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Abstract 

Background:  Despite the vaccination process in Germany, a large share of the population is still susceptible to SARS-
CoV-2. In addition, we face the spread of novel variants. Until we overcome the pandemic, reasonable mitigation and 
opening strategies are crucial to balance public health and economic interests.

Methods:  We model the spread of SARS-CoV-2 over the German counties by a graph-SIR-type, metapopulation 
model with particular focus on commuter testing. We account for political interventions by varying contact reduction 
values in private and public locations such as homes, schools, workplaces, and other. We consider different levels of 
lockdown strictness, commuter testing strategies, or the delay of intervention implementation. We conduct numeri‑
cal simulations to assess the effectiveness of the different intervention strategies after one month. The virus dynamics 
in the regions (German counties) are initialized randomly with incidences between 75 and 150 weekly new cases per 
100,000 inhabitants (red zones) or below (green zones) and consider 25 different initial scenarios of randomly distrib‑
uted red zones (between 2 and 20% of all counties). To account for uncertainty, we consider an ensemble set of 500 
Monte Carlo runs for each scenario.

Results:  We find that the strength of the lockdown in regions with out of control virus dynamics is most important 
to avoid the spread into neighboring regions. With very strict lockdowns in red zones, commuter testing rates of 
twice a week can substantially contribute to the safety of adjacent regions. In contrast, the negative effect of less strict 
interventions can be overcome by high commuter testing rates. A further key contributor is the potential delay of the 
intervention implementation. In order to keep the spread of the virus under control, strict regional lockdowns with 
minimum delay and commuter testing of at least twice a week are advisable. If less strict interventions are in favor, 
substantially increased testing rates are needed to avoid overall higher infection dynamics.

Conclusions:  Our results indicate that local containment of outbreaks and maintenance of low overall incidence 
is possible even in densely populated and highly connected regions such as Germany or Western Europe. While we 
demonstrate this on data from Germany, similar patterns of mobility likely exist in many countries and our results are, 
hence, generalizable to a certain extent.
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Background
With about three million detected infections in Ger-
many [1] and about 22 million vaccinations [2] until April 
2021, we could reasonably assume that at least 80% of the 
population were still susceptible to SARS-CoV-2. New 
SARS-CoV-2 variants (B.1.1.7, B.1.351 and P.1) contrib-
uted to the increase in case numbers [3, Report of Apr. 
7]. Due to the higher transmission risk of B.1.1.7 [4], pre-
vious mitigation strategies had to be reconsidered and 
strengthened. Among other things, massive deployment 
of antigen tests and regular testing were proposed [5].

As of February 2022, we have seen the more infectious 
Delta and Omicron variants. Although we hoped for 
herd immunity in winter 2021/2022, still 25% of the Ger-
man population have not been vaccinated twice and 43% 
of the population have not yet had a third vaccine dose 
[2]. With lockdowns and strict interventions not being in 
place, testing becomes even more important.

The prediction of SARS-CoV-2 infections by math-
ematical models is an active area of research of many 
groups from all over the world. There are various 
approaches to simulate the spread of infectious diseases 
across regions. In the following, we will shortly discuss 
different approaches and provide a non-exhaustive list of 
references with applications to SARS-CoV-2.

Sets of ordinary differential equations were already pro-
posed in [6, 7] to model the spread of infectious diseases. 
These models are often denoted SIR- or SEIR-models and 
the letters (e.g., S, E, I, or R) represent infection states 
used in the model, e.g., susceptible, exposed, infected, or 
removed/recovered. In order to avoid a proliferation of 
letters, we will denote models of this kind as SIR-type 
models. To be more precise, we denote these models as 
(deterministic) ODE-SIR-type models to indicate their 
reliance on ordinary differential equations. A good over-
view on these deterministic models as well as a presen-
tation of limitations is given, e.g., in [8–10]. Although 
having certain limitations, these models are often praised 
for their simplicity and understandability.

In the context of the SARS-CoV-2 pandemic, ODE-
SIR-type models with focus on vaccination were used 
by [11, 12] while [13] focused on hospitalization and 
ICU demands. The authors of [14, 15] considered simi-
lar models with an additional differentiation of confirmed 
and unconfirmed infections. This differentiation was also 
used by the authors of [16, 17]. The authors of [18–22] 
considered ODE-SIR models and laid a particular focus 
on the effect of non-pharmaceutical interventions (NPIs) 

while [23] focused on contacts outside households and 
[24] tried to assess the effect of seasonality of SARS-
CoV-2. Latency effects in ODE-SIR-type models were 
studied in [25].

Some obvious limitations of simple ODE-SIR-type mod-
els are the homogeneous mixing assumption, the lack of 
stochastic effects and the implicit use of exponentially dis-
tributed compartment stays. The authors of [26] consid-
ered stochastic and deterministic ODE-SIR-type models 
and [27] provides an overview over 13, either stochastic or 
deterministic, models from 33 papers. The authors of [28] 
used stochastic compartment models to consider the effect 
of NPIs and [29] used a stochastic branching process which 
may be advantageous over compartment models in the 
beginning phase of pandemic. Viboud et al. [30] proposed a 
simple generalized-growth model for the early phase of dis-
ease outbreaks. In [31], different stochastic and determinis-
tic compartment and agent-based models for Germany and 
Poland from, i.a., [16, 32–36], were compared.

Stochastic effects such as superspreading events can 
naturally be modeled by agent-based models or, in parts, 
by stochastic differential equations. However, the nature 
and setting of superspreading events is still an area of 
active research, cf., e.g., [37, 38] and will take years to be 
fully understood [39]. Agent-based models (ABMs) have 
been used by many authors since they model infection 
dynamics in a natural way [40–48]. Another ABM based 
on a traffic simulation and mobile phone data was pro-
posed by [49] and [50, 51] presented agent-based models 
which build upon a predefined contact networks. While 
ABMs do not have the limitations of the homogeneous 
mixing assumption or the lack of stochastic events, their 
use comes at a huge computational overhead.

In [52, 53] agent-based models were combined with arti-
ficial intelligence and machine learning. Other machine 
learning approaches were presented by, e.g., [54–56]. 
Radev et al. [54] used ODE-SIR-type based Bayesian infer-
ence with invertible neural networks. In [55], an ODE-
SIR-type model based machine learning approach was 
presented and [56] proposed the use of LSTM networks.

Although compartment and agent-based models seem 
to be contrary approaches, links can be established. The 
authors of [57, 58] provide links between microscopic, 
agent-based and ODE models and [59] presented a gen-
eralization of ODE-SIR-type models and considered 
agent-based modeling. In [60], relations between Agent-
based and stochastic as well as deterministic metapopu-
lation models were presented.

Keywords:  SARS-CoV-2, Covid-19, Nonpharmaceutical intervention, Mitigation strategy, Modeling, Predictive 
analytics, NoCovid strategy
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Metapopulation models reduce the limitations of sim-
ple ODE-based models by introducing a spatial dimen-
sion and thus allowing for heterogeneous mixing across 
regions. Metapopulation models were already used 
before Covid-19 [61] and different approaches exist to 
extend ODE-models to account for exchange across 
regions [10, Chapter 14]. The authors of [36, 62–65] pre-
sented ODE-based metapopulation models consider-
ing different regions and an additional focus on regional 
differences in vaccination progress can be found in [66]. 
Brockmann and Helbing [67] presented network-driven 
contagion phenomena based on ODE-SIR-dynamics but 
where the latter are not essential for the results provided. 
Also, agent- and compartment-based models can be 
combined to set up hybrid models [68].

In order to overcome another limitation of simple ODE-
based models, integro-differential equation-based (also 
named age of infection) models [6, 69–71] can be used. 
Integro-differential equation-based (IDE) models allow 
for using arbitrary distributions to waive the implicit 
use of exponential compartment stays as given by ODE-
based models. These have been used for SARS-CoV-2 
in, e.g., [72–74]. A good overview is given in [75, 76]. A 
trade-off between simple ODE- and IDE-based models 
are delay-differential equations and linear chain trick [77] 
also recently used in [78]. The authors of [79] presented 
memory-equation-based spatial infection dynamics.

The previous background provides a nonexhaustive list 
of models and papers for mathematical epidemiology. For 
a broad overview, we refer to [10, 80, 81] and the refer-
ences therein.

A proactive approach to fight SARS-CoV-2 in Germany 
and Europe is presented in [82] with the aim of a safe and 
sustainable re-opening of societies and economies; see 
also related discussions in [83–85]. Lockdowns remain 
implemented regionally until the incidence is below 12 
cases per week and 100,000 inhabitants and local meas-
ures are reintroduced rapidly should infections flare up 
again. This approach was already successfully imple-
mented in Australia. It is based on the observation that 
the virus spreads heterogeneously: There are certain 
regions with very low incidences while other regions 
(“hotspots”) are highly affected [3]. However, neighbor-
ing regions can quickly become impacted, especially, by 
daily commuting. So far, the feasibility and effectiveness 
of the strategy with respect to commuter testing and 
local lockdowns has not been investigated numerically. 
The aim of this paper is a quantification of the necessary 
test frequency, the required strength of the local lock-
down and the time frame that we have for the interven-
tion implementation to avoid the spreading of the virus 
to neighboring regions.

Methods
The aim of this study is to provide viable strategies of 
careful opening of facilities in low-incidence regions 
without being affected by neighboring regions of sub-
stantially higher incidence. Motivated by [82], the regions 
(here: German counties) are partitioned into red and 
green zones. A region is labeled a green zone if there is 
a stable low incidence below 12 per week and 100,000 
inhabitants1 with effective tracing of new cases. As soon 
as this is no longer the case, a region is labeled a red zone.

We initialize the set of German counties randomly with 
weekly incidences per 100,000 inhabitants of around 5 for 
green zones and 75–150 for red zones. The values of 5 and 
75–150 are to some extent arbitrary and are chosen such 
that we have two well distinguished infection dynamics. 
They are motivated by the proposed strategy [82] and rep-
resent infection dynamics which are well under control 
(green zone) as well as infection dynamics that are out of 
control and where a lot of infections happen undetected 
(red zone). We consider 25 different random scenarios 
with in between 2 and 20% of the counties as red zones; 
cf.  Fig. 3 (top). Random variables are sampled from a uni-
form distribution. In green zones, all facilities are open 
with only protective measures, such as distancing and face 
masks, in place. Red zones start from an incidence of 12, 
and in that case a lockdown is implemented for 30 days. 
For counties with incidence 100 or higher enforced meas-
ures are applied. Since political decisions require time, 
intervention implementation allows for certain delay. 
Commuter testing is conducted for all commuters com-
ing from red zones. If tested positive, presymptomatic, 
asymptomatic or symptomatic people will be isolated and 
prevented from traveling or commuting before recov-
ery. For the precise set of values for lockdowns or testing 
rates, see the section on mitigation and opening strategies. 
To assess the impact of the initial overall incidence, we 
also present two scenarios with 42% and 60% of counties 
classified red at the beginning.

Note that throughout this work, incidence always refers 
to the incidence averaged over 100,000 people and 7 days.

Mathematical model
In order to achieve the numerical investigation, a large 
number of ensemble runs of a regionally resolved model 
have to be conducted. While agent-based models come 
at a huge computational cost and are well suited for 
capturing microscopic effects, age-resolved metapopu-
lation models reliably allow for capturing macroscopic 
effects of a large number of regions at a reasonable cost. 

1  The small deviation from the incidence 12 in [82] takes into account report-
ing delays.
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We have also decided to use deterministic metapopula-
tion models to avoid making assumptions on the quan-
tification and nature of stochastic events. While this 
may be a limitation on the county-scale, this will cap-
ture the mean macroscopic effects well.

Our mathematical model for the spread of SARS-
CoV-2 accounts for age-dependence [86–88], heteroge-
neous spread across regions [3], and commuter testing 
for mitigation [5].

For the geographic resolution, we use a graph 
approach as presented in [64] and assign one SIR-type 
model to each German county. The resulting models 
will be coupled by the edges of the graph which rep-
resent the mobility between the regions. The mobility 
data is obtained from the German Federal Employment 
Agency [89] complemented with geo-referenced Twitter 
data [90]. For more details on the data and the practical 
exchange between regions, we refer to [64]. In the graph, 
counties are not only connected to their geographical 
neighbors. We define neighbors by mobility, depend-
ing on the numbers of in-commuters. If the number of 
daily in-commuters in county A (coming from county B) 
exceeds 1000 on average, B will be classified a neighbor 
of A. This leads to an increased number of neighbors for 
larger cities in particular as shown in Fig. 1.

For each county, we use an age-resolved SIR-type 
model based on [14, 64], with particular new focus on 
commuter

testing. The model uses the compartments Suscepti-
ble ( Si ); Exposed ( Ei ), who carry the virus but are not yet 
infectious to others; Carriers ( Ci ), who carry the virus 
and are infectious to others but do not yet show symp-
toms (they may be pre- or asymptomatic); Infected ( Ii ), 
who carry the virus, are infectious and show symptoms; 
Hospitalized ( Hi ), who experience a severe development 
of the disease; In Intensive Care Unit ( Ui ); Dead ( Di ); and 
Recovered ( Ri ), who cannot be infected again. To resolve 
age-specific disease parameters, the totality of people 
N into n different age groups i = 1, . . . , n . Note that our 
focus in this paper is not on hospitalizations, ICU bot-
tlenecks, deaths or vaccinations such that these compart-
ments are of minor interest for our considerations here.

In order to model commuter testing, we introduce the 
new compartments C+

i  and I+i  for carriers or infectious 
who are tested positive while commuting. The compart-
ment C+

i  does not have any natural influx and only depends 
on the number of commuters and testing rates defined 
between counties on a daily basis. I+i  has only influx from 
C+
i  and can also increase due to testing results. For a vis-

ualization of the process see   Fig. 2. Testing within coun-
ties and lockdown strictness will be handled as presented 
in [64], adapted to counterstrategies against novel SARS-
CoV-2 variants. The full system of equations writes

Fig. 1  Number of neighboring zones according to geographical and mobility definitions
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For each age group i = 1, . . . , n , we denote the trans-
mission risk by ρi and the proportion of carriers and 
infected people not isolated or quarantined is denoted by 
ξC ,i and ξI ,i , respectively. The contact frequency matrix 
� = (φi,j)i,j=1,...,n represents the (mean) daily contacts of 
a person of age group i with people from age group j. For 
the remaining parameters, we use the variables T ∗2

∗1  for 
the time spent in state ∗1 ∈ Zi before transition to state 
∗2 ∈ Zi and µ∗2

∗1 for the probability of a patient to go to 
state ∗2 from state ∗1.

Except for the transmission risk ρi , the detection of 
carriers ξC ,i and the isolation and quarantine of infected 
ξI ,i defined in Table 1, we use the parameter ranges and 
age groups as gathered and described elaborately in 
[64]. To account for the variant B.1.1.7 in Germany [3, 
Report of Apr. 7], we use a 1.4 times increased value for 
the transmission risk ρi [4]. The sigmoidal cosine curves 
in Table  1 are defined by the actual incidence of the 
zone. Thus, the minimum values are adopted for inci-
dences below 12, where even carriers are quarantined 
and symptomatic are isolated fast and efficiently. From 
incidence 20 onward, carriers are generally no longer 
detected on a larger scale and the non-isolation of 
symptomatic increases to its highest value at incidence 
150. For a summarized description on the parameters, 
please see Table 2.

The range of contact patterns depends on the decreed 
non-pharmaceutical interventions. The baseline 

(10)
dDi

dt
=

µ
Di
Ui

T
Di
Ui

Ui.

Fig. 2  Implementation of commuter testing and traveling. Testing rates are applied according to the defined strategy and the states of the 
neighboring regions (red or green). Carriers or infectious who are tested positive become part of C+

i
 and I+

i
 and are isolated accordingly. These 

individuals will not travel anymore before recovery
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number of contacts φB,i,j is obtained from [91, 92] as 
described in [64, Sect.  3.2]. The resulting number of 
contacts according to the non-pharmaceutical inter-
vention then writes

Here ∗ ∈ {H , S,W ,O} refers to the four locations of con-
tact home, school, work, and other, and r(l)∗ ∈ [0, 1] is the 
reduction factor in effective contacts as induced from 
political decisions. The superindex l is the intervention 
level. With l = 1 we describe interventions that yield 
direct contact reduction such as gathering bans. With 
l = 2 we include protective effects from, e.g., face masks 
and distancing; cf. [64] for more details. Precise values 
are provided in the following section. In contrast to [64], 
r
(l)
∗  will not reduce the number of commuters from one 

region to another. The reduction in traveling of infec-
tious and carriers will be based upon the isolation of 
symptomatic cases in the home region through ξIi and 
the commuter testing rate as described in   Fig. 2 and in 
the following section.  The baseline intra-county contact 
patterns and the raw, non-normalized mobility data, not 
yet differentiated for age-groups, used for initialization 
of inter-county mobility are published together with our 
software and can also be found in the Additional file 1.

(11)φi,j =
∑

∗∈{H ,S,W ,O}

(

1−

2
∏

l=1

r(l)∗

)

φM,∗,i,j .

In order to account for the uncertainty, we consider an 
ensemble set of 500 Monte Carlo runs for each scenario 
such that our final results are based on 200,000 different 
runs.

Mitigation and opening strategies
Our tensor space of strategies summarized in Table  3 
provides 16 different strategies. These are defined by 
the dimensions lockdown strictness for red zones, com-
muter testing rate from red zones, and delay of interven-
tion implementation. Political meetings of the German 
government with the federal state governments to dis-
cuss NPIs were often held in a four weekly rhythm, cf., 
[93–104]. We thus assume that a set of restrictions 
always lasts for 30 days. It will only be lifted (red zones 
become green) if the incidence is below 12 at the end of 
the intervention.

For all strategies, the handling of green zones is iden-
tical. We assume that all facilities can be opened and 
that first level political interventions are unnecessary, 
i.e., r(1)∗ = 0 with ∗ ∈ {H , S,W ,O} in Eq.  (11). However, 
second level interventions with face masks and distanc-
ing are in place, and we assume a reduced contact rate by 
r
(2)
∗ ∈ [0.25, 0.35] for ∗ ∈ {S,W ,O} (schools, workplaces 

and other), and r(2)H = 0 (homes), since face masks may 

Table 1  Parameter ranges used in our model

We omit the age index i for better readability. For derivation and more details, see [14]

Range in age group

Param. 0–4 5–14 15–34 35–59 60–79 80+

ρ(0) [0.028, 0.056] [0.070, 0.098] [0.11, 0.14] [0.21, 0.28]

k [0.1, 0.3]

ξC Sigmoidal cosine curve from 0.5 to 1.0

ξI Sigmoidal cosine curve from [0.0, 0.2] to [0.4, 0.5]

T
C

E
[2.67, 4.00]

µR

C
[0.20, 0.30] [0.15, 0.25]

T
R

C
T
I

C
+ 0.5T

R

I

T
I

C
Sampled with TC

E
 ; cf. [14]

µH

I
[0.006, 0.009] [0.015, 0.023] [0.049, 0.074] [0.15, 0.18] [0.20, 0.25]

T
H

I
[9, 12] [5, 7]

T
R

I
[5.6, 8.4]

µU

H
[0.05, 0.10] [0.10, 0.20] [0.25, 0.35] [0.35, 0.45]

T
U

H
[3, 7]

T
R

H
[4, 6] [5, 7] [7, 9] [9, 11] [13, 17]

µD

U
[0.00, 0.10] [0.10, 0.18] [0.3, 0.5] [0.5, 0.7]

T
R

U
[5, 9] [14, 21] [10, 15]

T
D

U
[4, 8] [15, 18] [10, 12]
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not be worn in most private situations if the spread is 
under control.

For red zones, we consider two different sets of lock-
downs. Both differ in their severeness for incidences 
below 100 and above 100. For the stricter set denoted by 
L+ and incidences below 100, we implement first level 
interventions ( l = 1 ) that achieve an average contact 
reduction by 50%. In addition ( l = 2 ), we implement 
second level interventions with protective measures 
that increase the average effective contact reduction to 
70% in total ( l = {1, 2} ). For incidences above 100, l = 1 
leads to 58% and l = {1, 2} to 76% of effective contact 
reduction. For the less stricter set denoted by L, we 
have effective contact reductions ( l = {1, 2} ) of 57% and 
64% with incidences below and above 100, respectively. 

For the Monte Carlo runs, we vary the contact reduc-
tion in a range of ±5%.

The particular contact reduction values for red and 
green zones and different locations (homes, schools, 
workplaces, and other) are based on [64] and on model 
calibration: red zones must substantially reduce their 
incidences in lockdown over multiple weeks and green 
zones are calibrated to maintain stable low incidence 
values within the local population (i.e. if there weren’t 
any commuters).

The second dimension of our strategy space is given 
by four different rates of commuter testing. With T0, 
there is no particular commuter testing at all, and with 
T1, T2, T5 we refer to testing rates of once, twice, and 
five times a week. Based on a 5 days working week, T5 
will also be called the daily testing strategy. We assume 
massive deployment of antigen tests combined with 
a smaller number of PCR or RT-qPCR and pool tests 
[105–107] to control the commuter spread from highly 
infected regions. In [5], the sensitivity of antigen tests 
on the German market is estimated by 40–80%, and 
[108] identifies average chances of 72% and 58% to cor-
rectly detect an infection by antigen tests for sympto-
matic and asymptomatic cases, respectively. Given a 
combination of different kinds of tests, we use a generic 
daily detection ratio of 75% for carriers and infectious 
persons.

Table 2  Description of parameters used in our model

Parameter Description

k Seasonality parameter for sk(t) := 1+ k sin

(

π

(

t

182.5
+ 1

2

))

 ; cf. [14]

ρ(0) Baseline transmission risk

ρ Transmission risk with seasonality effects: ρ = sk(t)ρ
(0)

ξC Proportion of carrier individuals not isolated

ξI Proportion of infected individuals not isolated

T
C

E
Period of latent non-infectious stage

µR

C
Proportion of mild, asymptomatic cases

T
R

C
Period of asymptomatic stage before recovery

T
I

C
Period of latent infectious stage

µH

I
Proportion of symptomatic cases needing hospitalization

T
H

I
Period of mild symptoms for individuals requiring hospitalization later on

T
R

I
Period of mild symptoms for individuals not requiring hospitalization later on

µU

H
Proportion of hospitalized individuals getting ICU treatment

T
U

H
Period of hospitalization before ICU treatment (of critical cases)

T
R

H
Period of hospitalization before recovery (of non-critical cases)

µD

U
proportion of individuals in ICU care that die

T
R

U
Period of ICU treatment before recovery

T
D

U
Period of ICU treatment before death

Table 3  Tensor space of mitigation strategies

The 16 considered strategies are defined by choosing one item per column

Lockdown strictness Commuter testing Delay of 
implementation

1. L+: effective con‑
tact reduction: 70% 
( I ≤ 100 ), 76% ( I > 100)
2. L: effective contact 
reduction: 57% 
( I ≤ 100 ), 64% ( I > 100)

1. T0: no testing
2. T1: 1 test per week
3. T2: 2 tests per week
4. T5: 5 tests per week

1. D1W: 1 week delay
2. D3W: 3 weeks delay
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The last key property in our strategy space is the delay 
of implementation of new interventions once critical 
thresholds are exceeded. Since the introduction of NPIs 
always required political consensus, we decided to con-
sider the effect of different delays from the moment an 
incidence threshold passed and a new intervention was 
decreed. We consider two well distinguished delays, a 
delay of one week denoted by D1W and a delay of three 
weeks denoted by D3W before new NPIs get active. 
This was done to study the effect of swift and slow 
reactions.

Results
In this section, we present numerical results for the sim-
ulation of the 16 defined strategies for 25 randomized 
initial scenarios. In particular, we focus on the most 
effective strategy consisting of strict lockdowns, daily 

testing, and fast implementation of interventions (L+, 
T5, D1W).

In  Fig. 3, we present four different scenarios of virus 
spread across Germany with 2 to 20% of the regions 
classified as red zones (incidence 75–150 at start). 
These are generic scenarios of local outbreaks as they 
have been observed over the last year [3] in a smaller 
quantity. Each red zone represents a snapshot of the 
situation before the virus spreads into the surround-
ing regions. The initial situation is depicted on the top. 
In the center, we see the median outcome after 30 days 
and on the bottom the outcome after 60 days. Already 
after thirty days, we have a stable incidence of about 5 
and only a small number of counties with incidences 
around 20 or 30. After 60 days, the initial heterogene-
ous situation is completely under control with stable 
incidences around 1 or 2 for all German counties.

Fig. 3  Simulated spread of SARS-CoV-2 for strategy L+, T5, D1W. Four different initial scenarios (from left to right). Random initial incidence of 
75–150 for 2–20% of the counties and incidence below 12 otherwise (top); state after 30 days (center) and after 60 days (bottom) of simulation. 
Median results from 500 Monte Carlo runs for each scenario
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In   Fig. 4, we present the average incidence over the 
whole country for the 25 different initial red zone dis-
tributions. The median incidences (as well as the per-
centiles p25 and p75 of the Monte Carlo runs) for 
strategy L+, T5, D1W after 30 and 60 days are shown 

in orange and green, respectively. Analogous to the four 
scenarios considered in   Fig.  3, the overall incidence 
drops considerably after 30 days already and is below 5 
after 60 days in all 25 scenarios. As expected, a strong 
local lockdown L+, daily testing and a fast response 
time lead to green zones remaining green and red zones 
becoming green after only 1-2 months and thus avoid-
ing a perpetuation of interventions.

In   Figs.  5 and 6, we present the results for all strate-
gies and all 25 initial scenarios. In  Fig. 5, we see the num-
ber of counties in lockdown for all mitigation strategies 
(averaged over the 25 different scenarios) for 30 days 
of simulation time. Note that we use the same color for 
strategies that only differ in the strength of the lockdown 
L+ (solid) vs L (dashed). In all cases, the L+ strategy 
leads to less counties in lockdown over time. Hence, the 
most important factor for controlling the dynamics is the 
strictness of the lockdown in the red zones. The reduced 
lockdown strength L with an effective contact reduction 
of 57% ( I ≤ 100 ) and 64% ( I > 100 ) needs to be comple-
mented by daily testing T5 to control the propagation; 
see L, T5, D1W and L, T5, D3W. With L and lesser test-
ing, the number of counties in lockdown doubles within 
just thirty days. Considering the slope of the curves, we 
see that the weaker the strictness of the interventions, 
the faster immediate action is required. With testing 
only once a week (L, T1, D*W, ∗ ∈ 1, 3 ), almost a third 

Fig. 4  Country-wide SARS-CoV-2 infections per 100,000 people 
and seven days (denoted: incidence) with the strongest mitigation 
strategy. Results after 30 days (orange) and after 60 days (green) 
with the initial setting shown by the blue curve. The p25 and 
p75 percentiles for 500 Monte Carlo runs and 30 and 60 days of 
simulation, respectively, are shown by dashed lines in the same color

Fig. 5  Counties in lockdown per day from start for the different mitigation strategies. Due to the strictness of the interventions in L+, T5, D1W and 
L+, T5, D3W, the delay of implementation is of minor importance and the curves overlap. For less strict interventions longer delays lead to more 
severe situations
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of all counties will be in lockdown after only one month. 
In order to control the dynamics with testing rates under 
twice a week, very strict lockdowns L+ with effective 
contact reductions of 70% ( I ≤ 100 ) and 76% ( I > 100 ) 
have to be implemented. These would have to be stricter 
than anything decreed for Germany ever before.

Figure  6 depicts how many lockdowns have to be 
implemented for each scenario and each strategy over 
the whole country, i.e., how many counties turn red 
that were green in the beginning. Lesser restrictions 
like lockdown L and testing T0, T1 or even T2 lead to 
a substantial number of necessary lockdowns in neigh-
boring regions. This number is 20-30 or even 100 times 
larger than that of strategy L+, T5, D1W. Stronger con-
tainment measures lead to more opening possibilities 
and hence to less economical damage than a perpetua-
tion of less effective measures as also established in [82, 
109]. The authors of [110] also advocated for aggressive 
political actions in the contagion containment phase to 
reduce the economic burden of the pandemic.

In   Fig.  7, we depict the outcomes for one particu-
lar scenario of about 18% red zones after 30 days of 
simulation with all 16 opening and mitigation strate-
gies presented in Table  3. Again, strategies  L+, T5, 
D1W and  L+, T5, D3W lead to the most promising 
results. The images also quantify how reduced test-
ing for the same lockdown strictness leads to slightly 

worse outcomes while reduced testing combined with 
reduced lockdown strictness quickly lead to out-of-
control virus dynamics.

Finally, in   Fig.  8, we present the outcome of the 
strongest and intermediate interventions, i.e. L+, T5, 
D1W and L, T2, D3W, for the case of a much severe 
initial situation with 42% and 60% counties as red 
zones. After 30 days with L+, T5, D1W, the situations 
improves considerably (center), while after thirty days 
with L, T2, D3W, we see a deterioration of infection 
dynamics (right).

Discussion
Within the first eighteen months of the pandemic, a vari-
ety of different approaches to controlling the spread of 
the SARS-CoV-2 pandemic has been proposed. Many 
authors tried to assess the effectiveness of different non-
pharmaceutical interventions (NPIs). The authors of 
[19, 109–111] also partially focused on economic devel-
opment and provided evidence for the effectiveness of 
lockdowns. The authors of [112, 113] derived confidence 
intervals for the effect of fine-grained NPIs such as school 
or workplace closures or gathering bans based on data for 
149 and 41 countries, respectively. Although this assess-
ment is an issue of high importance, this is not the focus 
of our paper. A key component in many successful inter-
ventions is a more or less differentiated and explicit zone 

Fig. 6  Median number of lockdowns per scenario. Median number of lockdowns for different mitigation and opening strategies for each scenario 
(different initial distributions of SARS-CoV-2 spread) on the x-axis
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distinction strategy based on regionally heterogeneous 
pandemic developments; see also Refs. [83–85]. Here, we 
investigated a basic version with only two different zones 
that are distinguished simply by incidence levels. While 

such zone distinction concepts are straightforward to 
implement in sparsely inhabited countries or countries 
with clear regional separation that facilitates isolation 
of high-incidence regions, the densely populated, highly 

Fig. 7  Simulated spread of SARS-CoV-2 cases for one initial scenario of about 18% red zones. 16 different strategies of Table 3. Each map represents 
the median result from 500 Monte Carlo runs after 30 days of simulation time. The incidence is computed per 100,000 people and seven days. The 
maps are ordered according to the legend in  Fig. 6 from L+, T5, D1W on the top left to L, T0, D3W on the bottom right. The initial distribution is 
the second to left scenario shown on the top in Fig. 3
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mobile, highly connected situation in Germany, the EU, 
and similar regions presents challenges.

In particular, concepts of dealing with commuters 
between regions are needed. Work-related commuting 
between regions is often critical to maintaining a basic 
level of economic and social activity. Given the enormous 
cost of a complete ban on travel to neighboring cities, 
restricting mobility beyond a certain level seems unreal-
istic from a pragmatic point of view.

On the other hand, unrestricted travel between high- 
and low-incidence regions is problematic, as it effectively 
prevents regionally differentiated approaches due to the 
expected high amount of imported cases that will quickly 
revert any local progress towards lower incidence. 
Besides reducing unnecessary mobility between zones 
with different status to a minimum, testing commuters 
has been proposed as a tool to reduce import of cases 
into low-incidence zones. While this is intuitively appeal-
ing, its utility and practicality in a real-world scenario 
remains yet to be demonstrated. Recently, the authors 
of [111] found evidence in favor of domestic lockdowns 

to reduce the spread of the disease. On the other hand, 
the authors could not find any results in favor of border 
closures such that alternative strategies need to be found. 
Regular testing, however, may present a viable alternative 
that is more targeted and interrupts infection chains by 
isolating infected individuals.

In [114], 34 studies assessing the effect of fine-grained 
interventions were reviewed. While lockdowns were 
found to have an intermediate effect, testing was found to 
be less effective. However, when these studies were con-
ducted, massive deployment of antigen tests was mostly 
not yet possible and effects of, e.g., daily or bi-daily test-
ing in zones of high risk need to be studied. Also, inter-
ventions were often considered qualitatively and research 
on the interplay between the quantification of interven-
tion strictness and testing is needed.

German health minister Karl Lauterbach recently 
declared that we still need strategies for “hotspots”, i.e., 
regional outbreaks [115]. Our modeling approach aims 
at providing a data-based estimate of the effect that a 
combination of regionally differentiated restrictions and 

Fig. 8  Two scenarios with 42% (top) and 58% (bottom) of counties classified red at initialization. Initialization (left) and simulated spread of 
SARS-CoV-2 cases per 100,000 and seven days after thirty days of simulation with strongest strategy L+, T5, D1W (center) and intermediate 
strategy L, T2, D3W (right)
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systematic testing of commuters with a given test sen-
sitivity and frequency has on the overall incidence, on 
the frequency of necessary lockdowns, and on the con-
tainment of isolated local outbreaks. A limitation of 
the approach is that border regions are not considered, 
e.g., the impact of systematically higher incidences in a 
neighbouring country. However, since our simulation 
approach consists of randomly initialized generic sce-
narios, our conclusions also hold true for mobility across 
German borders.

Our results clearly indicate that a combined strategy 
of local lockdowns and systematic testing has the poten-
tial to contain isolated local outbreaks in a general low 
incidence setting. In particular, rather strict local meas-
ures in combination with frequent testing of commut-
ers proves highly effective in preventing the spread of 
localized infection hot spots and reducing the incidence 
in these regions. This can be seen both in the number of 
counties that need to impose measures and in the median 
incidence in the simulations which can be brought to sur-
prisingly low levels with the most effective strategies.

The results further clearly indicate a hierarchy of 
effectiveness that depends on the strength of the locally 
imposed measures, the duration of the delay with which 
they are imposed after a critical incidence threshold has 
been reached, and the frequency at which commuters 
are tested which ultimately determines the fraction of 
imported cases that are found.

Interestingly, although the strength of the locally 
imposed measures dominates the further development 
of a local outbreak as expected, our simulations indicate 
that with an effective daily testing regimen and a swift 
reaction to local outbreaks, even a less severe reaction 
may be effective in containing isolated outbreaks. With 
less strict contact reduction policies in the lockdown sce-
nario, our model predicts especially testing frequency 
to be a highly relevant factor in outbreak mitigation. It 
should be noted, however, that our scenarios are low-
incidence scenarios with a rather small number of local 
infection hot spots. With a high overall incidence as dem-
onstrated in  Fig. 8, strict measures are even more essen-
tial in first instance. With very strict policy interventions, 
reaction delay and testing of commuters appear to have 
less of an impact. However, testing only once a week or 
not at all can quickly lead to a degeneration of infection 
dynamics.

Conclusions
Using a regionally resolved model based on mobility data 
to describe pandemic spread on a subnational level, we 
systematically investigated the feasibility of a localized 
strategy for outbreak containment based on a simple 

distinction of low- and high-incidence regions. Such a 
strategy may be especially useful in a scenario where gen-
eralized, nation-wide measures have brought incidence 
to a rather low overall level and a restrictive overall pol-
icy is no longer necessary. In that sense, it can be seen 
as a perspective for careful resumption of economic and 
social activity. This is especially important as there is a 
clear general pattern of re-emergence of the pandemic 
after successful containment and lifting of restrictive 
policy; e.g., the incidence in Germany remained at very 
low levels after the first outbreak in March 2020 until 
September when several local outbreaks emerged and, 
after lack of a substantial intervention, developed into a 
nationwide second surge of infections. Similar develop-
ments could be observed after Summer 2021 (Additional 
file 1).

Our results indicate that local containment of out-
breaks and maintenance of low overall incidence is pos-
sible even in densely populated and highly connected 
areas. While we demonstrate this on data from Germany, 
similar patterns of mobility likely exist in many coun-
tries and our results are, hence, generalizable to a certain 
extent.

While it is obvious that a substantial reduction of 
transmission and, hence, contacts in the population is 
necessary to mitigate a local high-incidence situation, 
our results suggest that reduced mobility along with fre-
quent testing of regular commuters can successfully pre-
vent generalized spreading of the infection in larger areas 
even with less strict contact reduction policies, especially 
when reaction to an outbreak is swift. This gives rise to a 
promising perspective after hard and economically dam-
aging policy interventions: Maintaining the situation at 
stable levels may require moderate, localized interven-
tions that affect only a small fraction of the population, 
offering a viable alternative to switching back and forth 
between premature lifting of restrictions and restrictive 
untargeted measures.
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