of 1/3/5-year predicted survival with independent predictor. (D) Calibrate curves of Multi-Cox
regression Nomogram (I-III.) and logistic regression Nomogram (IV.). (E) Logistic regression Nomogram of predicted risk degree with independent predictor. (H)
Correlation expression network with GHGs. Positive correlation is in yellow color, and negative correlation is in blue color. (F) Risk score levels with risk signatures
(1p19q, IDH, Grade, Age). (G) Unsupervised clustering (PCA: I-III. and tSNE: IV–VI.) of train (TCGA) cohort and external independent validation (CGGA-325 and
Rembrandt) cohort show satisfied classification of glioma patients according to low/high-risk groups. *p < 0.05; ***p < 0.001.
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Prognostic Risk Predicted Nomogram
Based on Risk Score Is a Promising
Glioma Survival Predicted Tool
As observed above, we selected risk score and clinical features with
p < 0.05 in Multi-Cox regression to build a prognostic predicted
nomogram. Although the p value of the 1p19q codeletion status is
0.07 which is greater than 0.05, there is currently much evidence
that demonstrates that the 1p19q codeletion status is closely
associated with patient prognosis (17). Therefore, 1p19q is
considered as one of risk signatures in our study. The KPS score
is another prognosis-related indicator that is mostly used as an
attempt to quantify patients’ overall morbidity from disease.
Generally, a higher KPS score is associated with longer survival
(16). This score is used in the clinical setting to help evaluate for
candidacy for receiving chemotherapy and evaluating therapy
response. However, KPS is not used as a prognostic predictor in
clinical activity. The KPS score has complete criteria, but it is based
on manual scoring. Therefore, KPS is inappropriate as a risk
signature predictor in our study based on the objective variable
analysis. Finally, age, grade, IDH status, and 1p19q codeletion
status were selected to build a nomogram model. We use Multi-
Cox and logistic regression to set up the model separately, and
they were displayed in the nomogram (Figures 5C, E). The Multi-
Cox regression nomogram can predict the 1/3/5-year survival, and
the logistic regression nomogram can predict the prognostic
risk value.

The multivariable regression calibration curves show outstanding
precision of regressionmodels both in 1/3/5-year survival (Figure 5D
I-III) and prognosis risk (Figure 5D-IV). Similar results were found
in the external independent validation cohorts of CGGA-325 and
Rembrandt (Supplementary Figure 4C–E, H–J). We also observed
that the risk score has a significant difference between 1p19q
codeletion status (Figure 5F-I, p < 2.2 × 10-16), IDH status
(Figure 5F-II, p < 2.2 × 10-16), grade (Figure 5F-III, all
p < 1.4 × 10-9), and age (Figure 5F-IV, all p = 3 × 10-10). In
conclusion, the risk score produced by calcium hub genes is closely
related to clinical molecular pathological features, and the
multivariate regression nomogram can be used as a tool to predict
glioma prognosis. Results generated by PCA and tSNE provide
another strong evidence that risk score can divide glioma patients
into low-/high-risk groups among TCGA training cohort and
validation cohorts of CGGA-325/Rembrandt (Figure 5G I-VI).

Tumor-Immunosuppressive
Microenvironment Enriched in High-Risk
Glioma Patients
We next studied differences in the infiltrating immune cells
between low-/high-risk groups. Results from CIBERSORT
showed more active immunocytes in the high-risk group. Of
note, myeloid cells with characteristics of immunosuppression
showed the highest cell composition in samples (Figure 6A).
Interestingly, there were more antitumor immunosuppressive
cells in the high-risk group but less activated NK-activated cells
(Figure 6A), possibly secondary to tumor-induced immunocyte
exhaustion. Data (Figure 6B) from immune-related single-
sample GSEA (ssGSEA) show that gene sets (red box) of
Frontiers in Oncology | www.frontiersin.org 10
myeloid-derived cells, including APC, DC, macrophages, and
neutrophils, were significantly enriched. Those cells mainly have
roles in antitumor pathways. Similarly, gene sets of checkpoint
molecules and TIL (tumor-infiltrating lymphocytes) are also
enriched in high-risk groups, which indicate effector T-cell
deactivation under a higher expression of immune checkpoints
like PD-1, TIM-3, and CTLA-4. We next compared enrichment
scores of 15 gene sets (Figure 6C), with all of them receiving
higher enriched scores in the high-risk group with p value <
0.001. The PPI analysis of CHGs was performed and shown in
Figure 6D. We finally validated the expression levels of immune-
suppressive markers (TGF-b/PD-L1) and found that both of the
expression levels were increased as the tumor grade increased by
IHC (Supplementary Figure 5). These results suggested that
higher levels of the immune-suppressive microenvironment were
correlated with higher grade and high-risk signature group.
DISCUSSION

Gliomas, particularly GBM, have been largely recalcitrant to
current methods of treatment (18). According to the WHO
criterion, glioma can be classified by the codeletion statue of
1p/19q, the mutation status of IDH, and the promoter of TERT.
These molecular alterations always occur early during glioma
formation and are regarded as a strong association with glioma
patients’ overall survival (19). Patients with 1p/19q codeletion
are sensitive to chemotherapy (20, 21). The mutation in IDH is
associated with glioma metabolism (22), and the wild type of
IDH is always associated with WHO IV (GBM) which is the
most aggressive brain tumor and the poorest prognosis. The
mutation in the promoter of TERT, which encodes telomerase, is
also associated with GBM (23, 24). While calcium plays a critical
role in both numerous physiological and pathological processes,
previous studies examining the role of calcium in gliomas have
been limited to mainly studying tumor invasion and migration
(4, 25, 26).

The activity of calcium ions is getting more attention in glioma,
owing to their key roles in many aspects in the pathophysiological
process in glioma. For instance, studies indicated that calcium-
dependent Cl (-) channels facilitate glioma cell invasion by
promoting hydrodynamic cell shape and volume changes (27).
Caren’s work showed that immune cells could regulate glioma
invasion and migration via CCL5, which was influenced by the
levels of intracellular and extracellular calcium ions (28). Besides,
the summarized results indicate that glutamatergic and calcium
signaling may provide positive feedback to promote glioma
formation through (1) metabolic reprogramming and genetic
switching to accelerate glioma duplication and progression
and (2) upregulation of cytoskeleton proteins and elevation of
intracellular Ca2+ levels to increase glutamate release and
facilitate formation of synaptic-like connections with surrounding
cells in their microenvironment (5). A novel mate-analysis from
Robil (29) showed that store-operated calcium entry mechanisms in
GBM and GBM stem cells appear different with normal brain tissue,
and mitochondria may play a key role of calcium uptake
mechanism in GBM stem cells.
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In our study, we used the training cohort of TCGA-DEGs to
select calcium-related BP and MF terms. Those terms included
ion active/passivity transport, calcium-binding protein,
signaling, cellular homeostasis, autophagy, apoptosis, and
synaptic junctions. Comprehensively applying unsupervised/
supervised learning yielded a risk score, an independent
quantitative prognostic indicator which was independently
verified by 2 external cohorts. Furthermore, a nomogram was
established based on the risk score that was also validated.
CIBERSORT and ssGSEA were used for examining infiltrating
Frontiers in Oncology | www.frontiersin.org 11
immune cells and immune-related gene sets. The findings in this
study offer potential new biomarkers for predicting prognosis
and evaluating the efficacy of immunotherapy in gliomas.

We have integrated the advantages of GO, KEGG, and GSEA,
which not only focused on differentially expressed genes but also
focused on significantly enriched gene sets with biological effects.
Based on that, we obtained 460 calcium genes. CKGs were then
found by Uni-Cox regression (Supplementary Table 1). Based
on the result of consensus clustering, the best k usually depends
on multiple factors; for our purposes, it was difficult to determine
A

B

C D

FIGURE 6 | Immune microenvironment with low-/high-risk groups and PPI analysis network of CHGs. (A) Diagram of CIBERSORT result with low-/high-risk group.
Immunosuppressive immunocyte (M2, Tregs) is significantly infiltrating in the high-risk group (p < 0.05), and activated NK cells is significantly infiltrating in the low-risk
group (p < 0.05). (B) Immune-related ssGSEA heatmap shows that the immunosuppressive gene set (red box) was enriched in the high-risk group. (C) ssGSEA-
enriched terms with low-/high-risk groups. (D) The PPI analysis of CHBs. This diagram shows that those immune-related terms are significantly (p < 0.01) enriched in
the high-risk group. *p < 0.05, **p < 0.01, ***p < 0.001.
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the best k according to the results among the CDF curve
(Figure 3B-I), delta area (Figure 3B-II), and consensus matrix
(Figure 3B III-VIII). Therefore, we performed a k prediction
algorithm (Figure 3C) and found that k = 2 would be the best
clustering number. Afterward, we conducted PCA and tSNE for
a consensus stability test. Similar results were found from these
two tests, and Cluster 1/2 was generated from unsupervised
learning and was found to include different prognostic risk
signatures (30) including grade, OS, SS, IDH status, 1p19q co-
deletion status, and MGMT methylation status (Figures 3C, E).
Those findings showed an advantage to unsupervised learning
and identified patients with a good prognosis (Cluster2) and
poor prognosis (Cluster1) and also indicated that CKGs play an
important role in glioma progressing. We initially studied
expression patterns of intersection (GL/GN/LN) TCGA-DEGs
also within CKGs. CACNG3 and PRKCG were found to be
highly expressed in Cluster 1. Meanwhile, SYT1, RYR2, and
TRPC5 were expressed highly in Cluster 2. CACNG3 (calcium
voltage-gated channel auxiliary subunit gamma 3) was reported
as a predicted oncogene significantly dysregulated between GBM
and normal control tissue (31, 32). PRKCG (protein kinase C)
can be activated by calcium and second messenger diacylglycerol,
which promotes cell migration in cancer (33). SYT1
(synaptotagmin 1), RYR2 (ryanodine receptor 2), TRPC5
(transient receptor potential cation channel subfamily C)
regulated calcium transmembrane transport, stabilized cellular
calcium homeostasis, and establishment of synaptic termini and
upregulated autophagy (34, 35), which are suggested to
participate in benign processes.

We created a risk score that has held up well as an independent
prognostic indicator, which was established by supervised learning
with calcium hub genes in the TCGA cohort. We also built
nomograms to predict glioma patient survival. The calcium
correlation network (Figure 5H) indicated SPARC, SLC25A12,
GRIN2A, and SEPTIN5 as node genes (connection count greater
than five). SPARC has already garnered interest as a multifaceted
protein with a strong association with highly aggressive glioma (36).
It impacts cancer growth in ambiguous ways in a context-
dependent manner (37). SPARC has been used as a biomarker
for both diagnosis and prognosis (38) and functions as a sensitizer
to chemotherapy by enhancing apoptosis with interfering activity of
Bcl-2 (39) in colon cancer. In glioma, SPARC can suppress tumor
growth but promote invasion and migration by regulating integrin
and growth factor receptor-regulated kinases with their downstream
effectors (40). Data from our study also indicated that SPARC is
expressed at much higher levels in mesenchymal GBM subtypes
(Supplementary Figure 3E). Besides, in Leclerc and colleagues’
study (3), the concept of cell competition was involved and SPACR
was defined as a marker of “loser cell” that obtained a lower rate of
proliferation. Their research also indicated that SPARC increases
invasion and survival while inhibiting proliferation. SEPTIN5 (also
known as SEPT5) has been found to be involved in forming vesicle
membranes and appear to be important for vesicle transport
machinery; the septin complex affects the cytosolic Ca2+ by
downregulating the expression of ORAI and IP3R (41, 42).
SEPTIN7 is downregulated in gliomas, and its decreased
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expression negatively correlates with increased tumor grade (43).
Overexpression of SEPTIN7 inhibits cell proliferation and arrests
cell cycle in the G0/G1 phase both in vitro and in vivo. SEPTIN7
knockouts in glioma xenografts result in accelerating tumor growth
(44). Moreover, previous research shows that overexpression of
SEPTIN 7 suppresses glioma growth (44). Similarly, our study
found that the expression value of SEPTIN5 drastically decreases
as the grade increases (Supplementary Figure 3A) and patients
with a higher expression of SEPTIN5 are associated with longer
survival (Supplementary Figures 3H–V). GRIN2A (glutamate
ionotropic receptor NMDA type subunit 2A) encodes a protein
that belongs to the glutamate-gated ion channel protein family,
whose activation results in a calcium influx. The protein of GRIN2A
is a calcium sensor that participates in triggering neurotransmitter
release at the synapse. Several studies show how mutants of
GRIN2A result in malignant melanoma (44, 45). Glutamate
receptors have been linked with tumorigenesis in glioma (46).
Our data show that a higher expression of GRIN2A is associated
with better prognosis (Supplementary Figures 3A, E, H–III).
SLC25A12 (calcium-binding mitochondrial carrier protein
Aralar1) plays roles in transporting cytoplasmic glutamate with
mitochondrial aspartate across the inner mitochondrial membrane
as an antiporter upon binding of a calcium ion. Lack of SLC25A12,
an important component of the malate-aspartate carrier, impairs
cytosolic aspartate levels, NAD+/NADH ratio, mitochondrial
respiration, and tumor growth (47), which is considered to be
related with metabolism. It has a higher expression with IDH
mutant (Supplementary Figure 3D) , lower grade
(Supplementary Figure 3A), and longer survival (Supplementary
Figure 3H–VII).

PPI analysis indicates that DLG4 has the highest degree value
followed by RCVRN, GRIN2A, and BEST1 in this network
(Figure 6D). However, DLG4 is a predicted gene generated by
PPI analysis. RCVRN encodes recoverin (also known as cancer-
associated retinopathy protein), which is a retina-specific
calcium ion-binding protein normally only expressed in
neurons in the eye (48). Our data show that a high expression
of RCVRN is correlated with poor prognosis risk signatures as
well as shorter survival (Supplementary Figures 3B–F, H–IV).
Cancer-associated retinopathy is usually caused by recoverin, in
which aberrant expression can activate a host immune response
followed by development of a paraneoplastic neurological
syndrome (49, 50). Recoverin levels were detected 10-fold
higher in recurrent GBM patients relative to controls (51) and
were also considered as a potential circulating glioma biomarker
(52). Unfortunately, there is no clinical information about
glioma-related oculopathy among the 3 cohorts we used; as
such, it remains unknown whether these data correlate with
any paraneoplastic syndromes. BEST1 encodes bestrophin-1,
which functions as a calcium-activated chloride channels
regulator of intracellular Ca2+, and the expression is highest in
the retina in humans. Bestrophin-1 may contribute to volume
regulation in particular cell types, including glioma cells (7, 53).

Calcium-activated chloride channels can play a vital role in
cell volume regulation, resulting in migration. Studies show that
bestrophin-1 is implicated in tumor suppression by a
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proapoptotic mechanism in breast cancer (54). There are studies
that suggest that the function of bestrophin-1 has an ion
dependent context (55). In our study, the expression value of
BEST1 is higher in better prognostic risk signature groups
(Supplementary Figures 3A–D, F), such as IDH wild type,
low-risk group, and Cluster 2. However, we observed a higher
expression in the GBM subtype of mesenchymal than in classical
(Supplementary Figure 3E). To our knowledge, mesenchymal is
a subtype of high invasion and migration, and one of the reasons
may be from bestrophin-1’s function in regulating cell volume.

Based on the potential function we observed from the aberrant
expression of RCVRN in immune response, we observed that more
myeloid-derived cells, Tregs (T regular cells), and checkpoint
molecules were enriched in the high-risk group. Previous studies
have demonstrated a poor OS with immunosuppressive
phenotypes in glioma (56–58) due to their implications in
dysfunctional CD8+ T cell and angiogenesis. Interestingly, APCs
(antigen-presenting cells) and DC (dendritic cell) gene sets were
enriched in the high-risk group. As the recoverin is aberrantly
generated and a potential cancer retina antigen (59, 60) is released
into the glioma microenvironment, it is likely that the tumor
microenvironment is attracting APCs and DCs. Moreover, the
checkpoint gene set is correlated with the high-risk group,
representing glioma evading immune surveillance and poor
clinical outcomes. However, despite these immune barriers, the
possibility of checkpoint blockade remains a viable option (61).

There are several limitations in our study. Our prognosis-
predicted model was constructed by the TCGA training cohort
and validated by 2 independent external validation cohorts,
CGGA and Rembrandt. Further clinical glioma patient data are
warranted to promote clinical usability. Some clinical features of
the samples we used were missing, which shrank the total sample
size to maintain the fidelity of the cohorts. Finally, validation of
our results beyond a clinical dataset would lend further credence
to the utility of our proposed gene sets in targeting glioma.

In conclusion, we present a comprehensive analysis with an
unsupervised and supervised learning approach to predict
glioma patient prognosis as related to calcium-related genes.
Our approach generated an easy-to-use nomogram for clinicians
to evaluate glioma patients’ prognosis with the potential to
inform treatments for this difficult-to-treat disease.
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Supplementary Figure 1 | Differentially expressed genes (DEGs) and enrichment
analysis in GBM-Normal, GBM-LGG and LGG-Normal (A, B): DEGs in GBM-LGG
(A, I.), GBM-Normal (A-II.) and LGG-Normal groups (A-III.) and the intersection.
(C, D): KEGG analysis calcium pathway (hsa04010) in GBM-LGG (C-I.), GBM-
Normal (C-II.), LGG-Normal (C-III.). (E): Enriched heatmap of calcium-related
biological processes. (F): GSEA running score of calcium-related molecular
function. (I.) GBM-Normal, (II.) LGG-Normal.

Supplementary Figure 2 | Results of consensus clustering (A, B): Consensus
clustering matrix for k = 8 (A), k = 9 (B). (C): The tracking plot for k = 2~9. (D, E): The
histogram for k = 2 (D), k = 3 (E). (F): Weight bar chart for k = 2~9.

Supplementary Figure 3 | Calcium Hub genes expression levels with clinical
feature, high/low-risk groups and Cluster ½ (A–F): Expression levels of Calcium
Hub genes with Grades (A), Cluster 1/2 (B), high/low-risk groups (C), IDH status
(D), GBM subtypes (E), LGG IDH status (F). (G): Kaplan-Meier survival curve of
Calcium Hub Genes (I–X.).

Supplementary Figure 4 | Validation for risk score with external independent
(CGGA-324 and Rembrandt) cohort (A, F): Kaplan–Meier overall survival curves for
high/low-risk groups in CGGA-325 (A) and Rembrandt (F) cohort. (B, G): ROC
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curve showed a satisfied predictive efficiency of the 1/3/5-year survival rate on risk
score both in CGGA-325 (B) and Rembrandt (G) cohort. (D, E): Multi-Cox and
logistic regression Nomogram of CGGA-325 cohort with independent predictor.
(C): Calibrate curves of Mulit-Cox regression Nomogram (I-III.) and logistic
regression Nomogram (IV.) in CGGA-325 cohort show a satisfied predicted
efficiency. (I, J): Multi-Cox and logistic regression Nomogram of Rembrandt cohort
Frontiers in Oncology | www.frontiersin.org 14
with independent predictor. (H): Calibrate curves of Mulit-Cox regression
Nomogram (I-III.) and logistic regression Nomogram (IV.) in Rembrandt cohort also
show a satisfied predicted efficiency.

Supplementary Figure 5 | Immunohistochemistry (IHC) of PD-L1 and TGF-b in
diffuse glioma (grade II-IV) and control tissue.
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