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Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT) has been pro-
posed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized
effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR) 1/βKlotho complex, a
common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of
FGFR1/βKlotho complex inmice induces sustained energy expenditure in BAT, browning ofwhite adipose tissue,
weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hy-
perglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgusmonkeys, FGFR1/βKlotho activation in-
creased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the
amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/βKlotho activation occurs
evenbefore the onset ofweight loss in amanner that is independent of adiponectin. Together, selective activation
of FGFR1/βKlotho complex with a long acting therapeutic antibody represents an attractive approach for the
treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin
sensitization and induction of high-molecular-weight adiponectin.
© 2015 Genentech, Inc. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Introduction
Chronic positive energy balance through the consumption of calorie-
rich foods is common inmodern society and themajor driver of the obe-
sity pandemic that has become the leading cause of disability around
the world (Ng et al., 2014). Several associated metabolic derangements
are linked to obesity including insulin resistance, hyperinsulinemia, hy-
perlipidemia, and hepatosteatosis, which often lead to severe illnesses
such as type 2 diabetes, liver cirrhosis, stroke and heart disease
(Shulman, 2014). Pharmacological agents that increase energy expendi-
ture (EE) in humans exist, but all have failed so far to correct energy bal-
ance safely in obese individuals (Yen and Ewald, 2012).

Mammals possess a specialized organ known as brown adipose tis-
sue (BAT) whose function is to maintain body temperature through
non-shivering thermogenesis. BAT is characterized by high mitochon-
dria content and expression of the thermogenic protein uncouplingpro-
tein 1 (UCP1), which enables the conversion of energy to heat upon
stimulation by cold exposure (Cannon and Nedergaard, 2004). Over
the last decade, it has been increasingly recognized that adult humans
possess a variable amount of BAT (Nedergaard et al., 2007; Sidossis
and Kajimura, 2015), and repeated cold (Yoneshiro et al., 2013) or cat-
echolamine exposure (Cypess et al., 2015; Frontini et al., 2013;
Sondergaard et al., 2015) can increase the amount and the activity of
human BAT. These findings ignited an immense interest in therapeutic
induction and stimulation of thermogenic brown adipocytes as a poten-
tial treatment for individuals with obesity-related metabolic defects
(Sidossis and Kajimura, 2015).

Fibroblast growth factor 21 (FGF21) and its closest homologue
FGF19 are two members of the FGF superfamily that have been found
to stimulate BAT thermogenesis and increase EE in rodents (Coskun
et al., 2008; Fu et al., 2004; Tomlinson et al., 2002; Xu et al., 2009).
Supraphysiological exposure to these secreted proteins ameliorates
obesity, insulin resistance, hyperlipidemia, fatty liver, and hyperglyce-
mia (Coskun et al., 2008; Fu et al., 2004; Xu et al., 2009). In addition,
FGF21 induces the emergence of UCP1-positive adipocytes in the
white adipose tissue (WAT) depot, a process now termed browning
(Fisher et al., 2012). Although clinical applications of recombinant
FGF21 or FGF19 analogs are currently being investigated for the treat-
ment of metabolic disease with some initial success (Gaich et al.,
2013), studies in rodents suggest potential risks for adverse effects in
chronic treatment. For example, transgenic overproduction of FGF21
leads to stunted growth, bone loss, female infertility, and an increase
in serum glucocorticoid (Bookout et al., 2013; Inagaki et al., 2008;
Owen et al., 2013; Wei et al., 2012). Transgenic overproduction of
FGF19 does not elicit the same safety issues as FGF21, but instead
leads to hepatocellular carcinogenesis via activation of FGF Receptor
(FGFR) 4 (French et al., 2012; Fu et al., 2004; Tomlinson et al., 2002).
The pharmacological profiles of these two related molecules suggest
that selective activation of a common receptor may provide beneficial
metabolic effects without the molecule-specific long-term side effects.

Of the seven primary FGFR isoforms (1b, 1c, 2b, 2c, 3b, 3c, and
4) expressed in mammals, both FGF19 and FGF21 can activate three of
these isoforms (1c, 2c and 3c) when bound to their obligate coreceptor
βKlotho (KLB) to transduce the mitogen-activated-protein-kinase
(MAPK) signaling cascade (Kurosu et al., 2007). KLB is expressed in se-
lect tissues,most abundantly, in liver, pancreas and adipose tissues (Fon
Tacer et al., 2010). Studies using tissue-specific gene knockout in mice
have emphasized the critical role in mediating the metabolic actions
of FGF21 of FGFR1 and KLB in adipose tissue (Adams et al., 2012; Ding
et al., 2012; Foltz et al., 2012) and of KLB in the central nervous system
(Owen et al., 2014). Although non-FGF-based agonists for FGFR1/KLB
complex that induceweight loss in obesemonkeys have been described
(Foltz et al., 2012; Smith et al., 2013), the mechanistic basis underlying
the observed weight loss remains largely unclear. Thus, it is not known
whether the activation of FGFR1/KLB complex is sufficient to drive in-
duction of EE and WAT browning. In addition, FGF21 increases
circulating adiponectin levels in rodent and primate species (Gaich
et al., 2013; Holland et al., 2013; Kharitonenkov et al., 2007; Lin et al.,
2013), but at least in one case, an FGFR1/KLB agonist antibody did not
affect plasma adiponectin levels despite the observed weight loss
(Foltz et al., 2012).

Here we describe the generation of a humanized bispecific anti-
FGFR1/KLB antibody that acts as a selective agonist for FGFR1/KLB re-
ceptor complex. Using this molecule, we demonstrate that activation
of FGFR1/KLB complex inmice leads to sustained stimulation of thermo-
genic activity in BAT and induction of WAT browning, resulting in the
efficacious amelioration of obesity, insulin resistance and associated
metabolic defects. Antibody-mediated activation of FGFR1/KLB complex
was also found sufficient to increase adiponectin levels in bothmice and
cynomolgus monkeys.

2. Materials and Methods

2.1. Research Ethics

All animal studies were conducted in accordance with the Guide for
the Care and Use of Laboratory Animals, published by theNational Insti-
tutes of Health (NIH) (NIH Publication 8523, revised 1985). The Institu-
tional Animal Care and Use Committee (IACUC) at Genentech or
Vanderbilt University reviewed and approved all animal protocols.

2.2. Isolation and Characterization of Bispecific Anti-FGFR1/KLB Ab

Isolation of phage derived anti-FGFR1 antibodies was described
previously (Wu et al., 2011a). Anti-KLB antibodies were generated
by immunizing Balb/c female mice with HEK293 cells stably express-
ing human (h)FGFR1c and hKLB proteins. Each hybridoma line was
selected by FACS using HEK293 cells expressing hKLB, hFGFR1c, or
both, and the cDNA encoding each antibody heavy chain and light
chain was cloned into expression vectors. The initial screening of
bispecific antibody pairs was conducted using crudely purified anti-
bodies expressed in HEK293T cells co-transfected with a mixture of
four expression vectors encoding the heavy and light chains of
anti-FGFR1 and anti-KLB IgG as described in Supplemental Materials
and Methods. For production of pure and homogenenous bispecific
antibodies, anti-FGFR1 and anti-KLB arms with the knob or the hole
mutation were separately purified from transiently or stably
transfected CHO cell culture supernatant by affinity purification
using Protein A column, and then subjected to an annealing protocol
as previously described (Shatz et al., 2013).

2.3. Mouse Strains

Mice were purchased from Jackson Laboratory or Taconic. db/db
mice in C57BLKS/J background were females. Homozygous Klb-
deficient (KO) mice in C57BL/6 background were semi-lethal, and
crossed with Balb/c mice; male mice used were in mixed back-
ground. Other mice were all C57BL/6 males or males in C57BL/6
background. To generate Klb KO mice, a Klb-specific Zinc Finger Nu-
clease (ZFN) pair was obtained from Sigma-Aldrich and used for pro-
nuclear microinjection according to established methods. The ZFN
pair targets the following Klb sequence in the mouse genome (cut
site in small letters), and the KO mice lack one base-pair (g in bold)
causing a frameshift after the second amino acid encoding the ma-
ture KLB protein: GTTACCGGCTTCtccggaGACGGGAAAGCAATATGG.

2.4. Mouse Studies

All the mice were maintained in a pathogen-free animal facility
under standard 12 h light/12 h dark cycle with access to normal chow
(Labdiet 5010) or high fat diet (HFD; Harlan Teklad TD.06414, 58.4% cal-
ories from fat) and water ad libitum. All the mouse experiments were
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conducted at 21 °C, unless otherwise indicated. All themice used for in-
tervention studies were around 2–6 months old and were randomized
into groups based on body weight, blood glucose levels, and/or specific
parameters being examined at the pre-dose state. For glucose tolerance
test (GTT), mice were fasted overnight, and intraperitoneally (i.p.)
injected with 2 g/kg glucose solution. For insulin tolerance test (ITT),
micewere fasted for 4 h, and i.p. injectedwith 1 U/kg human insulin so-
lution (Humulin R, Eli Lilly). Hyperinsulinemic euglycemic clamp exper-
iments were conducted at the Vanderbilt University Mouse Metabolic
Phenotyping Center using standard procedures (Ayala et al., 2006). De-
tails of mouse studies can also be found in Supplemental Materials and
Methods.

2.5. Metabolic Measurements

Oxymax system (Columbus Instruments) was used tomeasure oxy-
gen consumption (VO2), carbon dioxide production (VCO2) and loco-
motor activity. After acclimation to the cages, mice were randomized
into groups based on body weight and baseline metabolic parameters.
The following equations were used to calculate EE and the respiratory
quotient (RQ). EE = VO2 × (3.815 + 1.232 × RQ). RQ = VO2 / VCO2.
For core body temperature monitoring, TA-F10 transmitter (DSI) was
surgically implanted into peritoneal cavity. Core body temperature
and activity were monitored using DSI Implantable Telemetry System.
After recovery from the surgery, mice were randomized into groups
based on body weight and basal core body temperature.

2.6. Monkey Study

The studywas conductedwith drug-naive healthymale cynomolgus
monkeys, aged 2–3 years at Covance Laboratories Inc., according to a
written study protocol and facility standard operating procedures in
strict compliance with national legal regulations on animal welfare
and accepted animal welfare standards. Three animals per group were
chosen as the minimum number of animals necessary for assessment
of inter-animal variability. Animals were randomized into groups
based on the basal body weight. Serum samples were collected after a
minimum of 9 h fast at baseline and at different time points post dose.

2.7. Gene Expression Analysis

ForUCP1mRNA analysis in human primary adipocytes, total RNAwas
used to synthesize cDNAusing SuperScript VILO cDNASynthesis Kit (ABI).
For qPCR, samples were run in triplicate in the ViiA 7 Real-Time PCR in-
strument (ABI). The Applied Biosystems predesigned Taqman Gene Ex-
pression Assay probe used was UCP1 (Hs01027785_m1). For each
sample, mRNA abundance was normalized to the amount of TBP
(Hs00427620_m1) and SDHA (Hs00188166_m1) transcripts. For tissue
RNA microarray analysis, total RNA (N = 5 per group) was labeled and
hybridized toAffymetrixmouse genome430 2.0 arrays. Expression inten-
sity for each probe set was calculated and heatmap generated using
ExpressionPlot application suit (Friedman and Maniatis, 2011). Data are
available at the NCBI (GEO accession number GSE68152).

2.8. Western Blot

Tissue extractswere generated by homogenizing freshly isolated tis-
sues in T-PER Tissue Protein Extraction Reagent (Pierce) containing pro-
tease and phosphatase inhibitor tablets (Roche), and used for Western
blot analysis by standard methods. Cell extracts from differentiated
human primary adipocytes were generated by lysing cells in 2× LDS
buffer (Invitrogen) containing protease and phosphatase inhibitor tab-
lets (Roche). Samples were then sonicated and used for Western blot
analysis by standardmethods. Antibodies used for western blot analysis
were from Cell Signaling Technology: pFRS2a (T196) (#3864), pMEK1/
2 (S217/221) (#9154), MEK (#9126), pERK1/2 (T202/204) (#4370),
ERK1/2 (#4695), HSP90 (#4874), β-Actin (#5125), from abcam: UCP1
(ab10983), or from R&D Systems: KLB (AF2619). Anti-FGFR1 D1 anti-
body (clone 14B6) was generated by immunizing Balb/c female mice
with HEK293 cells stably expressing hFGFR1c and hKLB proteins.

2.9. In Vitro Cell Culture Experiments

Cell culture and radioligand cell binding assaywere performed using
standardmethods as described in SupplementalMaterials andMethods.

2.10. Surface Plasmon Resonance (SPR)

FGFR1–KLB–bFKB1 interactionwas studied by SPRmeasurements on
a ProteOn XPR36 instrument (Bio-Rad) at 25 °C. FGFR1–ECD (extra-cel-
lular domain) protein (20 μg per ml) at pH 4.5 was immobilized at sur-
face density (1000 RU) on an activated ProteOn GLC sensor chip using
standard amine coupling procedures as described by the manufacturer.
bFKB1 or 1:1 mixtures of bFKB1 and KLB–ECDwere injected in PBS con-
taining 0.005% v/v Tween-20, 0.3 M NaCl (pH 7.4) at a flow rate of 80 μl
permin and sensorgrams for association and disassociation phaseswere
recorded. Analytes were injected for 5 min and allowed to disassociate
for 10min. Data was referencedwith interspots, processed, and disasso-
ciation constants measured with the ProteOn Manager software (ver-
sion 3.0, Bio-Rad). bFKB1–KLB–FGF interaction was studied by bio-
layer interferometry (BLI) measurements on an Octet Red instrument
(ForteBio) at 25 °C. bFKB1 (20 μg per ml) at pH 4.5 was immobilized
on activated amine reactive biosensor tips as described by themanufac-
turer. KLB–ECD (20 μg per ml) in PBS containing 0.005% v/v Tween-20,
0.3 M NaCl (pH 7.4) was captured onto the same biosensor tips and
measured with human FGF21 (R&D Systems) in the same buffer. Quali-
tative data was processed with the data acquisition software (ForteBio).

2.11. Cell-surface Time-resolved Fluorescence Resonance Energy Transfer
(TR-FRET)

COS7 cells were co-transfected to express SNAP-tagged hFGFR1c
and untagged hKLB and seeded in awhite bottom96-well plate (Costar)
at 100,000 cells per well. Transfected cells were labeled 24 h post-
transfection with 100 nM of donor-conjugated benzyl-guanine SNAP-
Lumi4-Tb (Cisbio) and 1 μM of acceptor-conjugated benzyl-guanine
SNAP-Alexa647 (NEB) for 1 h at 37 °C, 5% CO2. After three washes, the
Lumi4-Tb emission and the TR-FRET signal were recorded at 620 nm
and 665 nm, respectively, for 400 μs after a 60 μs delay following laser
excitation at 343 nm using a Safire2 plate reader (Tecan) at t = 0 and
t = 15 min after ligand addition. FRET intensity was then calculated
as: (signal at 665 nm from cells labeled with SNAP-donor and SNAP-
acceptor) — (signal at 665 nm from the same batch of transfected cells
labeled with SNAP-donor and non labeled SNAP). The results were
shown as FRET ratio = FRET intensity at 665 nm divided by the donor
emission at 620 nm. In each of the replicated experiments, relative TR-
FRET ratio was calculated, and used to generate means ± SEM values.
More detailed description of the experimental condition will be de-
scribed elsewhere (unpublished data; authors).

2.12. Statistics

Unpaired student's t-test (two-tailed) or one-way ANOVA with
post-hoc Dunnett's test was used for statistical analysis to compare
treatment groups. For energy expenditure and core body temperature
results, themean valuewas calculated for eachmouse for each of the in-
dicated durations, and the values were used to calculate statistical sig-
nificance between groups. A p value b0.05 was considered statistically
significant. “ns” stands for no significance. All the valueswere presented
as means ± SEM unless otherwise noted. Statistical methods used for
core body temperature analysis shown in Fig. 5D is described in Supple-
mental Materials and Methods.

ncbi-geo:GSE68152
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2.13. Blinding

The investigators were not blinded to group assignment and out-
come assessment.

2.14. Funding

All work was funded by Genentech, Inc.

3. Results

3.1. Identification of bFKB1, an FGFR1-selective FGF21 Mimetic Antibody

We previously reported the discovery of a unique anti-FGFR1 agonist
antibody termedR1MAb1 that induces robust FGF21-like anti-diabetic ef-
fects in obesemice (Wu et al., 2011a). One obstacle in the development of
this molecule as a therapeutic agent is that FGFR1 is expressed in a wide
range of tissues, and as a result, R1MAb1 induced unintended side effects
such as hypophosphatemia and hypophagia in mice (Wu et al., 2011a,
2013). This led us to the idea of conjoining an anti-FGFR1 Fab fragment
to an anti-KLB Fab fragment as a bispecific antibody to generate a KLB-
dependent FGFR1 agonist (Fig. 1A). A weak agonistic activity of
R1MAb1 as a monomeric Fab fragment (Fig. S1A) suggested that a
bispecific antibody could function in a manner that has been previously
proposed for FGF21. FGF21 activates FGFRs only when recruited to the
FGFR/KLB complex through its C-terminal KLB-binding tail, while the de-
terminants for FGFR-specificity reside in itsN-terminal region,which like-
ly binds to FGFRs via a low affinity interaction (Fig. 1B) (Micanovic et al.,
2009; Yie et al., 2009). To minimize KLB-independent FGFR1 activation
and interference of endogenous FGF/FGFR1 interactions, the screen in-
cluded a previously undescribed anti-FGFR1, R1MAb3, which shares a
common epitope with R1MAb1, but exhibits no agonistic activity as a
Fab fragment due to low affinity (Fig. S1B–G). Various combinations of
anti-KLB antibodies and anti-FGFR1 antibodies were tested for FGFR1
and KLB-dependent MAPK activation in HEK293T cells using a GAL–
ELK1 based luciferase assay (Fig. S2A and B). Additional engineering ef-
forts ultimately yielded a bispecific effector-less humanized IgG1 mole-
cule, and closely related framework variants with comparable in vitro
activity (Figs. S2A, S2C, and S3A), henceforth referred to as bFKB1 for sim-
plicity. The bFKB1 framework is composed of the aforementioned
R1MAb3 (Kd N 300nM) andKLBmAb1— ahybridoma-derived high affin-
ity anti-KLB antibody (Kd= 6.6 nM) that binds to the C-terminal portion
of the KLB ECD (Fig. S3).

Employing the aforementioned luciferase assay in HEK293T cells
engineered to lack FGFR1 gene (Fig. 1C) or L6 cells lacking any endoge-
nous FGFR (Fig. 1D), we found bFKB1 induced luciferase activity only
when cells expressed both FGFR1c and KLB. Thus, bFKB1 acts as a highly
selective KLB-dependent FGFR1c agonist. In contrast, hFGF21 and
hFGF19 could also signal via alternate FGFRs as previously reported
(Fig. 1D) (Kurosu et al., 2007). In human primary adipocytes differenti-
ated in vitro, bFKB1 induced phosphorylation of MAPK signaling inter-
mediates (Figs. 1E and S2C) and UCP1 mRNA expression comparable
to FGF21 (Fig. 1F).

In addition, utilizing cell-surface time-resolved fluorescence reso-
nance energy transfer (TR-FRET) technology, we found that both
bFKB1 and FGF21 enhance dimerization of FGFR1c when KLB is also
present on the cell surface (Fig. 2A). Furthermore, bFKB1 stabilizes the
interaction between recombinant FGFR1c–ECD and KLB–ECD proteins
as previously observed for FGF21 (Fig. 2B) (Yie et al., 2012). Despite
these similarities to FGF21, the bFKB1 epitope on KLB appears to differ
from the binding site for FGF21 or FGF19; bFKB1 does not compete
with either FGF molecule for KLB binding (Fig. 2C), and ultimately
does not block the ability of FGF19 to activate MAPK signaling in hepa-
toma cells (Fig. 2D). These results collectively establish bFKB1 as an
FGFR1/KLB-selective agonist.
3.2. bFKB1 Induces Weight Loss and BAT Thermogenesis in Obese Mice

The activity of bFKB1 on the murine receptor complex (Figs. 1C and
S3A) allowed us to test its effects in vivo inmousemodels of obesity and
insulin resistance. bFKB1 administered i.p. lowered blood glucose levels
dramatically without affecting food intake or body weight in leptin re-
ceptor deficient db/db mice (Fig. 3A). Lean C57BL/6 mice treated with
bFKB1 also showed reduced blood glucose, but did not becomehypogly-
cemic (Fig. 3A). High fat diet-fed (Diet Induced Obesity, DIO) mice
injected with bFKB1 showed significant weight loss and blood glucose
reduction (Fig. 3B), an improvement in glucose tolerance (Fig. 3C),
and reductions in hepatic and serum lipids, and serum insulin
(Fig. 3D) as expected from FGF21- and FGF19-like activity.

Previous studies with pharmacological doses of FGF19 or FGF21
have shown increased EE in obese mice (Coskun et al., 2008; Fu et al.,
2004; Xu et al., 2009), however, the identity of FGFRs that mediate
this effect has not been clearly defined. We found that single bFKB1 in-
jection into DIO or leanmice at normal room temperature (21 °C) led to
significant increase in the rate of O2 consumption (VO2), CO2 production
(VCO2) and EE per injected animalwithout significant change in activity
count (Figs. 4A–C, S4A–B). The increase in EE was sustained even
when the cage temperature was elevated to thermoneutrality (30 °C)
(Fig. 4B–C). In addition, a sustained increase in EE (~29 days) was ob-
served when DIO mice pre-acclimated at thermoneutrality for
4 weeks was injected once with bFKB1 (Fig. 4D). Interestingly, the ob-
served 15–46% increase in EE at subthermoneutrality did not accompa-
ny significant alteration in the relative rate of CO2 production and VO2

consumption or the respiratory quotients (RQ = VCO2 / VO2)
(Fig. 4A–B). A similar increase in EE without change in RQ was elicited
by continuously infusing FGF21 into DIO mice, consistent with some
of the previous reports (Fig. S4C) (Xu et al., 2009). In contrast, continu-
ous infusion with β3-specific adrenoceptor agonist CL-316,243 induced
an acute and transient increase in EE and reduction in RQ as anticipated,
indicating a shift from carbohydrate oxidation to fat oxidation
(Fig. S4D).

Several lines of evidence indicated that BAT stimulation plays a crit-
ical role in the increase in EE by bFKB1. First, bFKB1 injection increased
uptake of 18F-Fludeoxyglucose (FDG) specifically into the interscapular
BAT tissue (iBAT) in mice fasted overnight (hence under a non-insulin-
stimulated state), indicative of heightened energy demand (Fig. 5A).
Second, single bFKB1 injection induced UCP1 protein expression in in-
guinal WAT (ingWAT), indicative of WAT browning (Fig. 5B). Third,
using an implanted telemetry transmitter, we observed an increase in
resting core body temperature after a single bFKB1 injection that lasted
for ≥26 days before gradually returning to baseline (Fig. 5C–D). Al-
though bFKB1 increased energy expenditure throughout the day
(Fig. 4A–B), the peak core body temperature in bFKB1-treated mice
did not increase significantly above that in control mice even when
the cage temperature was shifted to thermoneutrality (Fig. 5C and E).
Thus, bFKB1 injection did not interfere with the ability of mice to dissi-
pate extra heat as necessary. Also, these observations suggest that the
observed BAT activation is the primary cause of the core body tempera-
ture change, and is not secondary to the altered thermogenic needs. Fi-
nally, the gene expression signature in iBAT of bFKB1-treated or FGF21-
treated mice was consistent with FGFR activation (Spry4, Dusp4, Dusp6,
etc.) and thermogenic response (Ucp1, Dio2, Elovl3, Ppargc1a, Bmp8b,
etc.) (Fig. 5F).

3.3. The Role of Adiponectin in the Metabolic Action of bFKB1

In addition to stimulating BAT, FGF21 has been reported to increase
serum adiponectin in mice, monkeys, and humans (Gaich et al., 2013;
Holland et al., 2013; Kharitonenkov et al., 2007; Lin et al., 2013). Recent
studies have highlighted the role played by adiponectin in themetabolic
action of FGF21 in mice (Holland et al., 2013; Lin et al., 2013). As antic-
ipated, a single injection of bFKB1 into DIO mice (Fig. 6A) or lean
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cynomolgus monkeys (Fig. 6B) led to an increase in serum high molec-
ular weight (HMW) adiponectin levels with associated weight loss.

The contribution of adiponectin was tested by injecting bFKB1 into
wild type (WT) and Adiponectin (Adipoq) KO mice on HFD. Adipoq KO
mice exhibited a robust response in elevating EE (20.9% increase in KO
mice vs 25.3% increase in WT mice) and reduction of body weight and
hepatic triglyceride levels upon bFKB1 injection (Fig. 6C and D). An im-
provement in insulin tolerance, serum insulin, and hepatic triglyceride
levels were also observed in KO mice, however the responses were
not as robust as in WT mice (Fig. 6D). Improvements in glucose toler-
ance, fasting blood glucose and serum triglyceride and cholesterol levels
reached statistical significance only in WT mice.

We next used the hyperinsulinemic–euglycemic clamp to study the
effect of bFKB1 injection on the insulin sensitivity in WT and Adipoq KO
mice on HFD. The clamp experimentwas conducted on day 3 after anti-
body injection, before the onset of weight loss (Fig. 7A). On the day of
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the clamp, bFKB1-treated mice exhibited lowered fasting blood glucose
at baseline and elevated glucose infusion rate required to maintain
euglycemia in the face of a constant insulin infusion (96% increase in
WT mice and 152% increase in Adipoq KO mice) (Fig. 7B). During the
insulin-stimulated period, bFKB1-treated mice, irrespective of Adipoq
genotype, exhibited higher rates of whole body glucose utilization
(Fig. 7C) and glucose uptake (Rg) inmultiple tissues (Fig. 7D) compared
to control IgG-treated mice. Thus, bFKB1 increased insulin sensitivity
(i.e. leftward shift of curve in Fig. 7C) even in the absence of adiponectin.
In this experiment, bFKB1 treatment did not amplify absolute suppres-
sion of endogenous glucose production (Fig. 7E).

To determine the effect of bFKB1 treatment at a later time point, the
clamp experiment was repeated just with WT DIO mice. This time the
clamp experiment was conducted 5 days after the antibody injection,
again before the onset of weight loss (Fig. 7F). Like the previous exper-
iment, bFKB1-treated mice improved fasting blood glucose at the base-
line (Fig. 7G), the steady state glucose infusion rate (Fig. 7G), the rate of
whole body glucose utilization (Fig. 7H), and the tissue glucose uptake
(Fig. 7I). In this experiment, bFKB1 enhanced hepatic insulin sensitivity
and insulin suppression of endogenous glucose production (Fig. 7J).

3.4. Target Specificity and Safety Profile of bFKB1

KLB-dependency of bFKB1 in vivo was tested in Klb-deficient mice
(Fig. 8A). As expected, Klb deficient DIO mice were refractory to
bFKB1 as measured by energy expenditure (Fig. 8B) and glucose
tolerance (Fig. 8C). In addition, unlike anti-FGFR1 R1MAb1 that alters
the levels of serum FGF23 and phosphorus by activating FGFR1 in
bone and kidney (Wu et al., 2011a, 2013), bFKB1 did not affect these
serum parameters, indicating the absence of KLB-independent FGFR1
agonism or antagonism (Fig. 8D). Furthermore, consistent with KLB-
and FGFR1-dependent mechanism, bFKB1 induced acute ERK and
MEK phosphorylation in adipose tissues and pancreas, which express
high levels of both KLB and FGFR1, but not in the liverwhere FGFR1c ex-
pression is much lower than that in adipose tissues (Fig. 8E) (Fon
Tacer et al., 2010). In comparison, FGF21 induced ERK andMEK phos-
phorylation even in the liver, presumably through an alternate FGFR/
KLB complex. These results support the liver-sparing nature of bFKB1
and the absolute requirement of the FGFR1/KLB coreceptor complex
in the pharmacological action of bFKB1 in vivo.

The receptor specificity of bFKB1 and previously described low brain
penetrance of IgG molecules (Yu et al., 2011) predict an altered safety
profile of bFKB1 compared with FGF21 or 19. Chronic bFKB1 treatment
of DIOmice for 6 weeks improvedmetabolic parameters as anticipated,
but did not result in the deterioration of tibial trabecular and femoral
cortical bones based on micro-computed tomography (μCT) (Fig. S5A).
Previous studies have reported pharmacological doses of FGF19 induce
hepatic cell proliferation (French et al., 2012;Wu et al., 2011b); howev-
er chronic bFKB1 treatment of DIO mice for 8 weeks not only did not
trigger an increase in cell proliferation but reduced the number of pro-
liferating cells in the liver to the level of lean mice as measured by the
number of bromodeoxyuridine positive nuclei (Fig. S5B). Moreover,
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bFKB1 treatment did not significantly increase serum corticosterone
levels above control in DIO mice (Fig. S5C). Finally, bFKB1 increased
phospho-ERK signal in pancreas as expected, but not in various brain
sections including circumventricular organs (Fig. S5D). Although fur-
ther investigation is required to establish the site of action and the safe-
ty profile of this molecule, the available data suggests that selective
activation of FGFR1/KLB complex may provide metabolic benefits with-
out overtly compromising the safety of individuals.

4. Discussion

Recombinantmonoclonal antibodies are a powerful therapeuticmo-
dality as they provide excellent target selectivity, pharmacokinetic
profile, and other properties vital for pharmaceutical agents (Chan and
Carter, 2010). While monoclonal antibodies only engage a single anti-
gen, in recent years engineering efforts achieved success in creating
bispecific antibodies from two independent antibodies, providing the
opportunity for novel modes of action (Spiess et al., 2013). Applying
this innovative technology, we generated a humanized antibody mole-
cule bFKB1 that specifically activates the FGFR1/KLB complex both
in vitro and in vivo. Overall, the observed metabolic phenotypes in-
duced by a single bFKB1 administration in mice and monkeys are re-
markably similar to what has been observed with continuous infusion
or repeated administrations of FGF21 or its analogs. However, bFKB1
differs mechanistically from FGF21 in receptor selectivity. Together
with KLB, FGF21 activates FGFR1c, 2c and 3c, while bFKB1 activates
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only FGFR1c. This difference translates into tissue selectivity; FGF21 ac-
tivates MAPK signaling both in adipose tissues and the liver, and bFKB1
does not do so in the liver. Ourwork thus demonstrates that liver signal-
ing is dispensable for FGF21-like effects in the context of robust adipose
tissue effects. As a potential therapeutic molecule that has already been
sequence-optimized for pharmaceutical properties, bFKB1 possesses
unique advantages over previously described FGF21-analogs, including
durability of the efficacy, receptor selectivity, and the lack of risk to in-
duce cross-reactive antibodies against endogenous FGF21 protein.

One important consideration when designing an FGFR/KLB agonist
molecule for a therapeutic purpose was to avoid interference of endog-
enous FGF signaling pathways. Previously, it was reported that an
antibody-mediated inhibition of FGF/FGFR1 interaction (with anti-
FGFR1) or FGF19/FGFR4 interaction (with anti-FGF19) caused severe
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weight loss in cynomolgus monkeys due to hypophagia and bile acid-
mediated liver toxicity, respectively (Pai et al., 2012; Sun et al., 2007).
In addition, FGFR1 inhibition has been implicated in phosphate dysreg-
ulation (Xiao et al., 2014; Yanochko et al., 2013). Therefore, we purpose-
fully engineered a bispecific antibody by combining a high affinity anti-
KLB antibody that does not compete with FGF21 or FGF19 for KLB bind-
ing, and an anti-FGFR1 antibody with a very weak affinity. As a conse-
quence, our antibody lacks an ability to appreciably interfere with
FGF19 signaling or phosphate homeostasis. In contrast, the previously
described non-FGF-based high affinity FGFR1/KLB agonists exhibited
the ability to block FGF–FGFR1 or FGF–KLB binding (Foltz et al., 2012;
Smith et al., 2013) in vitro, and may compete with endogenous ligands
for binding to their respective cognate receptors in vivo.

Although the mechanism of BAT stimulation and WAT browning
by bFKB1 is not entirely clear, the onset of EE and core resting body
temperature induction by bFKB1 and the gene expression signature
in iBAT are consistent with a transcription-mediated mechanism.
We have previously shown that the transcriptional factor cAMP
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response element-binding protein (CREB) acts downstream of
FGFR1 in adipocytes to induce Ucp1 and peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α) gene expres-
sion (Wu et al., 2011a). Thus bFKB1 likely acts via CREB activation by
directly acting on the FGFR1/KLB receptor expressed in adipocytes.
This notion is supported by previous studies demonstrating that
Fgfr1 and Klb expressed in aP2-CRE expressing adipocytes are impor-
tant for the pharmacological action of FGF21 (Adams et al., 2012;
Ding et al., 2012; Foltz et al., 2012). Interestingly, the robust induc-
tion in EE by bFKB1 (or FGF21) administration could occur without
an apparent change in RQ. Thus, unlike administration of sympatho-
mimetics (norepinephrine, isoproterenol, or β3-specific
adrenoceptor agonist CL-316,243), cardiac natriuretic peptides,
glp-1/glucagon coagonists, and interleukin-4 (Bordicchia et al.,
2012; Day et al., 2009; Gavrilova et al., 2000; Nguyen et al., 2011),
BAT stimulation through FGFR1/KLB complex can increases EE with-
out altering the relative rate of fat and carbohydrate utilization. In
this regard, the activation of FGFR1/KLB complex represents a unique
pharmacological approach to selectively stimulate thermogenesis in
BAT while avoiding indiscriminate activation of the sympathetic ner-
vous system (SNS) and its potential toxicity (Dong et al., 2013; Yen
and Ewald, 2012).

In addition to adipocytes, FGFR/KLB receptors expressed in the cen-
tral nervous system (CNS) maybe important for the pharmacological
stimulation of BAT activity by bFKB1. A recent report demonstrated
that systemically injected FGF21 stimulates sympathetic nerves inner-
vating iBAT (Owen et al., 2014). Furthermore, Klb in Camk2a-CRE ex-
pressing cells in CNS is essential for almost all FGF21 mediated
pharmacological activity (Bookout et al., 2013; Owen et al., 2013,
2014). Thus, it is possible that the full action of bFKB1 requires both
transcriptional activation in adipocytes and an independent stimulation
of sympathetic nerves that innervate into BAT. While FGF21 can effi-
ciently cross the blood–brain-barrier (Hsuchou et al., 2007), only 0.1–
0.2% of circulating IgG is able to cross the blood–brain-barrier and
reach the CNS (Yu et al., 2011). Currently, it is not clear whether a min-
ute level of bFKB1 is sufficient to produce any brain signal. Defining the
sites of action for bFKB1 would require testing its metabolic action in
tissue-selective Klb and/or Fgfr1 KO strains.

In addition to BAT stimulation, another important action of FGF21 is
to increase adiponectin secretion from adipocytes, likely via a post-
transcriptional mechanism (Gaich et al., 2013; Holland et al., 2013;
Kharitonenkov et al., 2007; Lin et al., 2013). In fact, recently published
studies demonstrate that FGF21 is efficacious in mice even in the ab-
sence of Ucp1 gene (Samms et al., 2015; Véniant et al., 2015). In our
study, activation of FGFR1/KLB complex alone led to a twofold increase
in circulating HMW adiponectin in both mice and cynomolgus mon-
keys, demonstrating the central role of FGFR1/KLB complex in regulat-
ing HMW adiponectin levels. Numerous studies in the past 20 years
support the critical role of adiponectin, in particular the HMW form of
it, in improving insulin sensitivity and metabolic homeostasis through
pleiotropic actions in multiple cell types (Kadowaki et al., 2014; Ye
and Scherer, 2013). Indeed, we found that adiponectin deficiency in
KOmicemoderates themetabolic benefits of bFKB1 based on the exam-
ination of mice on 6 to 11 days after an antibody injection, consistent
with the previous report with FGF21 (Holland et al., 2013; Lin et al.,
2013). In addition, we also found that at an earlier time point, 3 days
after an injection, the insulin sensitizing action of bFKB1 is intact in
adiponectin deficient mice. Collectively, we propose that BAT stimula-
tion plays the dominant role in the acute insulin sensitizing and lipid
lowering effects of FGFR1/KLB activation in mice and adiponectin con-
tributes at later time to enhance the amplitude of the metabolic
benefits.
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Although the list of anti-obesity and anti-diabetic agents is growing,
a need for novel therapeutic agents to address obesity and type 2 diabe-
tes clearly persists. The FGF21/19-class of therapeutic molecules pro-
vides us with the opportunity to explore the emerging concept of
stimulating BAT activity and inducing WAT browning to combat
human obesity and related diseases. Based on our findings, we envisage
that antibody-mediated activation of FGFR1/KLB complex may enable
more efficient and perhaps safer pharmacological intervention as op-
posed to the broad FGFR/KLB complex activation by FGF21 or FGF19
analogs.

Conflict of Interest

GK, MZC, RT, JZS, LK, NVB, JR, SKW, VDG, RADC, DRD, ALW, BH, KA,
SW, XYR, NLK, YZ, JG, AB, TRG, DS, SR, TWB, JMV, YGM, JZ, RHS, MJB,
YC, SS, HSK, LCA, EL, CS, YW, JAE, ASP, and JS are present or former
paid employees of Genentech/Roche. OPW is a paid consultant for
Genentech. Genentech has filed patent applications related to thiswork.

Acknowledgments

We thank Genentech colleagues for their technical assistance. We
thank Drs. Bernard Allan and Chris Siebel for their critical reading of
the draft manuscript. The glucose clamp experiments were conducted
by the Vanderbilt Mouse Metabolic Phenotyping Center (DK059637)
and Hormone Assay and Analytical Services Core (DK059637 and
DK020593).

Appendix A. Supplementary Data

Supplemental Information includes five Supplemental Figures, Sup-
plemental Materials and Methods, and Author Contributions. Supple-
mentary data associated with this article can be found, in the online
version, at http://dx.doi.org/10.1016/j.ebiom.2015.05.028.

References

Adams, A.C., Yang, C., Coskun, T., Cheng, C.C., Gimeno, R.E., Luo, Y., Kharitonenkov, A.,
2012. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tis-
sue. Mol. Metab. 2, 31–37.

Ayala, J.E., Bracy, D.P., McGuinness, O.P., Wasserman, D.H., 2006. Considerations in the de-
sign of hyperinsulinemic–euglycemic clamps in the conscious mouse. Diabetes 55,
390–397.

Bookout, A.L., de Groot, M.H., Owen, B.M., Lee, S., Gautron, L., Lawrence, H.L., Ding, X.,
Elmquist, J.K., Takahashi, J.S., Mangelsdorf, D.J., et al., 2013. FGF21 regulates metabo-
lism and circadian behavior by acting on the nervous system. Nat. Med. 19,
1147–1152.

Bordicchia, M., Liu, D., Amri, E.Z., Ailhaud, G., Dessi-Fulgheri, P., Zhang, C., Takahashi, N.,
Sarzani, R., Collins, S., 2012. Cardiac natriuretic peptides act via p38 MAPK to induce
the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Invest.
122, 1022–1036.

Cannon, B., Nedergaard, J., 2004. Brown adipose tissue: function and physiological signif-
icance. Physiol. Rev. 84, 277–359.

Chan, A.C., Carter, P.J., 2010. Therapeutic antibodies for autoimmunity and inflammation.
Nat. Rev. Immunol. 10, 301–316.

Coskun, T., Bina, H.A., Schneider, M.A., Dunbar, J.D., Hu, C.C., Chen, Y., Moller, D.E.,
Kharitonenkov, A., 2008. Fibroblast growth factor 21 corrects obesity in mice. Endo-
crinology 149, 6018–6027.

Cypess, A.M., Weiner, L.S., Roberts-Toler, C., Elia, E.F., Kessler, S.H., Kahn, P.A., English, J.,
Chatman, K., Trauger, S.A., Doria, A., et al., 2015. Activation of human brown adipose
tissue by a beta3-adrenergic receptor agonist. Cell Metab. 21, 33–38.

Day, J.W., Ottaway, N., Patterson, J.T., Gelfanov, V., Smiley, D., Gidda, J., Findeisen, H.,
Bruemmer, D., Drucker, D.J., Chaudhary, N., et al., 2009. A new glucagon and GLP-1
co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757.

Ding, X., Boney-Montoya, J., Owen, B.M., Bookout, A.L., Coate, K.C., Mangelsdorf, D.J.,
Kliewer, S.A., 2012. betaKlotho is required for fibroblast growth factor 21 effects on
growth and metabolism. Cell Metab. 16, 387–393.

Dong, M., Yang, X., Lim, S., Cao, Z., Honek, J., Lu, H., Zhang, C., Seki, T., Hosaka, K., Wahlberg,
E., et al., 2013. Cold exposure promotes atherosclerotic plaque growth and instability
via UCP1-dependent lipolysis. Cell Metab. 18, 118–129.

Fisher, F.M., Kleiner, S., Douris, N., Fox, E.C., Mepani, R.J., Verdeguer, F., Wu, J.,
Kharitonenkov, A., Flier, J.S., Maratos-Flier, E., et al., 2012. FGF21 regulates PGC-1α
and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26,
271–281.
Foltz, I.N., Hu, S., King, C., Wu, X., Yang, C., Wang, W., Weiszmann, J., Stevens, J., Chen, J.S.,
Nuanmanee, N., et al., 2012. Treating diabetes and obesity with an FGF21-mimetic
antibody activating the betaKlotho/FGFR1c receptor complex. Sci. Transl. Med. 4,
162ra153.

Fon Tacer, K., Bookout, A.L., Ding, X., Kurosu, H., John, G.B., Wang, L., Goetz, R.,
Mohammadi, M., Kuro-o, M., Mangelsdorf, D.J., et al., 2010. Research resource: com-
prehensive expression atlas of the fibroblast growth factor system in adult mouse.
Mol. Endocrinol. 24, 2050–2064.

French, D.M., Lin, B.C., Wang, M., Adams, C., Shek, T., Hotzel, K., Bolon, B., Ferrando, R.,
Blackmore, C., Schroeder, K., et al., 2012. Targeting FGFR4 inhibits hepatocellular car-
cinoma in preclinical mouse models. PLoS One 7, e36713.

Friedman, B.A., Maniatis, T., 2011. ExpressionPlot: a web-based framework for analysis of
RNA-Seq and microarray gene expression data. Genome Biol. 12, R69.

Frontini, A., Vitali, A., Perugini, J., Murano, I., Romiti, C., Ricquier, D., Guerrieri, M., Cinti, S.,
2013.White-to-brown transdifferentiation of omental adipocytes in patients affected
by pheochromocytoma. Biochim. Biophys. Acta 1831, 950–959.

Fu, L., John, L.M., Adams, S.H., Yu, X.X., Tomlinson, E., Renz, M., Williams, P.M., Soriano, R.,
Corpuz, R., Moffat, B., et al., 2004. Fibroblast growth factor 19 increases metabolic rate
and reverses dietary and leptin-deficient diabetes. Endocrinology 145, 2594–2603.

Gaich, G., Chien, J.Y., Fu, H., Glass, L.C., Deeg, M.A., Holland,W.L., Kharitonenkov, A., Bumol,
T., Schilske, H.K., Moller, D.E., 2013. The effects of LY2405319, an FGF21 analog, in
obese human subjects with type 2 diabetes. Cell Metab. 18, 333–340.

Gavrilova, O., Marcus-Samuels, B., Reitman, M.L., 2000. Lack of responses to a beta3-
adrenergic agonist in lipoatrophic A-ZIP/F-1 mice. Diabetes 49, 1910–1916.

Holland, W.L., Adams, A.C., Brozinick, J.T., Bui, H.H., Miyauchi, Y., Kusminski, C.M., Bauer,
S.M., Wade, M., Singhal, E., Cheng, C.C., et al., 2013. An FGF21–adiponectin–ceramide
axis controls energy expenditure and insulin action in mice. Cell Metab. 17, 790–797.

Hsuchou, H., Pan, W., Kastin, A.J., 2007. The fasting polypeptide FGF21 can enter brain
from blood. Peptides 28, 2382–2386.

Inagaki, T., Lin, V.Y., Goetz, R., Mohammadi, M., Mangelsdorf, D.J., Kliewer, S.A., 2008. In-
hibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell
Metab. 8, 77–83.

Kadowaki, T., Yamauchi, T., Okada-Iwabu, M., Iwabu, M., 2014. Adiponectin and its recep-
tors: implications for obesity-associated diseases and longevity. Lancet Diabetes
Endocrinol. 2, 8–9.

Kharitonenkov, A., Wroblewski, V.J., Koester, A., Chen, Y.-F., Clutinger, C.K., Tigno, X.T.,
Hansen, B.C., Shanafelt, A.B., Etgen, G.J., 2007. Themetabolic state of diabeticmonkeys
is regulated by fibroblast growth factor-21. Endocrinology 148, 774–781.

Kurosu, H., Choi, M., Ogawa, Y., Dickson, A.S., Goetz, R., Eliseenkova, A.V., Mohammadi, M.,
Rosenblatt, K.P., Kliewer, S.A., Kuro-o, M., 2007. Tissue-specific expression of
betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines meta-
bolic activity of FGF19 and FGF21. J. Biol. Chem. 282, 26687–26695.

Lin, Z., Tian, H., Lam, K.S., Lin, S., Hoo, R.C., Konishi, M., Itoh, N., Wang, Y., Bornstein, S.R.,
Xu, A., et al., 2013. Adiponectin mediates the metabolic effects of FGF21 on glucose
homeostasis and insulin sensitivity in mice. Cell Metab. 17, 779–789.

Micanovic, R., Raches, D.W., Dunbar, J.D., Driver, D.A., Bina, H.A., Dickinson, C.D.,
Kharitonenkov, A., 2009. Different roles of N- and C-termini in the functional activity
of FGF21. J. Cell. Physiol. 219, 227–234.

Nedergaard, J., Bengtsson, T., Cannon, B., 2007. Unexpected evidence for active brown ad-
ipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452.

Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E.C.,
Biryukov, S., Abbafati, C., Abera, S.F., et al., 2014. Global, regional, and national preva-
lence of overweight and obesity in children and adults during 1980–2013: a system-
atic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781.

Nguyen, K.D., Qiu, Y., Cui, X., Goh, Y.P., Mwangi, J., David, T., Mukundan, L., Brombacher, F.,
Locksley, R.M., Chawla, A., 2011. Alternatively activated macrophages produce cate-
cholamines to sustain adaptive thermogenesis. Nature 480, 104–108.

Owen, B.M., Bookout, A.L., Ding, X., Lin, V.Y., Atkin, S.D., Gautron, L., Kliewer, S.A.,
Mangelsdorf, D.J., 2013. FGF21 contributes to neuroendocrine control of female re-
production. Nat. Med. 19, 1153–1156.

Owen, B.M., Ding, X., Morgan, D.A., Coate, K.C., Bookout, A.L., Rahmouni, K., Kliewer, S.A.,
Mangelsdorf, D.J., 2014. FGF21 Acts Centrally to Induce Sympathetic Nerve Activity,
Energy Expenditure, and Weight Loss. Cell Metab. 20, 670–677.

Pai, R., French, D., Ma, N., Hotzel, K., Plise, E., Salphati, L., Setchell, K.D.R., Ware, J., Lauriault,
V., Schutt, L., et al., 2012. Antibody-mediated inhibition of fibroblast growth factor 19
results in increased bile acids synthesis and ileal malabsorption of bile acids in cyno-
molgus monkeys. Toxicol. Sci. 126, 446–456.

Samms, R.J., Smith, D.P., Cheng, C.C., Antonellis, P.P., Perfield, J.W., 2nd, Kharitonenkov, A.,
Gimeno, R.E., Adams, A.C., 2015. Discrete aspects of FGF21 in vivo pharmacology do
not require UCP1. Cell Rep. 11, 991–999.

Shatz, W., Chung, S., Li, B., Marshall, B., Tejada, M., Phung, W., Sandoval, W., Kelley, R.F.,
Scheer, J.M., 2013. Knobs-into-holes antibody production in mammalian cell lines re-
veals that asymmetric afucosylation is sufficient for full antibody-dependent cellular
cytotoxicity. MAbs 5, 872–881.

Shulman, G.I., 2014. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic
disease. N. Engl. J. Med. 371, 1131–1141.

Sidossis, L., Kajimura, S., 2015. Brown and beige fat in humans: thermogenic adipocytes
that control energy and glucose homeostasis. J. Clin. Invest. 125, 478–486.

Smith, R., Duguay, A., Bakker, A., Li, P., Weiszmann, J., Thomas, M.R., Alba, B.M., Wu, X.,
Gupte, J., Yang, L., et al., 2013. FGF21 can be mimicked in vitro and in vivo by a
novel anti-FGFR1c/beta-Klotho bispecific protein. PLoS One 8, e61432.

Sondergaard, E., Gormsen, L.C., Christensen, M.H., Pedersen, S.B., Christiansen, P., Nielsen,
S., Poulsen, P.L., Jessen, N., 2015. Chronic adrenergic stimulation induces brown adi-
pose tissue differentiation in visceral adipose tissue. Diabet. Med. 32, e4–e8.

Spiess, C., Merchant, M., Huang, A., Zheng, Z., Yang, N.Y., Peng, J., Ellerman, D., Shatz, W.,
Reilly, D., Yansura, D.G., et al., 2013. Bispecific antibodies with natural architecture

http://dx.doi.org/10.1016/j.ebiom.2015.05.028
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0005
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0005
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0010
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0010
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0010
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0015
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0015
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0015
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0020
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0020
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0020
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0025
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0025
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0030
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0030
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0035
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0035
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0040
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0040
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0045
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0045
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0050
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0050
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0055
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0055
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0060
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0060
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0060
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0275
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0275
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0275
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0065
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0065
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0065
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0070
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0070
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0075
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0075
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0080
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0080
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0085
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0085
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0090
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0090
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0095
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0095
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0100
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0100
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0105
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0105
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0110
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0110
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0110
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0115
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0115
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0115
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0120
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0120
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0125
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0125
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0125
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0130
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0130
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0135
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0135
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0140
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0140
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0145
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0145
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0145
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0150
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0150
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0155
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0155
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0280
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0280
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0285
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0285
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0285
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0290
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0290
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0175
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0175
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0175
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0180
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0180
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0185
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0185
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0190
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0190
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0295
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0295
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0200


743G. Kolumam et al. / EBioMedicine 2 (2015) 730–743
produced by co-culture of bacteria expressing two distinct half-antibodies. Nat.
Biotechnol. 31, 753–758.

Sun, H.D., Malabunga, M., Tonra, J.R., DiRenzo, R., Carrick, F.E., Zheng, H., Berthoud, H.-R.,
McGuinness, O.P., Shen, J., Bohlen, P., et al., 2007. Monoclonal antibody antagonists of
hypothalamic FGFR1 cause potent but reversible hypophagia and weight loss in ro-
dents and monkeys. Am. J. Physiol. Endocrinol. Metab. 292, E964–E976.

Tomlinson, E., Fu, L., John, L., Hultgren, B., Huang, X., Renz, M., Stephan, J.P., Tsai, S.P.,
Powell-Braxton, L., French, D., et al., 2002. Transgenic mice expressing human fibro-
blast growth factor-19 display increased metabolic rate and decreased adiposity. En-
docrinology 143, 1741–1747.

Véniant, M.M., Sivits, G., Helmering, J., Komorowski, R., Lee, J., Fan, W., Moyer, C., Lloyd,
D.J., 2015. Pharmacologic effects of FGF21 are independent of the “browning” of
white adipose tissue. Cell Metab. 21, 731–738.

Wei, W., Dutchak, P.A., Wang, X., Ding, X., Wang, X., Bookout, A.L., Goetz, R., Mohammadi,
M., Gerard, R.D., Dechow, P.C., et al., 2012. Fibroblast growth factor 21 promotes bone
loss by potentiating the effects of peroxisome proliferator-activated receptor gamma.
Proc. Natl. Acad. Sci. U. S. A. 109, 3143–3148.

Wu, A.-L., Coulter, S., Liddle, C., Wong, A., Eastham-Anderson, J., French, D.M., Peterson,
A.S., Sonoda, J., 2011a. FGF19 regulates cell proliferation, glucose and bile acid metab-
olism via FGFR4-dependent and independent pathways. PLoS ONE 6, e17868.

Wu, A.L., Kolumam, G., Stawicki, S., Chen, Y., Li, J., Zavala-Solorio, J., Phamluong, K., Feng,
B., Li, L., Marsters, S., et al., 2011b. Amelioration of type 2 diabetes by antibody-
mediated activation of fibroblast growth factor receptor 1. Sci. Transl. Med. 3,
113ra126.

Wu, A.L., Feng, B., Chen, M.Z., Kolumam, G., Zavala-Solorio, J., Wyatt, S.K., Gandham, V.D.,
Carano, R.A., Sonoda, J., 2013. Antibody-mediated activation of FGFR1 induces FGF23
production and hypophosphatemia. PLoS One 8, e57322.
Xiao, Z., Huang, J., Cao, L., Liang, Y., Han, X., Quarles, L.D., 2014. Osteocyte-specific deletion
of Fgfr1 suppresses FGF23. PLoS One 9, e104154.

Xu, J., Lloyd, D.J., Hale, C., Stanislaus, S., Chen, M., Sivits, G., Vonderfecht, S., Hecht, R., Li, Y.,
Lindberg, R.A., et al., 2009. Fibroblast growth factor 21 reverses hepatic steatosis, in-
creases energy expenditure, and improves insulin sensitivity in diet-induced obese
mice. Diabetes 58, 250–259.

Yanochko, G.M., Vitsky, A., Heyen, J.R., Hirakawa, B., Lam, J.L., May, J., Nichols, T., Sace, F.,
Trajkovic, D., Blasi, E., 2013. Pan-FGFR inhibition leads to blockade of FGF23 signaling,
soft tissue mineralization, and cardiovascular dysfunction. Toxicol. Sci. 135, 451–464.

Ye, R., Scherer, P.E., 2013. Adiponectin, driver or passenger on the road to insulin sensitiv-
ity? Mol. Metab. 2, 133–141.

Yen, M., Ewald, M.B., 2012. Toxicity of weight loss agents. J. Med. Toxicol. 8, 145–152.
Yie, J., Hecht, R., Patel, J., Stevens, J., Wang, W., Hawkins, N., Steavenson, S., Smith, S.,

Winters, D., Fisher, S., et al., 2009. FGF21 N- and C-termini play different roles in re-
ceptor interaction and activation. FEBS Lett. 583, 19–24.

Yie, J., Wang, W., Deng, L., Tam, L.-T., Stevens, J., Chen, M.M., Li, Y., Xu, J., Lindberg, R.,
Hecht, R., et al., 2012. Understanding the physical interactions in the FGF21/FGFR/
β-Klotho complex: structural requirements and implications in FGF21 signaling.
Chem. Biol. Drug Des. 79, 398–410.

Yoneshiro, T., Aita, S., Matsushita, M., Kayahara, T., Kameya, T., Kawai, Y., Iwanaga, T.,
Saito, M., 2013. Recruited brown adipose tissue as an antiobesity agent in humans.
J. Clin. Invest. 123, 3404–3408.

Yu, Y.J., Zhang, Y., Kenrick, M., Hoyte, K., Luk, W., Lu, Y., Atwal, J., Elliott, J.M., Prabhu, S.,
Watts, R.J., et al., 2011. Boosting brain uptake of a therapeutic antibody by reducing
its affinity for a transcytosis target. Sci. Transl. Med. 3, 84ra44.

http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0200
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0200
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0205
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0205
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0205
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0210
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0210
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0210
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0215
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0215
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0220
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0220
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0220
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0230
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0230
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0300
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0300
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0300
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0225
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0225
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0235
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0235
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0240
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0240
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0240
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0245
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0245
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0250
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0250
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0255
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0260
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0260
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0265
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0265
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0265
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0270
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0270
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0305
http://refhub.elsevier.com/S2352-3964(15)30030-X/rf0305

	Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth ...
	1. Introduction
	2. Materials and Methods
	2.1. Research Ethics
	2.2. Isolation and Characterization of Bispecific Anti-FGFR1/KLB Ab
	2.3. Mouse Strains
	2.4. Mouse Studies
	2.5. Metabolic Measurements
	2.6. Monkey Study
	2.7. Gene Expression Analysis
	2.8. Western Blot
	2.9. In Vitro Cell Culture Experiments
	2.10. Surface Plasmon Resonance (SPR)
	2.11. Cell-surface Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET)
	2.12. Statistics
	2.13. Blinding
	2.14. Funding

	3. Results
	3.1. Identification of bFKB1, an FGFR1-selective FGF21 Mimetic Antibody
	3.2. bFKB1 Induces Weight Loss and BAT Thermogenesis in Obese Mice
	3.3. The Role of Adiponectin in the Metabolic Action of bFKB1
	3.4. Target Specificity and Safety Profile of bFKB1

	4. Discussion
	Conflict of Interest
	Acknowledgments
	Appendix A. Supplementary Data
	References


