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Abstract

Low count PET (positron emission tomography) imaging is often desirable in clinical diagno-

sis and biomedical research, but its images are generally very noisy, due to the very weak

signals in the sinograms used in image reconstruction. To address this issue, this paper

presents a novel kernel graph filtering method for dynamic PET sinogram denoising. This

method is derived from treating the dynamic sinograms as the signals on a graph, and learn-

ing the graph adaptively from the kernel principal components of the sinograms to construct

a lowpass kernel graph spectrum filter. The kernel graph filter thus obtained is then used to

filter the original sinogram time frames to obtain the denoised sinograms for PET image

reconstruction. Extensive tests and comparisons on the simulated and real life in-vivo

dynamic PET datasets show that the proposed method outperforms the existing methods in

sinogram denoising and image enhancement of dynamic PET at all count levels, especially

at low count, with a great potential in real life applications of dynamic PET imaging.

Introduction

Positron emission tomography (PET) is a functional imaging modality. By monitoring the dis-

tribution of radioactive tracers, it can detect the early onset of diseases [1], such as Alzheimer’s

disease. To show the rapid change of in-vivo radioactive tracer accurately, time frame with

short scan durations should be applied, especially in early frame. This however leads to lower

counts in each frame, which results in lower signal-to-noise ratio of reconstructed PET image.

To improve the quality of PET image with low counts, three types of methods have been pro-

posed in the literature.

The first type attempts to improve image reconstruction. Its representative is the recon-

struction algorithms incorporating prior information [2]. The prior information used includes

anatomical information [3, 4]. Compared to the reconstruction methods without using priors,

these methods can significantly reduce the noise level of PET image. However, these methods

generally increase computational cost and may introduce artifacts. For example, when mag-

netic resonance (MR) images are used as prior information in PET image reconstruction,

some MR-only information, such as the bone or lesion existing only in MR image [4], may be

introduced in the reconstructed PET image.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0260374 December 2, 2021 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Guo S, Sheng Y, Chai L, Zhang J (2021)

Kernel graph filtering—A new method for dynamic

sinogram denoising. PLoS ONE 16(12): e0260374.

https://doi.org/10.1371/journal.pone.0260374

Editor: Mohammadreza Hadizadeh, Central State

University & Ohio University, UNITED STATES

Received: June 10, 2021

Accepted: November 8, 2021

Published: December 2, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0260374

Copyright: © 2021 Guo et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The simulation data

are not third party data and there are no

restrictions. We use brain model provided in

Simulated Brain Database (https://brainweb.bic.

mni.mcgill.ca/) to generate simulation data. Details

on how to generate the data are given in our paper.

https://orcid.org/0000-0002-6081-1759
https://doi.org/10.1371/journal.pone.0260374
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260374&domain=pdf&date_stamp=2021-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260374&domain=pdf&date_stamp=2021-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260374&domain=pdf&date_stamp=2021-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260374&domain=pdf&date_stamp=2021-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260374&domain=pdf&date_stamp=2021-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260374&domain=pdf&date_stamp=2021-12-02
https://doi.org/10.1371/journal.pone.0260374
https://doi.org/10.1371/journal.pone.0260374
http://creativecommons.org/licenses/by/4.0/
https://brainweb.bic.mni.mcgill.ca/
https://brainweb.bic.mni.mcgill.ca/


The second type of methods attempts to post-denoise the reconstructed PET image.

Among these methods, Gaussian filtering is a simple and traditional method for reducing the

noise in PET image, but it may lead to blurring of image edges. In order to produce PET image

with better details and lower noise, various denoising filters, such as bilateral filter [5], non-

local means (NLM) filter [6, 7] and graph filter [8] have been proposed. Although these meth-

ods have good denoising performance for PET image with high counts, for image with lower

counts, noise in image domain is highly correlated and is very difficult to reduce.

PET image is reconstructed from the sinogram data acquired from PET scanning process.

The third type of methods therefore attempts to pre-denoise sinogram data before image

reconstruction [9]. Since sinograms can be well modeled using Poisson random variables [10–

12], noise in projection domain is relatively easier than in image domain. The noise in sino-

grams can affect all pixels in reconstructed image during reconstruction process. These make

the noise in PET image more complex and difficult to suppress, and stimulate the development

of sinogram denoising. It has been shown that pre-denoising in sinograms is more efficient

than post-denoising in PET images [13], since pre-denoising slightly aligns neighbouring pro-

jections in the sinogram. A number of sinogram pre-denoising methods have been proposed

in the literature, including the popular methods of block matching 3-D (BM3D) [14] and sino-

gram-based dynamic image guided filtering (SDIGF) [15]. These methods perform relatively

well, but their effectiveness in very low count sinograms is limited. This is because the noise

corruption in low count sinograms is highly complex, and the denoising methods based on

some conventional assumptions may not effectively reduce the noise.

Graph signal processing (GSP) is a new paradigm recently emerged in the signal processing

field for data processing. The core of GSP is to use graph to describe the relations between data

points and treat the data as the signals on the vertices (nodes) of the graph. Based on this con-

cept, a range of GSP techniques, such as graph Fourier transform, graph spectrum analysis and

filtering, GSP based graph learning and deep learning on graph, have been developed in recent

years. These techniques have been used in various signal and image processing [16], segmenta-

tion [17] and classification [18] problems, resulting in many exciting new results [19, 20].

Inspired by the success of GSP, we present in this paper a novel graph filtering method for

dynamic sinogram denoising to significantly improve PET image quality. We treat the

dynamic sinograms as the signals on a graph, and learn the graph adaptively from the kernel

principal components of the sinograms to construct a lowpass kernel graph spectrum filter.

The kernel graph filter thus obtained is then used to filter the original sinograms to obtain the

denoised sinograms for PET image reconstruction. We further use the simulated and real life

in-vivo datasets to validate and evaluate the performance of the proposed new method, and

demonstrate its excellent performance and advantages over the existing methods by compre-

hensive comparisons.

The paper is organized as follows. Preliminaries section briefly introduces the dynamic PET

sinograms and GSP. Methods section describes the proposed method and its derivation in

detail. Result section presents the simulation and real life in-vivo studies to compare the pro-

posed method with other methods. Finally, the Discussion and Conclusion sections are pre-

sented in the end of paper.

Preliminaries

Throughout the paper, boldface letters represent matrices and vectors, eg a matrix A and a vec-

tor x, lower case letters represent scalars (including scalar elements of matrices, vectors and

sets), eg an eigenvalue λ and the ijth element aij of the matrix A, and boldface calligraphic let-

ters represent sets, eg the set of M ×M-dimensional real valued matrices RM�M
.
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Noisy dynamic sinograms

Let p
1
; � � � ; pi; � � � ; pN 2 RM be the noisy sinograms from dynamic PET imaging, where pi =

[pi1, pi2, � � �, piM]T are the noisy sinograms for the ith frame of PET activity image and M is the

total number of lines of response for all angles. Let P ¼ ½p
1
; � � � ; pi; � � � ; pN � 2 RM�N be the

data matrix consisting of N frames of noisy sinograms. Here, the sinogram frames pi’s are

ordered and indexed by the occurrence of their corresponding PET activity time intervals. The

activity time interval of pi precedes that of pi+1, and the sinogram data pi are acquired before

the sinogram data pi+1 during PET scan process. Hence, a smaller i represents an earlier time

interval and a larger i represents a later time interval in the scan.

According to dynamic PET physics, at the beginning of PET scan, namely, at the early

frames with small i, the tracer concentration of blood is high, and the initial tracer concentra-

tion in interstitial and intracellular space of tissue is very low and increases rapidly. As a result,

the signal energy of pi is low and grows rapidly when i is small. To capture the rapid changes

of energy in early frames, shorter time intervals are usually used to collect the sinograms pi
when i is small. In late frames, most of the tracer resides in intracellular space, and the tissue

energy becomes high and saturated. To capture the slower changes at higher energy level in

later frames, the time intervals are gradually increased, resulting in higher signal energy of pi
when i is large. Hence, when measured by the 1-norm, the energy of pi, kpik1, satisfies 0<

kpik1� kpi+1k1� kpNk1 for 1� i� N − 1. See Fig 1(b) in Result Section for illustration. Physi-

cally, these mean that the sinograms of early frames, ie pi’s with small i, have lower counts and

substantially higher noise [6] as compared to the sinograms of late frames, ie pi’s with large i,
which have higher counts and significantly lower noise.

Dynamic PET sinograms are acquired from the same anatomy using the same scanner.

Although they represent PET activities of the same region at different time intervals, they all

show similar structures due to the same underlying anatomy. Therefore, the clearer structural

information from later sinogram frames with lower noise can be used to reduce the noise of

earlier sinogram frames by filtering along the temporal direction across all sinogram frames.

This idea is exploited in this paper to develop a new sinogram denoising method.

Fig 1. (a) Anatomical model, (b) time activity curves, (c) simulated PET activity image at the end of scan. The bright spot in (a) and (c) is a

lesion simulated and inserted by BrainWeb.

https://doi.org/10.1371/journal.pone.0260374.g001
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The sinogram denoising method to be proposed is based on data adaptive graph filtering

and its derivation does not rely on any specific assumption about the noise in the noisy sino-

grams pi’s.

Graph signal processing. Let GðV; E;WÞ be a weighted and undirected graph with a set

of vertices V ¼ fv1; v2; ::; vNg, a set of edges E � V � V and a weighted adjacency matrix

W 2 RN�N
. When the vertices vi and vj are connected by an edge eij 2 E, the ijth element of

W, denoted as wij, is nonzero and equals the weight of the edge, otherwise wij is zero. Define

di≔
PN

j¼1
wij as the degree of vertex vi, and D≔ diagfd1; d2; � � � ; dNg as the graph degree

matrix. The graph Laplacian matrix is given as L = D −W, which is symmetric and positive

semi-definite. The eigenvalues of L are real valued in an ascending order 0� λ1� λ2� � � � �

λn and are defined as the spectra of the graph G [16].

A signal defined on a graph is called a graph signal. On a graph G with N vertices, a graph

signal can be represented by a vector x 2 R1�N
consisting of the data from the N vertices of G

[16]. A simple example is the vector consisting of the intensity values of N pixels in an image

modeled by a graph G, with its N vertices representing the N pixels. For a graph signal

x 2 R1�N
, an operator F 2 RN�N

that yields y = xF represents a graph filter with the filter out-

put y 2 R1�N
. The adjacency matrix W and the Laplacian matrix L of a graph G are two such

operators with the lowpass and highpass natures, respectively, in the graph spectrum domain

[21].

For a graph G, its adjacency matrix W can be found by using a kernel function and the sam-

ples of the graph signal x defined on G [21]. See Method section for details.

Methods

The proposed method–kernel graph filtering

The sinograms from dynamic PET scan process are always noisy, especially in the low count

frames. This seriously affects the performance of all PET image reconstruction methods. Noise

corruption in the low count sinograms is highly complex, classical methods based on some

conventional assumptions may not effectively reduce the noise. To overcome this difficulty,

we propose a novel kernel graph filtering method to denoise the dynamic sinograms for

dynamic PET image reconstruction.

We first use kernel principal component analysis (PCA) [22] to extract the kernel principal

components of sinograms and hence reduce their dimension. Then, we use the low dimen-

sional kernel principal components of sinograms to construct the graph filter and use the filter

to denoise sinograms. Finally, we use the denoised sinograms in two popular PET image

reconstruction algorithms to reconstruct PET images.

Presented below are these three steps, followed by four remarks on their justification and

relation to previous work.

Step 1: Kernel principal component extraction of sinograms
Given the noisy dynamic sinograms p1; � � � ; pi; � � � ; pN 2 RM , we construct the kernel

matrix C = [cij] using the radial Gaussian kernel function [23, 24]

cij ¼ expð� k pi � pjk2=2s2
1
Þ ¼ h�ðpiÞ; �ðpjÞi; s1 > 0; i; j ¼ 1; 2; � � � ;N: ð1Þ

where ϕ(�) is an underlying nonlinear function that implicitly maps the noisy sinograms to the

infinite dimensional feature vectors ϕ(p1), � � �, ϕ(pi), � � �, ϕ(pN), and manifests the underlying

features of sinograms in the feature space. The σ1 in (1) is a free parameter that can be tuned if

needed to adjust the width of the kernel.
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Because the feature vectors ϕ(pi) are generally not zero mean, we convert the kernel matrix

C constructed above to the centered kernel matrix Ĉ

Ĉ ¼ C � 1NC � C1N þ 1NC1N ð2Þ

where 1N is an N × N matrix with all elements being 1/N. We then solve Ĉαl ¼ llNαl, l = 1,

2, � � �, N, to find the N eigenvectors of Ĉ

αl ¼ ½al1; � � � ; alj; � � � ; alN�
T
; l ¼ 1; 2; � � � ;N: ð3Þ

Using the centered kernel matrix Ĉ and its first d eigenvectors αl, l = 1, 2, � � �, d, d� N,

we perform kernel PCA [22] to extract the d principal components of the feature vectors

ϕ(p1), � � �, ϕ(pi), � � �, ϕ(pN) by the following algorithm.

For each feature vector ϕ(pi), i = 1, 2, � � �, N, compute its d principal components, yli, l = 1,

2, � � �, d, and d� N,

yli ¼
XN

j¼1

aljĉ ij; l ¼ 1; 2; � � � ; d; i ¼ 1; 2; � � � ;N; ð4Þ

where αlj is the jth element of the eigenvector αl of Ĉ given in (3), and ĉ ij is the ijth element of

Ĉ. The computation of yli over l = 1, 2, � � �, d gives the principal component vector yi ¼
½y1i; y2i; � � � ; ydi�

T
2 Rd

for ϕ(pi), and the further computation of yli over i = 1, 2, � � �, N gives

the principal component vectors y1, y2, � � �, yN for ϕ(p1), ϕ(p2), � � �, ϕ(pN), respectively. The

number of principal components d� N can be tuned to the given sinogram data.

The above algorithm reduces the infinite dimensional feature vectors ϕ(p1), ϕ(p2), � � �,

ϕ(pN) to the d-dimensional kernel principal component vectors y1, y2, � � �, yN, which will be

used in Step 2 to construct kernel graph filter.

Step 2: Kernel graph filter construction and kernel graph filtering of sinograms
We view the kernel principal component vectors yi, i = 1, 2, � � �, N, obtained in Step 1 as the

samples of the graph signal defined on the N vertices of an underlying graph, and use them to

obtain the adjacency matrix of the graph by Gaussian kernel function, A = [aij].

aij ¼

( expð� k yi � yjk2=2s2
2
Þ; yj 2 knni

0; otherwise
; s2 > 0; i ¼ 1; 2; � � � ;N; ð5Þ

where knni is the k-nearest neighbors of yi [25] and σ2 is a free parameter that is tuned in prac-

tice to adjust the width of the kernel. The number of the nearest neighbors in knni is deter-

mined by

ki ¼ rðN k pik1= k pNk1Þ; i ¼ 1; 2; � � � ;N; ð6Þ

where kpik1 is the 1-norm of the sinogram vector pi, and r(�) is the operator of rounding to the

nearest integer.

The adjacency matrix A = [aij] obtained from (5) defines a graph of yi’s. It is also a kernel

graph for the original sinograms pi’s, since yi’s are the kernel principal components of pi’s. A

lowpass kernel graph filter can be derived from the adjacency matrix A as described below.
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Column normalizing A = [aij] gives a Markov transition matrix F = [Fij], i, j = 1, 2, � � �, N,

with

Fij ¼ aij=
XN

j¼1

aij;
XN

i¼1

Fij ¼ 1: ð7Þ

The columns of this Markov transition matrix F 2 RN�N
represent the probability distribu-

tions of transition from a particular frame of sinograms to every other frames of sinograms in

one step along the column directions of the kernel graph. The mth power of F, Fm, can be used

as a low pass graph spectrum filter defined on the kernel graph, with the order m� 1. The

operation

PFm ¼ ½p1; � � � ; pi; � � � ; pN �F
m ≕ ½p̂1; � � � ; p̂i; � � � ; p̂N � ¼ P̂ ð8Þ

yields p̂i’s which are the weighted averages of the original sinograms pi’s along the column

directions of the kernel graph. In practice, to find suitable order, the optimal order m� can be

determined by

k PFm� � PFðm�� 1Þ k2
F

k PFðm�� 1Þ k2
F

� � ð9Þ

to obtain the optimal kernel graph filter Fm
�

, where � > 0 is a small constant and k�kF is the

Frobenius norm of a matrix.

Filtering the sinogram data P with the optimal kernel graph filter Fm
�

obtained above gives

P̂� ¼ PFm� : ð10Þ

This is the denoised sinograms of the proposed kernel graph filtering (KGF) method for

dynamic PET sinograms.

Step 3: PET image reconstruction with kernel graph filtered sinograms
The kernel graph filtered sinograms P̂� can be used as input data in any existing dynamic

PET image reconstruction methods to improve their image quality. In this step, we only use P̂�

in two popular iterative reconstruction methods: the traditional method of Maximum-Likeli-

hood Expectation Maximization (MLEM) [26, 27] and the recent method of Kernalized Expec-

tation Maximization (KEM) [10]. The intention is to show the image quality improvement

from using P̂� , instead of proposing a new method for dynamic PET image reconstruction.

Both MLEM and KEM methods treat the sinograms as the output of PET forward projec-

tion. Following the same line, we treat the kernel graph filtered sinogram P̂� as the output of

PET forward projection

P̂� ¼ HX þ S; ð11Þ

where H 2 RM�M1 is the systems matrix, X ¼ x1; � � � xi; � � � ; xN½ � 2 RM1�N is the matrix of N
frames of unknown dynamic PET images to be reconstructed, with xi ¼ ½xi1; xi2; � � � ; xiM1

�
T

the

vector consisting of the column stacked image pixels of the ith frame, and S 2 RM×N is the

expectation of random and scattered events [10, 26]. Hence, we can use P̂� as the input data in

the MLEM and KEM algorithms to iteratively reconstruct the dynamic PET images X.

MLEM algorithm [26]:

Xnþ1 ¼ Xn � ðHTðP̂� � ðHXn þ SÞÞÞ � ðHT1MNÞ ð12Þ

where Xn is the estimate of image matrix X at the nth iteration, 1MN is an M × N all 1
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matrix, � is Hadamard product and� is Hadamard division, defined as A � B = [aij bij] and

A� B = [aij/bij] for the matrices A = [aij] and B = [bij] of the same dimension.

KEM algorithm [10]:

Λnþ1
¼ Λn

� ðKTHTðP̂� � ðHKΛn
þ SÞÞÞ � ðKTHT1MNÞ; ð13Þ

Xn� ¼ KΛn� ð14Þ

where K 2 RM1�M1 is a kernel matrix, Λ 2 RM1�N is the coefficient matrix of the image matrix

X under the kernel matrix K, satisfying X = KΛ, Λn is the estimate of Λ at the last iteration n�,
and Xn� is the estimate of image matrix X at the last iteration n�. The kernel matrix K = [kij] is

given by

kij ¼

( kð~x i; ~x jÞ; j 2 J

0; otherwise
; i; j ¼ 1; 2; � � � ;M1; ð15Þ

where k(�, �) is a kernel function such as the Gaussian kernel in (1), ~x j is the prior image data of

the voxels in the jth row of X, J is the neighborhood.

The pseudo-code of Steps 1–3 is given in Algorithm 1 below.

Algorithm 1 Pseudo-code of the proposed method
Require: Dynamic PET sinograms data matrix P; imaging system matrix H.
Ensure: Reconstructed dynamic PET image matrix X.
1: Extract kernel principal components Y of P using (1)–(4);
2: Compute adjacency matrix A using (5) and (6);
3: Compute Markov transition matrix F using A and (7);
4: Compute the optimal order m� using (9) to obtain the optimal kernel
graph filter Fm�;
5: Filter sinogram data P using the optimal kernel graph filter Fm� and
(10) to obtain denoised sinogram data P̂�.
6: Reconstruct PET images X using denoised sinogram data P̂� in MLEM
(12) or KEM (13) and (14).

Remark 1: By the kernel PCA theory [22, 24], the Eq (4) used in Step 1 is equivalent to

yli ¼
XN

j¼1

aljĈ ij ¼ �ðpiÞ
Tvl ¼ �ðpiÞ

T
XN

j¼1

alj�ðpjÞ;

where vl ¼
PN

j¼1
alj�ðpjÞ is the lth eigenvector of the underlying covariance matrix

Q ¼ 1

N

PN
i¼1
� pið Þ�ðpiÞ

T
. Hence, yli ¼ �ðpiÞ

Tvl ¼ vTl �ðpiÞ is the projection of ϕ(pi) on vl, which

is used in conventional non-kernel PCA to extract the principal components yli’s [22]. The

Eq (4) avoids direct computation of Q and ϕ(pi)T vl which is infeasible in kernel PCA, since Q,

vl and ϕ(pi) are infinite dimensional and ϕ(pi) is not known explicitly [24].

Remark 2: The formula (6) for determining the number of the nearest neighbors, ki, is

derived as follows. Being the weighted edge between the ith and jth vertices of the graph, the aij
computed in (5) is a measure of the energy variation between yi and its neighbor yj, which is

determined by the energy variation between the original sinograms pi and pj. As discussed in

the Noisy dynamic sinograms subsection, at smaller i’s (early frames), the energy of pi is low

and energy variations between pi and its neighbor sinograms are large. Hence, we need to use

smaller ki to include fewer neighbour sinograms, ie fewer nonzero aij’s, to avoid the over-influ-

ence of later frames with high energy. Whereas, at larger i’s (later frames), the energy of pi is

high and energy variations between pi and its neighbor sinograms are small, we need to use
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larger ki to include more neighbour sinograms, ie more nonzero aij’s, to extract the similar

structure information of time frames.

To determine ki adaptively for each pi, we use its 1-norm, kpik1, as the energy measure.

From the discussion in the Noisy dynamic sinograms subsection, kpik1 satisfies 0< kpik1�

kpi+1k1� kpNk1 and 0< kpik1/kpNk1� kpi+1k1/kpNk1� 1 for 1� i� N − 1. Hence, Nkpik1/

kpNk1, satisfying 0< Nkpik1/kpNk1� N, gives the fraction of the N frames of sinograms that

should be used as the nearest neighbors for pi. Rounding the fraction to the nearest integer by

the operator r(�), ki = r(Nkpik1/kpNk1) gives the integer number of nearest neighbors for each

pi with 1� i� N.

Remark 3: In (8), Fm attenuates the high frequency graph spectra of the noise and enhances

the correlation (similarity) of the sinograms. In principle, the higher the order m, the stronger

the correlation enhancement on the graph. But an overly high order m may make the sinogram

frames over-correlated and hence annihilate their dissimilarity. To avoid this, in our method,

we use (9) to determine the optimal order m�.
Remark 4: The kernel graph filter Fm� used in (10) stems from the Gaussian kernel (1).

Associated with the Gaussian kernel is an implicit nonlinear mapping ϕ(pi). This mapping can

be made explicit and linear by using ϕ(pi) = Ipi, with I an M ×M identify matrix. In this case ϕ
(pi) = pi and the kernel matrix becomes CL = [cLij] with

cLij ¼ hpi; pji ¼ pTi pj; i; j ¼ 1; 2; � � � ;N; ð16Þ

which is a linear kernel. Replacing the nonlinear kernel matrix C used in Step 1 with this linear

kernel matrix CL, we can also extract the principal components of sinograms and use them in

Step 2 to obtain an optimal graph filter Fm�
L . Replacing Fm� with Fm�

L in (10), we can get graph

filtered sinograms P̂�L. But Fm�
L is not a kernel graph filter and its filtering is not on a kernel

graph, because the principal components extracted using CL are in the original sinogram space

and do not carry the information about the infinite dimensional kernel space features of the

sinograms. This affects the performance of Fm�
L in sinogram denoising as shown in Result

section.

Results

To test the proposed KGF method and compare with the existing sinogram denoising meth-

ods, we have applied KGF, BM3D [14], SDIGF [15] and GF methods to the simulated and in

vivo dynamic PET sinogram datasets to assess and compare their performance. As discussed

before, BM3D and SDIGF are two popular sinogram denoising methods in the literature, and

GF is a non-kernelized alternative graph filtering method to KGF. The assessment and com-

parison of these four methods on the same datasets was to demonstrate the advantage of KGF

over the existing methods in sinogram denoising and enhancement of PET image quality, and

to show the importance of kernel in the proposed graph filtering of dynamic sinograms.

Dynamic PET data simulation

The anatomical model in BrainWeb dataset [28, 29] was used to simulate dynamic PET

images. This anatomical model (Fig 1(a)) consists of 11 categories: Background, CSF, Grey

Matter, White Matter, Fat, Muscle/Skin, Skin, Skull, Glial Matter, Connective, and Lesion. The

time activity curve (TAC) was generated using three-compartment model [30]. The kinetic

parameters were from [31]: K1 = 0.116 ml/g/min, k2 = 0.254 min−1, k3 = 0.116 min−1 and

k4 = 0.011 min−1 for gray matter, K1 = 0.059 ml/g/min, k2 = 0.149 min−1, k3 = 0.090 min−1 and

k4 = 0.013 min−1 for white matter, K1 = 0.089 ml/g/min, k2 = 0.269 min−1, k3 = 0.135 min−1 and
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k4 = 0.015 min−1 for lesion. Then, TAC in Fig 1(b) was filled into corresponding tissues to pro-

duce the dynamic noiseless ground truth images of the size 217 × 181. The simulated dynamic

PET activity images consisted of 24 frames at the times: 4 × 20s, 4 × 40s, 4 × 60s, 4 × 180s and

8 × 300s. The simulated PET activity image at the end of scan is shown in Fig 1(c). The bright

spot in Fig 1(a) and 1(c) is a lesion simulated and inserted by BrainWeb.

These dynamic PET activity images were projected to the noiseless ground truth sinograms

with 249 bins and 210 angles, via Fessler toolbox (github.com/JeffFessler/mirt). Then the 20%

random events and the Poisson noise were simulated and added to the noiseless sinograms to

produce noisy sinograms. The expected events number was set to 10 million over 60 minutes.

Since Poisson process was a random process, ten noisy realizations was simulated and used in

the simulation studies of the four denoising methods.

Experiment setup and performance metrics

The KGF, BM3D, SDIGF and GF methods were used to denoise the noisy sinograms obtained

from the simulated dynamic PET data described above. The denoised sinograms from each

method were used in MLEM (12) and KEM (13) algorithms to reconstruct the PET dynamic

images of each method. The correction factors for attenuation were estimated and used in

both reconstruction methods to enhance performance. The following metrics were used in

performance assessment and comparison.

Mean squared error (MSE):

MSEðx̂ j; xjÞ ¼ 10log10

P
iðx̂ij � xijÞ

2

P
iðxijÞ

2

 !

ðdBÞ ð17Þ

where x̂ij is the ith element of the jth frame of reconstructed PET image, and xij is the ith ele-

ment of the j th frame of ground truth. MSE is a measure of the difference between the recon-

structed image and the ground truth image. The smaller the MSE, the closer the reconstructed

image to the ground truth image and hence the better quality of reconstructed PET image.

Regional time activity (RTA):

RTAðxrj Þ ¼
1

D

X

i

jxrijj; ð18Þ

where xrj is the vector of all pixels in a region of the jth frame of dynamic PET images, xrij is the

ith element of xrj , and D is the dimension of xrj . RTA measures PET image uptake in the regions

of interest, such as the legion, gray matter and white matter of the brain, at an image frame.

RTA is often indexed by the times of image frames and used to approx the time activity curve

(TAC) of a region.

Regional mean absolute error (MAE) of PET time activity:

MAEðX̂ ;XÞ ¼
1

N

XN� 1

j¼0

jRTAðx̂r
j Þ � RTAðxrj Þj ð19Þ

where RTAðx̂r
j Þ and RTAðxrj Þ are respectively the RTAs of the reconstructed and the ground

truth images of the jth frame. The MAE gives the average distance between the regional RTAs

of the reconstructed image and the ground truth image. So it is a measure of PET image quan-

tification in the regions of interest. The smaller the MAE, the closer the RTAs of the recon-

structed and ground truth images, and hence the better quantification of reconstructed PET

image.
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The MSE, RTA and MAE above were evaluated on the PET images reconstructed by

MLEM or KEM algorithms. The tuning parameters of these algorithms are dependent on the

sinograms data used in image reconstruction. For fair comparison, we tuned the parameters of

each method on the sinogram data to attain its lowest sinogram MSE value, and used the cor-

responding parameters for the method. Using this tuning method we found the best parame-

ters for each evaluated method. For BM3D, the standard deviation of noise σ was 20. For

SDIGF, the windows of radius was 10, and the smooth parameter was 0.5. For GF, the � in (9)

was 1 × 10−3, the number of principal component d was 10, the σ2 of Gaussian kernel function

in (5) was 1. In KGF method, the number of kernel principal component d in (4) was 7, the �

in (9) was 1 × 10−3, the σ1 of Gaussian kernel function in (1) was 0.5, the σ2 of Gaussian kernel

function in (5) was 1. The total iteration number of reconstruction methods was set to 100.

Sinogram denoising results of different methods

Fig 2 compares the denoising results of the four methods at the low count Frame 8

(count = 68k), the middle count Frame 16 (count = 492 k) and the high count Frame 24

(count = 914k). The Noiseless column shows the noiseless ground truth sinograms, the Noisy

column shows the noisy sinograms, and the other four columns show the sinograms denoised

by BM3D, SDIGF, GF and KGF methods, respectively. As seen from the figure, KGF can effec-

tively reduce the random noise in sinograms, achieving the lowest MSE at all count levels

among the four methods. Whereas, the other three methods are effective only at the middle

and high count levels and are ineffective at the low count level with much higher MSEs.

Fig 2. Sinograms denoised by different methods: (a) Frame 8 (count = 68k), (b) Frame 16 (count = 492k), (c) Frame 24 (count = 914k). Noiseless column: noiseless

sinograms; Noisy column: noisy sinograms; other columns: sinograms denoised by respective methods. The dB values are MSEs of noisy or denoised sinograms.

https://doi.org/10.1371/journal.pone.0260374.g002
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Further, the results given in the last two columns of Fig 2 clearly show that KGF outper-

forms GF in sinogram denoising, achieving much lower MSE at all count levels, especially at

the low and middle count levels. This demonstrates the advantage of KGF over GF and the

benefit of using kernel in sinogram graph filtering.

Fig 3 compares the single angle curves of the four differently denoised sinograms and the

noiseless sinograms. It can be seen from the plots that the sinograms denoised by KGF is closer

to the noiseless ground truth sinograms in the low count Frame 8 and the middle count Frame

16. The curves at high count frames are not compared here because the denoising results of all

methods are similar.

MLEM reconstructed images from different denoising methods

Fig 4 compares the images reconstructed by MLEM algorithm from the corresponding sino-

grams shown in Fig 2. The Ground truth column shows the images from the noiseless ground

true sinograms, the Nois column shows the images from the noisy sinograms, and the other

four columns show the images from the sinograms denoised by BM3D, SDIGF, GF and KGF

methods, respectively.

Fig 4(a) compares the reconstructed images at the low count Frame 8. It can be seen that

the KGF image is closest to the ground truth image as compared with all other images, having

the lowest MSE, lower noise, clearer texture, higher intensity (brightness) in the lesion area.

The better quality of KGF image is the result of lower MSE of the KGF denoised sinograms

shown in Fig 2(a).

Fig 4(b) compares the reconstructed images at the middle count Frame 16. The images

from noisy and denoised sinograms are all better than at the low count Frame 8, since the

count now is about seven times higher. But the KGF image is still the best among all these

images, with the lowest MSE, more pronounced intensity in the lesion area, higher texture

contrast and lower noise. These are due to the lower MSE of the KGF denoised sinograms

shown in Fig 2(b).

Fig 4(c) compares the reconstructed images at the high count Frame 24. Because of the high

count, the images from noisy and denoised sinograms are all much better than at the low

Fig 3. Single angle curves of the sinograms denoised by different methods for Frame 8 and Frame 16. Black line is noiseless sionogram cruve. The columns correspond

to noisy sinogram and sinograms denoised by BM3D, SDIGF, GF and KGF (left to right).

https://doi.org/10.1371/journal.pone.0260374.g003
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count and middle count frames. But KGF image still has the lowest MSE and sharper textures

due to the lower MSE of the KGF denoised sinograms shown in Fig 2(c).

Further, the images given in the last two columns of Fig 4 clearly show that KGF images are

better than GF images at all count levels, especially at the low and middle count levels, with

lower MSE, more pronounced intensity in the lesion area, higher contrast, sharper texture and

lower noise. This demonstrates the advantage of KGF over GF and the benefit of using kernel

in enhancing dynamic PET image quality and quantification.

Fig 5 compares the average MSEs (AMSEs) of all frames of MLEM reconstructed images

from the sinograms denoised by the four methods. The average is taken over the ten realiza-

tions of Poisson noise. It can be seen that KGF images attain the lowest AMSE at all the

frames.

Fig 6 compares the RTAs of MLEM reconstructed image frames from the noisy sinograms

and the denoised sinograms of the four methods. The RTAs of lesion, gray matter and white

matter regions are shown and indexed by the times of the 24 image frames, and are used to

plot the local TACs in each region and compared with the TACs of ground truth image. Fig

6(a)–6(c) present the RTAs over the entire time range of 3,600 seconds, and Fig 6(d)–6(f) pres-

ent the RTAs in the first 600 seconds. As seen from the plots, the TACs of KGF images are the

closest to the TACs of ground truth image in all regions, especially in the early times shown in

Fig 6(d)–6(f). Moreover, the local TACs of KGF images are smoother than those of BM3D,

SDIGF and GF images because of its temporal filtering of dynamic sinograms. These are the

desired properties in clinic applications. Table 1 lists the corresponding MAEs of the image

Fig 4. MLEM reconstructed images from the corresponding sinograms shown in Fig 2. (a) Frame 8 (count = 68k), (b) Frame 16 (count = 492k), (c) Frame 24

(count = 914k). Ground truth column: images from noiseless sinograms, Nois column: images from noisy sinograms, other columns: images from sinograms

denoised by respective methods. The dB values are MSEs of reconstructed images.

https://doi.org/10.1371/journal.pone.0260374.g004
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Fig 5. AMSEs of MLEM reconstructed image frames from the sinograms denoised by different methods.

https://doi.org/10.1371/journal.pone.0260374.g005

Fig 6. RTAs and local TACs of MLEM reconstructed image frames from the sinograms denoised by different methods. (a) Lesion, (b) gray matter, and (c) white

matter over 0–3600 seconds. (d) Lesion, (e) gray matter, and (f) white matter over 0–600 seconds.

https://doi.org/10.1371/journal.pone.0260374.g006

PLOS ONE Kernel graph filtering—A new method for dynamic sinogram denoising

PLOS ONE | https://doi.org/10.1371/journal.pone.0260374 December 2, 2021 13 / 22

https://doi.org/10.1371/journal.pone.0260374.g005
https://doi.org/10.1371/journal.pone.0260374.g006
https://doi.org/10.1371/journal.pone.0260374


frames compared in Fig 6. As seen from the table, the KGF images attain the lowest MAEs in

all regions as compared with those of other denoising methods.

KEM reconstructed images from different denoising methods

As seen from the Nois column of Fig 4, the PET images reconstructed by MLEM from noisy

sinogram data have poor spatial resolution and contrast. This is an inherent problem of

MLEM with sinogram raw data, especially at low count [32]. Therefore, post-filtering is gener-

ally needed for MLEM images. The recently proposed KEM reconstruction method [10] uses

kernelized MLEM to mitigate this problem and has shown promising results. To further verify

the efficacy of our KGF denoising method, we tested it with KEM reconstruction method. The

results are presented below.

Fig 7 shows KEM reconstructed low count (Frame 8), middle count (Frame 16) and high

count (Frame 24) images of the same sinogram datasets shown in Fig 2. Compared with their

Table 1. MAEs of MLEM reconstructed images from noisy and denoised sinogram datasets.

Regions Nois-EM BM3D-EM SDIGF-EM GF-EM KGF-EM

Lesion 40.90 37.15 27.87 32.57 26.38

Gray matter 8.51 8.54 7.25 7.41 6.78

White matter 1.93 1.89 1.25 1.39 1.15

https://doi.org/10.1371/journal.pone.0260374.t001

Fig 7. KEM reconstructed images from corresponding sinogram datasets shown in Fig 2. (a) Frame 8, (b) Frame 16, and (c) Frame 24. The dB values are MSEs of

reconstructed images.

https://doi.org/10.1371/journal.pone.0260374.g007
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corresponding MLEM reconstructed images shown in Fig 4, the KEM reconstructed images of

all datasets have shown lower MSE, and finer texture at all count levels. Among these images,

the KGF images attain the lowest MSEs and the highest uptake in the lesion region at the low

and middle count frames.

The images given in the last two columns of Fig 7 show that under KEM reconstruction, the

KGF images are still better than GF images at all count levels, especially at the low and middle

count levels, with lower MSE, more pronounced intensity in the lesion area, higher contrast,

sharper texture and lower noise. This demonstrates again the advantage of KGF over GF and

the benefit of using kernel in enhancing dynamic PET image quality and quantification.

Fig 8 compares the average MSEs (AMSEs) of all frames of KEM reconstructed images

from the sinograms denoised by the four methods. The average is taken over the ten realiza-

tions of Poisson noise. The same as MLEM reconstruction case, the KGF images reconstructed

by KEM attain the lowest AMSE at all the frames.

Fig 9 compares the RTAs of KEM reconstructed image frames from the noisy sinograms

and the denoised sinograms of the four methods. The plots and comparisons are the same as

those of Fig 6, and the results are almost the same. Once again, the RTAs and TACs of KGF

images are the closest to those of ground truth image in all regions.

Table 2 lists the corresponding MAEs of the KEM reconstructed image frames compared in

Fig 9. The same as MLEM reconstruction case, the KGF images reconstructed by KEM attain

the lowest MAEs in all regions as compared with the images of other denoising methods.

Influence of KGF parameters

Fig 10(a) plots the influence of the number of kernel principal component d in (4) on average

MSE of all sinogram frames. Noise in sinograms influences the robustness and reliability of

adjacency matrix. In general, the kernel principal components in the eigenvector directions of

small eigenvalues always contain noise. Hence, we alternatively choose the eigenvectors of

larger eigenvalues to obtain the kernel principal components so as to eliminate the interference

of noise. By this method, we find that 4� d� 14 provides good results.

Fig 10(b) shows the influence of σ2 of Gaussian kernel function in (5) on on average MSE of

all sinogram frames. σ2 can be viewed as a measure of similarity between graph vertices. If σ2 is

Fig 8. AMSEs of KEM reconstructed image frames from the sinograms denoised by different methods.

https://doi.org/10.1371/journal.pone.0260374.g008
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too small, the graph becomes disconnected and less effective at suppressing noise. As σ2 grows

larger, the adjacency matrix become smoother and becomes effective at noise reduction. But,

overly large σ2 results in the loss of resolution and texture structure in the constructed images.

The KGF yields a relatively stable MSE when 0.5� σ2� 5.

Fig 10(c) shows the influence of the constant � in (9) on sinograms’ MSE. In our algorithm,

� is used to compute the optimal order of low-pass filter m�. The smaller the �, the higher the

order m�. As we described in Methods section, the higher the order m, the stronger the corre-

lation enhancement on the graph. But an overly high order m� may make the sinogram frames

over-correlated and hence annihilate their dissimilarity. In Frame 8, since TAC varies rapidly,

the high order over enhances the similarity between frames, making KGF unable to reduce the

noise effectively. Hence, in our paper, we use 10−4� �� 10−1.

Since KGF is insensitive to σ1 of Gaussian kernel function in (1) in simulations, we do not

discuss its influence here.

Fig 9. RTAs and local TACs of KEM reconstructed image frames from the sinograms denoised by different methods. (a) Lesion, (b) gray matter, and (c) white

matter over 0–3600 seconds. (d) Lesion, (e) gray matter, and (f) white matter over 0–600 seconds.

https://doi.org/10.1371/journal.pone.0260374.g009

Table 2. MAEs of KEM reconstructed images from noisy and denoised sinogram datasets.

Regions Nois-EM BM3D-EM SDIGF-EM GF-EM KGF-EM

Lesion 36.55 36.55 29.63 32.41 27.96

Gray matter 11.69 10.27 7.81 8.53 7.36

White matter 2.07 1.92 1.21 1.28 1.07

https://doi.org/10.1371/journal.pone.0260374.t002
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Tests on real life in-vivo data

To validate the simulation results and test the proposed method in real life application, we per-

formed similar experiments on in-vivo PET data. The in-vivo PET data was from [33], which

was acquired from volunteers with 90 min on a Siemens (Erlangen) Biograph 3 Tesla molecu-

lar MR (mMR) scanner, with an average dose 233 MBq of [18-F] FDG infused into the subject

over the course of the scan at a rate of 36mL/hr. The raw data was rebinned into 26 sinograms

frames with 360 angular projections, 319 radial bins, and attenuation correction by pseudoCT

method. For BM3D, σ value is set to 25. For SDIGF, the windows of radius is set to 6, and the

smooth parameter is set to 0.1. For GF, � in (9) is set to 1 × 10−4, the number of principal com-

ponents is set to 10, the σ2 of Gaussian kernel in (5) is set to 0.5. For KGF, � in (9) is set to

1 × 10−4, the number of kernel principal components d in (4) is set to 8, the σ1 of Gaussian ker-

nel in (1) is set to 0.15 and the σ2 of Gaussian kernel in (5) is set to 0.5. The total iteration num-

ber of reconstruction methods is set to 50.

Similar to simulation experiment, we first compare the sinogram denoising results of

BM3D, SDIGF, GF and KGF for the low count Frame 4 (scan duration 24 seconds), middle

count Frame 9 (scan duration 54 seconds) and high count Frame 14 (scan duration 84 sec-

onds). Next, we compare the images reconstructed by MLEM and KEM using the denoised

sinograms of these frames. Since the ground truth noiseless sinograms and images are

unknown for real PET scan data, only qualitative visual comparisons are presented.

Fig 11 compares the original sinograms and the sinograms denoised by different methods.

As seen from the figure, the original sinograms are quite noisy and KGF denoising makes the

sinograms much smoother and less noisy at all count levels. Whereas, the other denoising

methods can only do so at the high count Frame 14, and their effect is limited at the low and

middle count Frames 4 and 9.

Fig 12 shows the MLEM reconstructed images from the original and denoised sinograms. It

can be seen that at the high count Frame 14, all denoising methods can effectively reduce

image noise without compromising the main texture features, while KGF denoising attains the

best visual effect. However, at the low and middle count Frames 4 and 9, only KGF can achieve

these and the effect of other methods are rather limited.

Fig 13 shows the KEM reconstructed images from the original and denoised sinograms.

Clearly, the image quality of all denoising methods is significantly improved by KEM

Fig 10. The influence of parameters in KGF (a) number of kernel principal component d and (b) σ2 of Gaussian kernel function and (c) constant � on

sinograms MSE.

https://doi.org/10.1371/journal.pone.0260374.g010
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reconstruction at all count levels. But the quality of KGF images is still the best at each count

level and more consistent across all levels.

Discussion

As discussed in Methods section, KGF replaces the original sinograms pi’s with their weighted

averages p̂�i ’s. The weighting is along the columns of the optimal kernel graph filter Fm� , and

the weighting coefficients are learned adaptively from the sinograms’ kernel principal compo-

nents. The average is across the sinogram time frames and is repeated m� times when the opti-

mal kernel graph filter’s order m� > 1. This amounts to the mth order adaptive lowpass graph

spectrum filtering in the temporal direction of the sinograms, which makes KGF more flexible

and more effective than the existing sinogram denoising methods in attenuating the noise

while preserving the image information. These have been proven by simulation studies and in-

vivo data tests.

The SDIGF method also uses the temporal information to denoise sinograms. However, it

simply rebins all sinogram time frames into one high count frame and uses this high count

frame to guide all the time frames. This simplistic method does not explore the sophisticated

relationships between the sinogram frames, and hence its efficacy is limited, especially in the

low count and middle count frames as shown in Figs 2(a), 2(b), 11(a) and 11(b).

Radial Gaussian kernel and kernel PCA of dynamic PET sinograms are two of the key

ingredients in the derivation of KGF. Gaussian kernel manifests dynamic PET sinograms in

Fig 11. In vivo sinograms denoised by different methods for (a) low count frame 4, (b) middle count frame 9, (c) high count frame 14. Original column:

original sinograms, other columns: sinograms denoised by respective methods.

https://doi.org/10.1371/journal.pone.0260374.g011
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the infinite dimensional feature space, and kernel PCA extracts the nonlinear principal

components of sinograms from such feature space. Therefore, the KGF derived from the

nonlinear principal components better adapts to the dynamic PET sinograms data and out-

performs the non-kernelized GF method in sinogram denoising and image quality enhance-

ment. These have been confirmed by simulation studies and in-vivo data tests. Since KGF

use kernel PCA tool, it need more time to calculate kernel projection. But it is acceptable. In

the simulation experiment, the total time of kernel PCA is 0.23s, and PCA need to spend

0.03s. Those are run in Matlab version R2016a on a Windows 10 PC with 3.6 GHz Intel Core

i7–7700 CPU.

As seen from Figs 4 and 7 and Tables 1 and 2, the KEM reconstructed images attain

lower MSE and clearer background as compared with MLEM reconstructed images, espe-

cially in the low count frame. But their textures are somewhat smoothed out and the uptake

in lesion region becomes lower. This is because that KEM improves the contrast to noise

ratio at the cost of possible over-smoothing the features unique to PET data [34]. Compar-

ing the images of Fig 7, it can be seen that the KGF denoised sinograms can mitigate the

over-smoothness of KEM to a certain extent, with enhanced contrast and clearer texture in

the images. It is therefore fair to say that the KGF denoised sinograms can significantly

improve the image quality of KEM and MLEM reconstructions, especially at the low count

frames.

Fig 12. MLEM reconstructed images from the in-vivo sinogram datasets shown in Fig 11. Column Orig: original dataset, other columns: datasets denoised by

respective methods.

https://doi.org/10.1371/journal.pone.0260374.g012
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Conclusion

A novel kernel graph filtering method has been proposed to effectively reduce the noise in

dynamic PET sinograms. It can be used with the existing methods for sinogram based dynamic

PET image reconstruction to improve the quality of reconstructed image. Extensive simulation

studies and tests on in-vivo dynamic PET data have shown the efficacy and advantages of the

proposed method over the existing methods in sinogram denoising and image enhancement

of dynamic PET, especially at low count.

The new method is derived by entangling the technical tools of kernel, kernel PCA, kernel

signals on graph, graph filter construction, and graph spectrum filtering. This approach has

opened a new avenue for developing new methods for PET image enhancement.
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