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Objective. Deep vein thrombosis (DVT) is the third-largest cardiovascular disease, and accurate segmentation of venous
thrombus from the black-blood magnetic resonance (MR) images can provide additional information for personalized DVT
treatment planning. Therefore, a deep learning network is proposed to automatically segment venous thrombus with high
accuracy and reliability. Methods. In order to train, test, and external test the developed network, total images of 110 subjects
are obtained from three different centers with two different black-blood MR techniques (i.e., DANTE-SPACE and DANTE-
FLASH). Two experienced radiologists manually contoured each venous thrombus, followed by reediting, to create the
ground truth. 5-fold cross-validation strategy is applied for training and testing. The segmentation performance is measured
on pixel and vessel segment levels. For the pixel level, the dice similarity coeflicient (DSC), average Hausdorff distance
(AHD), and absolute volume difference (AVD) of segmented thrombus are calculated. For the vessel segment level, the
sensitivity (SE), specificity (SP), accuracy (ACC), and positive and negative predictive values (PPV and NPV) are used.
Results. The proposed network generates segmentation results in good agreement with the ground truth. Based on the pixel
level, the proposed network achieves excellent results on testing and the other two external testing sets, DSC are 0.76, 0.76,
and 0.73, AHD (mm) are 4.11, 6.45, and 6.49, and AVD are 0.16, 0.18, and 0.22. On the vessel segment level, SE are 0.95,
0.93, and 0.81, SP are 0.97, 0.92, and 0.97, ACC are 0.96, 0.94, and 0.95, PPV are 0.97, 0.82, and 0.96, and NPV are 0.97,
0.96, and 0.94. Conclusions. The proposed deep learning network is effective and stable for fully automatic segmentation of
venous thrombus on black blood MR images.

1. Introduction

Deep vein thrombosis (DVT) is now the third-largest cardio-
vascular disease after cerebral vascular and coronary artery
disease, it occurs mainly in the lower extremities, and with
the acceleration of population aging, the incidence rate of
DVT is increasing year by year [1]. Failure to accurately diag-
nose DVT can lead to severe complications, such as postthrom-
botic syndrome, pulmonary embolism, lower extremity venous
ulcer, and chronic pulmonary hypertension [2].

Recently, an MR black-blood thrombus imaging (BTI)
technique was developed to diagnose DVT [3]. The technique
uses a black-blood preparation to suppress the venous blood
flow signals and thus make the thrombus be directly visualized
within the black-blood venous lumen. Some studies have dem-
onstrated that BTI is reliable and accurate for diagnosing DVT
without the use of contrast agents [4, 5]. Accurate quantification
of thrombus characteristics, such as thrombus distribution, sig-
nal intensities, volume, and shape, can provide additional infor-
mation for personalized DVT treatment planning [6, 7].
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FIGURE 1: Representative images are obtained by BTI from four DVT patients. Images are shown with the same window and level, and the
value on the arrow represents the signal intensity. (a) Different signal intensities of the thrombus (red arrows) can be observed in a patient;
(b) the thrombus (red arrows) can distribute in a large area from the common iliac vein to the popliteal vein; (c) the thrombus (red arrow)
may have very similar signal intensity with the adjacent muscle (green arrow); (d) iliac tissues (blue arrow) may have the similar signal

intensity and shape with the thrombus (red arrow).

However, the key step to quantify these thrombus characteris-
tics is to segment the thrombus from BTI images, which
remains a challenging task at present.

The challenges of segmenting the thrombus from BTI
images are due to the following reasons. Firstly, a complete
BTI scan for a DVT patient can obtain hundreds of images,
which makes manually contouring the thrombus from such
a lot of images a tremendously difficult task. Secondly, the
thrombus characteristics on BTI images hinder the perfor-
mance of automatic segmentation approaches that can be
directly employed on this task. These characteristics include
(1) thrombus signal intensities vary in different patients and
even in the same patient (Figure 1(a)), leading to difficulty in
segmenting thrombus accurately; (2) thrombus locations are
in a large area and random in a patient (Figure 1(b)), the
unfixed thrombus locations make the segmentation work
more difficult; (3) other tissues may have the very similar
signal intensity and shape with the thrombus (Figures 1(c)
and 1(d)), leading to the high possibility that other tissues
can be misidentified as the thrombus.

In recent years, deep learning network has demonstrated
enormous potential in the field of medical image segmentation
[8-10]. Some automatic segmentation methods have been
applied to aortic thrombus segmentation on postoperative
computerized tomography angiography images [11, 12]. How-
ever, to the best of our knowledge, there are not any reports

about automatic segmentation of venous thrombus on black
blood MR images. Therefore, we develop a fully automatic
method of venous thrombus segmentation based on deep
learning network and BTT images, aiming to reduce the burden
of clinicians and improve the efficiency and accuracy of DVT
personalized treatment planning. The main contributions of
this work are (1) three-dimensional (3D) U-shape segmenta-
tion model is incorporated into generative adversarial network
(GAN) architecture for achieving accurate thrombus segmen-
tation, especially to distinguish the tissues which may be misi-
dentified as thrombus; (2) this work is the first attempt for the
thrombus segmentation from BTI images, which can assist in
making a personalized and accurate treatment plan for DVT
patients; (3) the developed network has been extensively com-
pared with state-of-the-art alternatives on the testing and other
two external testing sets, which demonstrates that our pro-
posed network achieves high accuracy and stability on the
thrombus segmentation comprehensively.

2. Materials and Methods

2.1. Data Collection. Total images of 110 subjects are obtained
from three different centers using two different BTI tech-
niques. One of the BTT techniques is DANTE-SPACE which
uses delay alternating with nutation for tailored excitation
(DANTE) for black-blood preparation and a 3D variable flip
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TaBLE 1: Imaging parameters of DANTE-SPACE performed on 1.5 T MR scanner, DANTE-SPACE performed on 3.0 T MR scanner, and
DANTE-FLASH performed on 3.0 T MR scanner.

Parameters DANTE-SPACE (1.5T) DANTE-SPACE (3.0 T) DANTE-FLASH (3.0T)
Repetition time (ms) 650 650 5.4
Echo time (ms) 11 9.8 2.08
Turbo factor 40 40 112

Fat suppression Yes Yes Yes

Flip angle T1 variable T1 variable 12°
FOV (mm?) 352 % 352 352 x 352 380 x 380
Number of partitions 208-256 208-256 208-256
Voxel size (mm®) 14x14x14 L1x1.1x(1.1-1.3) 12x1.2x1.2
Reconstructed voxel size (mm?) 0.7x0.7%x0.7 0.5%0.5x (0.5/0.6) 0.6x0.6x0.6
Bandwidth (Hz/pixel) 698 710 425

192 x 160 x 64 32
Image patch

Input image

I 3 x 3 x 3 Cov-IN-IReLU

I 1 x 1 x 1 Cov-Softmax

[| 1 x 1 x 1 Cov-LeakyRelu

— Convolution
— Convolution transposed

Ground truth

- Skip connection

— Generator refined output

64 128 256 512 256 128 64 32

Generator architecture

192 x 160 x 64
Ground truth patch

192 x 160 x 64
Refined patch

192 x 160 x 64
Segmented patch

Output

Fake

or

Real

Discriminator
architecture

F1GUrk 2: The workflow of the proposed network for the thrombus segmentation from BTI images. 3D segmentation model is used as the
generator and its segmented patch and ground truth patch are fed into the discriminator to refine the segmentation result.

angle fast spin echo sequence (SPACE) for readout [13]. The
other is DNATE-FLASH which also uses DANTE for black-
blood preparation but a fast low-angle shot sequence (FLASH)
for readout [14]. 85 subjects used for network training and test-
ing are obtained from one center using DANTE-SPACE on
1.5T MR scanners (SIEMENS Avanto, Healthcare, Erlang, Ger-
many). 15 and 10 subjects used for external testing are obtained
from other two centers using DANTE-SPACE ona 3.0 T (SIE-
MENS Trio, Erlang, Germany) and DANTE-FLASH ona 3.0 T
(SIEMENS Skyra, Erlang, Germany) MR scanners, respectively.
In order to cover the whole lower extremities, two- or three-

station scans are performed using a 6-channel body coil, an 8-
channel external vascular coil, and a corresponding integrated
spine coil. Scan parameters are shown in Table 1. After the scans
are completed, the images are then composited into a large vol-
umetric dataset using postprocessing software (SIEMENS
Syngo, Germany). The volumetric dataset covering the whole
lower extremities is finally used for thrombus segmentation.

2.2. Data Preprocessing. The ground truth of thrombus
lesions is manually contoured with the consensus between
two experienced radiologists on the BTI images. To enable



our proposed network to learn venous thrombus features
properly, all patients are resampled to the median voxel
spacing of their respective dataset, where third-order spline
interpolation is used for image data and nearest-neighbor
interpolation for the corresponding ground truth. Then,
the z-score normalization is applied to guarantee that the
grey values of the same tissue among different MR images
are close to each other [15]. Input images are cropped with
a sliding window approach, in which the window size equals
the patch size (height x width x channel, 192 x 160 x 64)
used during network training, and adjacent images overlap
by half of the size of a patch. Random rotations, random
scaling, and elastic deformations are applied to increase the
dataset size to avoid overfitting.

2.3. Deep Learning Network Architecture. The deep learning
network based on generative adversarial network (GAN) is
proposed for automatic venous thrombus segmentation (as
shown in Figure 2). The three-dimensional (3D) U-shape seg-
mentation model is trained as the generator, and the 3D dis-
criminator jointly supervises the segmentation performance
in the proposed network. This strategy forces the network to
train a more powerful generator to avoid segmentation errors.
The proposed segmentation network is implemented by a 3D
end-to-end patch-based GAN model (image patch size, 192
x 160 x 64), which takes the lower extremity black blood MR
images as input and outputs equal-sized venous thrombus
segmentation. Firstly, in the generator stage, the architecture
of 3D U-shape generator contains encoding and decoding
phases. The encoding phase with downconvolution blocks is
used to extract the feature information of venous thrombus,
and the decoding phase with upconvolution blocks is adopted
to reconstruct the feature maps to probability maps. All the
down- and upconvolution blocks contain 3 x 3 x 3 convolu-
tion, instance normalization, and Leaky ReLu layer. Further-
more, the last three upconvolution blocks contain 1x 1 x 1
convolution and softmax layer additionally. Between each
downconvolution block and corresponding upconvolution
block, skip connection layers are applied for feature fusion of
high- and low-resolution feature maps. Also, the combination
of cross-entropy loss and soft dice loss is adopted as the loss
function in the generator. Secondly, in the discriminator stage,
the 3D discriminator is used to judge the authenticity of gener-
ated segmentation results against the reference manual ground
truth, which contains three 1 x 1 x 1 convolution layers and
uses Leaky ReLu as the activation function. The generator
and discriminator networks are optimized one after the other
in a zero-sum game framework. The generator’s training objec-
tive is to increase the judgment error of the discriminator by
producing novel segmented venous thrombus that is indistin-
guishable from the ground truth. The discriminator’s training
objective is to decrease the judgment error of the discriminator
network and enhance the ability of differentiating the real from
the fake. Adversarial loss is applied in both networks so that the
generator produces more realistic segmentation, while the dis-
criminator becomes more skilled at flagging segmented venous
thrombus against ground truth. Finally, the refined patch of the
generator will be restored to the original size according to the
patch location and voxel spacing.
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TaBLE 2: Results of the different loss function based on the
proposed network.

Method DSC AHD (mm) AVD

Leg 0.70£0.09 8.36+5.21 0.26+0.11
Lep 0.72+0.03 6.52+4.01 0.23+0.10
Leg and Lgp 0734002 5.68+3.24 0.20+0.09
Leg and Liay 073+0.04 6.56+3.23 020+0.10
Ly, and Loy 072+0.02 593+2.38 0.21+0.08
Leg and Lgy and Loy 0.75+£0.03 5124213 0.18+0.07

TaBLE 3: Representative results of parameter sensitivity analysis of
the loss function for the proposed network.

LA A DSC AHD (mm) AVD

10 10 05 074+002 552+321  0.20+0.08
10 10 10 075%£003 512+213  0.18+0.07
10 10 20 071+006  7.42+4.68  0.25+0.12
10 05 10 074+004 543+3.23  0.20+0.10
10 06 10 075+0.03 4.86+2.14  0.18+0.06
04 06 1.0 076001 411+1.01  0.16+0.02
05 06 10 0.75%0.01  4.63+£2.04  0.17+0.05

TABLE 4: The segmentation comparison between different networks
based on the pixel level.

Method DSC AHD (mm) AVD
3D U-Net 0.65+0.05 12.07 + 8.89 0.26 +£0.09
V-Net 0.63£0.04 16.62£11.05  0.28+0.06
3D nnU-Net 0.76 £0.02 549+3.10 0.20£0.08
Cascade nnU-Net  0.75+0.03 6.36 +£3.83 0.22+£0.04
Ours 0.76 £0.01 4.11+1.01 0.16 £ 0.02
2.4. Loss Function. The total objective function (L,.,,;) in the

developed network is the summation of the losses from gen-
erator and discriminator as

Ligta = A Leg + AyLsp + A3 Lgans (1)
where A, A,, and A, are weights, Lo, Lgp, and L,y are

cross-entropy loss, soft dice loss, and GAN loss, respectively.
They are defined as

Leg = Z()’i'logxi+(1‘)’i)'lOg(l_xi))’ (2)

23N %y,
Zzl'\ilxiz + Zil)’iz )
Lian = Lyse {Ey [log DGD (J’)] + Ex,. [108 (1 - DeD (GOG (xl)>)] }

(4)

Ly =1-

(3)
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TaBLE 5: The segmentation comparison between different networks based on the vessel segment level.

Method SE SP ACC PPV NPV

3D U-Net 0.51+0.14 0.76 £ 0.05 0.69 +£0.05 0.47+£0.10 0.78 £0.05
V-Net 0.77£0.18 0.83+£0.03 0.81+£0.07 0.63£0.09 0.90 £0.08
3D nnU-Net 0.94+0.07 0.89+£0.06 0.91+0.06 0.79+0.12 0.96 £ 0.04
Cascade nnU-Net 0.86+0.14 0.90+0.03 0.89+£0.05 0.77 £0.09 0.94 £ 0.06
Ours 0.95+0.07 0.97 £0.02 0.96 +£0.03 0.97 £0.04 0.97 £0.04

where x; denotes the predicted probability of the ith pixel, y,
is the corresponding ground truth, and N is the number of
pixels. Lyge is the mean square error (MSE); 0, and 0,
respectively, represent the parameters for the generator and
discriminator in GAN. The L is used to describe the dis-
tance of probability distributions between segmented venous
thrombus and ground truth. Employing L~ can segment
high intensity and large area thrombus clearly [16]. Ly, is
used here to solve the data imbalanced exists in the whole
lower extremity MR images because the size of some venous
thrombus is much smaller than background [17]. Due to the
similar intensity and shape between thrombus and other tis-
sue, L,y is used to identify thrombus areas strictly, and it
learns the mapping from the input black blood MR images
to ground truth [18].

2.5. Network Training and Testing. This work is performed
using Pytorch on a workstation equipped with an NVIDIA
TITAN V 12G GPU. During the network training and test-
ing, 85 subjects obtained by DANTE-SPACE from the 1.5T
MR scanner are randomly divided into five groups for 5-fold
cross-validation strategy. For each cross-validation, four
groups of patients are used as training sets, and the remain-
ing group is a testing set. 15 and 10 subjects obtained from
the other two centers are used for external testing. During
training, the parameters are set as follows: basic learning
rate, 3 x 107%; batch size, 2; and Adam is performed as opti-
mization. After adequate training on the network, testing
sets are used to test the network’s performance.

2.6. Evaluation Metrics. Metrics based on pixel and vessel
segment level are adopted to evaluate the difference between
segmentation results and ground truth. The pixel level eval-
uation metrics, including dice similarity coefficient (DSC),
absolute volume difference (AVD), and average Hausdorft
distance (AHD), are given by

2TP
DSC= ", 5
2TP + FP + EN ®
IGT-P|
AVD = , 6
o (6)

AHD = ﬁ ( > d(gt, P)), (7)

gteGT

where TP denotes the true positive, FP denotes false posi-
tive, FN denotes false negative, P denotes prediction, GT

denotes ground truth, p and gt are two points in P and
GT, and d denotes Hausdorff distance.

The deep veins of one leg can be divided into 13 vessel
segments, including inferior vena cava, common iliac vein,
internal iliac vein, external iliac vein, common femoral vein,
deep femoral vein, superficial femoral vein, popliteal vein,
anterior tibial vein, posterior tibial vein, fibular vein, great
saphenous vein, and small saphenous vein [19]. As correctly
identifying which vessel segment occurs thrombosis is impor-
tant for treatment-decision making [20]. The evaluation met-
rics based on vessel segment level include sensitivity (SE),
specificity (SP), accuracy (ACC), positive predictive value
(PPV), and negative predictive value (NPV). These metrics
can be calculated according to Equations (8)-(12), respectively.

TP
E= " (8)
TP + FN
TN
p= N (9)
TN + FP
TP + TN
ACC= , 10
TP + FP + TN + FN (10)
TP
PPV= — | 11
TP + FP (11)
TN
NPV=_ | 12
TN + FN (12)

where TP, FP, TN, and FN are true positive, false positive, true
negative, and false negative based on the vessel segment level.

2.7. Ablation Experiment and Parameter Sensitivity Analysis. In
this work, we select and combine Ly, Lgp, and L,y in our
proposed network, and then, we did an ablation experiment
to employ different loss function in the network (seen as below
Table 2). Results in the table demonstrate that the loss func-
tions combination is capable of improving the performance
of segmentation.

After the loss function ablation experiment, we did a
more detailed parameter sensitivity analysis. We defined
Lot = MLcg + AL + A3Lgans A Ay, and A5 are weights;
these are empirically set to 0.4, 0.6, and 1.0 based on the
observation on the validation set. We have done multiple
experiments on the adjustment of these weights and show
some representative parameter results here (see Table 3).
As the discriminative strategy is essential in the proposed
network, we first select the correct A, value for the GAN loss;
secondly, we keep A, and A, values unchanged, and adjust
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FIGURE 3: Representative thrombus segmentation results of different networks for a patient. (a) Ground truth, (b) 3D U-Net, (c) V-Net, (d)
3D nnU-Net, (e) Cascade nnU-Net, (f) our proposed network. The first two rows show the segmentation result from the coronal plane, and
the last row is to observe the full result directly from the maximum intensity projection (MIP). Red areas in the different models indicate the
ground truth and the segmentation result. Yellow boxes highlight some oversegmentation errors. Blue boxes indicate the loss area of DVT
segmentation results.
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TaBLE 6: The segmentation comparison between different networks based on the pixel level from 3.0 T DANTE-SPACE.
Method DSC AHD (mm) AVD
3D U-Net 0.57+0.10 25.60 £10.69 0.37+£0.12
V-Net 0.53+£0.13 27.50+11.41 0.45+0.20
3D nnU-Net 0.75+0.09 7.42 +4.31 0.20 £ 0.09
Cascade nnU-Net 0.71£0.15 11.20+£5.16 0.27£0.11
Ours 0.76 + 0.06 6.45+3.41 0.18 £0.09
TaBLE 7: The segmentation comparison between different networks based on the vessel segment level from 3.0 T DANTE-SPACE.
Method SE SP ACC PPV NPV
3D U-Net 0.56 +0.07 0.54+£0.20 0.54+0.19 0.32£0.09 0.82+0.10
V-Net 0.53+0.06 0.40+0.20 0.38£0.20 0.23+£0.05 0.77+£0.15
3D nnU-Net 0.91+0.08 0.80£0.13 0.85+0.06 0.58£0.10 0.93+£0.02
Cascade nnU-Net 0.70+0.28 0.90 £ 0.08 0.84+0.10 0.70 £ 0.24 0.89+0.10
Ours 0.93+0.06 0.92+0.09 0.94+0.05 0.82+0.18 0.96 + 0.02

the appropriate A, value; finally, we choose the most suitable
A, value to get the best segmentation performance.

3. Results

The proposed deep learning network is compared with sev-
eral existing medical image segmentation models, i.e., 3D U-
Net [21], V-Net [22], 3D nnU-Net, and Cascade nnU-Net
[23]. Since 3D deep learning networks have demonstrated
their superiority on volumetric medical image segmentation
task [24, 25], the developed network is only compared with
these state-of-the-art 3D deep learning-based models.

3.1. Internal Test. The quantitative performances based on
pixel level of automatic venous thrombus segmentation are
summarized in Table 4. All numbers in the table referred
to the mean + standard deviation values of 5-fold cross-
validation experiments. Compared with other models, our
network provides the best values of DSC (0.76 +0.01),
AHD (4.11£1.01), and AVD (0.16 + 0.02).

Table 5 demonstrates the results of quantitative results
based on the vessel segment level. Our network outperforms
other models in terms of SE (0.95 + 0.07), SP (0.97 +0.02),
ACC (0.96 +0.03), PPV (0.97 + 0.04), and NPV (0.97 + 0.04).

Representative segmentation results are shown in Figure 3.
The segmentation results of 3D U-Net can only segment the
rough outline of the thrombus and has some segmentation
errors on misidentifying other tissue as thrombus and discon-
tinuity segmentation of the thrombus (Figure 3(b)). V-Net per-
forms better than 3D U-Net in eliminating discontinuity
(Figure 3(c), blue box) of the result but still misidentifies some
tissues as thrombus (Figure 3(c), yellow box). 3D nnU-Net gets
much better results than 3D U-Net and V-Net (Figure 3(d)); it
achieves excellent scores in DSC, AHD, and AVD. However,
3D nnU-Net also misidentifies iliac and muscle tissues as
thrombus (Figure 3(d)). Cascade nnU-Net cascades a low-

resolution network and a high-resolution network, but the mis-
identification problem remains unsolved (Figure 3(e)). Com-
pared to 3D U-Net, V-Net, 3D nnU-Net, and Cascade nnU-
Net, our developed network can reduce the segmentation
errors and match with the ground truth well (Figure 3(f)).

3.2. External Test. For the external test set obtained by
DANTE-SPACE on the 3.0 T MR scanner, the segmentation
results are shown in Tables 6 and 7. Our proposed network
achieves the best results on the venous thrombus segmenta-
tion in terms of DSC, AHD, and AVD based on the pixel
level, as well as SE, SP, ACC, PPV, and NPV based on the
vessel segment level. Representative segmentation results
from a patient are shown in Figure 4. Other models may
have incomplete segmentation of the thrombus area
(Figure 4, blue box) and misidentify the muscle area as
thrombus (Figure 4, yellow box); the proposed network has
avoided the above errors. The last row of whole lower
extremity venous thrombus MIP images shows that the seg-
mentation result of the proposed network can also avoid
misidentification errors on 3.0 T DANTE-SPACE images.

For the other external test set obtained by DANT-
FLASH on the 3.0T MR scanner, the segmentation results
are shown in Tables 8 and 9. Results suggest that our net-
work remains to achieve the best thrombus segmentation
performance compared with other models. Representative
segmentation results from a patient are shown in Figure 5.
The proposed network has avoided some segmentation
problems, such as incomplete segmentation of low-
intensity thrombus area (Figure 5, blue box) and segment
the popliteal bone area into thrombus (Figure 5, yellow
box) in other models. The venous thrombus coronal and
MIP segmentation results demonstrate that the proposed
network can also match with the ground truth well on the
DANTE-FLASH images.
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FIGURE 4: Representative segmentation results of a patient obtained from an external center by DANTE-SPACE techniques. (a) Ground
truth, (b) 3D U-Net, (c) V-Net, (d) 3D nnU-Net, (e) Cascade nnU-Net, (f) our proposed network.

TasLE 8: The segmentation comparison between different networks
based on the pixel level from 3.0 T DANTE-FLASH.

Method DSC AHD (mm) AVD

3D U-Net 0.42+0.11 57.46 £13.58 0.44+0.17
V-Net 0.38+0.14 75.33+£12.91 0.65+0.21
3D nnU-Net 0.73+£0.13 7.27 £5.42 0.24+0.13
Cascade nnU-Net 0.68 £0.16 13.56 +7.63 0.38+£0.15
Ours 0.73+£0.11 6.49 +3.57 0.22+0.12

4. Discussion

A deep learning network is proposed for automatic venous
thrombus segmentation from BTT images with high accuracy
and reliability. This network is tested and externally tested

by subjects from three different centers and compared with
3D U-Net, V-Net, 3D nnU-Net, and Cascade nnU-Net
models. Extensive experimental results based on the pixel
level, vessel segment level, and venous thrombus segmenta-
tion figures demonstrate that the proposed network achieves
superior segmentation performance to state-of-the-art
models, indicating the great potential of assisting the DVT
diagnosis in clinics.

Deep learning-based medical image segmentation models
have achieved unprecedented segmentation performance [26].
However, due to the difficulties described in Figure 1, current
deep learning models cannot be directly used for segmenting
thrombus from BTT images. These difficulties lead to the most
common segmentation error: the tissue with similar thrombus
signal intensities and shapes is easily misidentified as throm-
bus (Figure 3). To address this issue, the proposed network
uses 3D segmentation model as the generator and jointly
adopts 3D discriminator to supervise generator’s performance
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TaBLE 9: The segmentation comparison between different networks based on the vessel segment level from 3.0 T DANTE-FLASH.

Method SE SP ACC PPV NPV

3D U-Net 0.53+0.29 0.68+0.18 0.65+0.15 0.41+0.15 0.81 +£0.12
V-Net 0.57£0.25 0.59+£0.17 0.57£0.15 0.33+0.17 0.78+0.14
3D nnU-Net 0.81 +0.14 0.88 £ 0.09 0.89+0.05 0.72+0.21 0.93 £0.06
Cascade nnU-Net 0.64+0.17 0.83£0.04 0.79£0.04 0.52+0.17 0.88 +0.06
Ours 0.81+0.12 0.97 £0.02 0.95+0.04 0.96+0.10 0.94+0.05
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FIGURE 5: Representative segmentation results of a patient obtained from an external center by DANTE-FLASH techniques. (a) Ground
truth, (b) 3D U-Net, (c) V-Net, (d) 3D nnU-Net, (e) Cascade nnU-Net, (f) our proposed network.
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and enhance the capability of accurate thrombus segmenta-
tion, especially to distinguish the thrombus from other similar
tissues. Experiment results demonstrated this strategy could
reduce the segmentation errors from the abdomen and bone,
making the segmentation results closer to the ground truth.
Moreover, this proposed network also outperforms other
models on the external testing sets in terms of reducing mis-
identification errors (Figures 4 and 5).

To evaluate the robustness of a neural network, an external
test set is necessary [27]. In this work, two kinds of external
subjects are tested between different models. One kind of
external subject is acquired by DANTE-SPACE on 3.0 T MR
scanner, and the other one is acquired by DANTE-FLASH
on another 3.0T MR scanner (Table 1). As the sequences
and scanners used for acquiring these external subjects are
quite different from those for acquiring training and testing,
the image properties (i.e., signal-to-noise ratio and contrast-
to-noise ratio) could also be different and may lead to poor
segmentation performance on external subjects. Nevertheless,
external testing results demonstrate that our proposed net-
work still has the best segmentation performance compared
with other models (Table 6-9). The excellent generalization
ability of the proposed network due to the following two rea-
sons. Firstly, this network uses the similar segmentation struc-
ture of nnU-Net as the generator, and nnU-Net has already
proved the generalization ability on dozens of public medical
datasets. Moreover, this proposed network uses a discrimina-
tor strategy forces model to train a more powerful generator
than normal nnU-Net on generalization performance. Sec-
ondly, although the image properties of the training and the
external testing sets are different, they all belonged to BTI
images on which the venous blood is black, and the thrombus
is located within the black-blood veins. This is an important
prerequisite for excellent generalization performance.

The success of the thrombus segmentation from BTI
images can be beneficial to clinical practices. Personalized
treatment of DVT patients depends on an accurate diagnosis
of the thrombus locations, especially the thrombus signal
characteristics. Previous studies demonstrated that the
thrombus shape and signal intensity can be used to identify
the recurrent DVT, the DVT stage, and the prognosis of
DVT treatments [28]. As the thrombus could be automati-
cally segmented from BTI images, quantitative analysis of
the thrombus characteristics becomes an easy task.

There are also two limitations in this work. Firstly, the
training DVT subjects are still insufficient, and more data
should be collected to construct a more robust model. Sec-
ondly, because of constraints by long training time, we were
not able to perform model embedding experiments to improve
the venous segmentation performance [29]. However, as a
pilot experiment, the developed network has shown promising
results despite all the limitations and will provide insights into
future studies.

5. Conclusions

A novel deep learning network based on GAN is developed
for accurate and automatic thrombus segmentation from
BTI images. Experiment results demonstrated that the devel-

BioMed Research International

oped network is more accurate and stable compared with
other state-of-the-art models. It has the potential to be an
automatic method to assist the diagnosis of DVT in clinics.

Data Availability

The black blood MR data used to support the findings of this
study are currently under embargo while the research find-
ings are commercialized. Requests for data, 6 months after
publication of this article, will be considered by the corre-
sponding author.
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