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Abstract

Whole genome sequencing in conjunction with traditional epidemiology has been used to reconstruct transmission networks

of Mycobacterium tuberculosis during outbreaks. Given its low mutation rate, genetic diversity within M. tuberculosis

outbreaks can be extremely limited – making it difficult to determine precisely who transmitted to whom. In addition to

consensus SNPs (cSNPs), examining heterogeneous alleles (hSNPs) has been proposed to improve resolution. However, few

studies have examined the potential biases in detecting these hSNPs. Here, we analysed genome sequence data from 25

specimens from British Columbia, Canada. Specimens were sequenced to a depth of 112–296�. We observed biases in read

depth, base quality, strand distribution and read placement where possible hSNPs were initially identified, so we applied

conservative filters to reduce false positives. Overall, there was phylogenetic concordance between the observed 2542 cSNP

and 63 hSNP loci. Furthermore, we identified hSNPs shared exclusively by epidemiologically linked patients, supporting their

use in transmission inferences. We conclude that hSNPs may add resolution to transmission networks, particularly where

the overall genetic diversity is low.

DATA SUMMARY

1. Raw M. tuberculosis read files have been deposited in
National Center for Biotechnology Information’s Sequence
Read Archive (NCBI SRA) under accession number
PRJNA413593 (Table S1, available in the online version of
this article).

2. M. tuberculosis strain H37Rv is available from GenBank;
accession number NC_000962.3.

3. M. tuberculosis strain CCDC5079 is available from Gen-
Bank; accession number CP001641.1.

4. Source code for processing of raw reads and variant call-
ing is available from GitHub; https://github.com/c2-d2/
within-host-diversity.

INTRODUCTION

Mycobacterium tuberculosis is the leading communicable
cause of mortality worldwide, causing 1.7million deaths in

2016 [1]. Whole genome sequencing (WGS) has been used
to estimate the transmission network of M. tuberculosis out-
breaks, with identical or highly similar genetic sequences
providing support for direct transmission between patients
[2–6].

However, M. tuberculosis is among the most homogeneous
of bacterial species. Due to the low diversity ofM. tuberculo-
sis genomes, cases which are not epidemiologically linked
can therefore have highly similar consensus sequences [7,
8]. Within-host genetic diversity of M. tuberculosis has pre-
viously been described [9–12] and may be due to within-
host evolution or co-infection. The analysis of this diversity,
i.e. making use of polymorphisms that arise during infection
that may be transmitted through non-stringent bottlenecks,
has been proposed to increase resolution of transmission.
Modelling studies suggest that overlooking this diversity can
lead to erroneous transmission inferences using genomic
data alone [13]. A number of tools have been proposed to
incorporate within-host diversity into transmission
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estimates [14–18], but their application to real world data
remains limited. Furthermore, methods to reliably identify
within-host diversity from WGS data are not well
established.

Here we present the analysis of WGS data from M. tubercu-
losis specimens with an emphasis on the identification of
consensus SNPs (cSNPs) and heterogeneous alleles (hSNPs)
indicative of within-host variation. While we highlight
important sources of bioinformatics biases in the identifica-
tion of hSNPs, we show that hSNPs may indeed provide
additional resolution beyond the cSNP-based approach for
inferences of transmission.

THEORY AND IMPLEMENTATION

Data collection

Samples were cultured at the British Columbia Centre for
Disease Control Public Health Laboratory and clean sweeps
of Lowenstein-Jensen (LJ) slants were sequenced at the
BC Genome Sciences Centre using the Illumina HiSeq plat-
form (Supplementary Methods) [2]. Epidemiological data
(Table S1) were collected by local public health units as part
of routine investigations and provided in non-nominal
form. Included specimens were chosen from a larger study
[19] to represent two clusters of cases defined by classical
genotyping (Supplementary Methods). One of these was
composed exclusively of locally transmitted cases, while the
other included locally transmitted cases, epidemiologically
unlinked cases arising from reactivation of tuberculosis
infection acquired outside Canada, and serial specimens
from a single patient.

Genomic investigation and definition of hSNPs

Reads were trimmed with Trimmomatic v0.36 and aligned
to the H37Rv reference genome (GenBank accession num-
ber: NC_000962.3) [20, 21] using BWA MEM v0.7.15 [22].
Local realignment was conducted using GATK v3.8.0 [23].
Identification of large sequence polymorphisms was used to
assign lineage [24]. Variant calling and filtering was con-
ducted using SAMtools v1.7 and BCFtools v1.7 [25]. Pro-
line-glutamic acid (PE), proline-proline-glutamic acid
(PPE) and proline-glutamic acid_polymorphic guanine-
cytosine-rich sequence (PE_PGRS) (PE/PPE) genes were
excluded, as the disproportionate number of variants in
these regions was suggestive of mapping error (Fig. S1). Our
complete analysis pipeline is shown in Fig. 1 and is
described in the Supplementary Methods.

SNPs were considered consensus (cSNPs) if at least 90% of
the reads supported the variant allele and hSNPs if greater
than 10% and up to 90% of the reads supported the variant
allele. SNPs with 10% or less of the reads supporting the
variant allele were called as reference. Informative SNPs
were defined as variants present in at least one but not all of
the specimens. The possibility of co-infection with another
lineage of M. tuberculosis was investigated by checking
whether any hSNPs were present at lineage-defining
alleles [26].

Phylogenetic analysis

Concatenated SNP alignments were used as input for phylo-
genetic trees. hSNP alignments were generated using
IUPAC ambiguity codes [27]. IQ-TREE v1.6.1 was used to
infer maximum-likelihood (ML) phylogenies with ultrafast
bootstrap support values as well as 100 random phylogenies
[28–30]. Distance between trees was calculated using the
Kendall–Colijn (KC) metric (lambda=0) [31, 32]. We also
compared cSNP and hSNP phylogenies using the approxi-
mately unbiased (AU) test [33] in CONSEL v0.20 [34]. Fur-
ther details are provided in the Supplementary Methods.

Alignment-induced bias in observed hSNPs

All specimens were confirmed to beM. tuberculosis complex
and sequenced to at least 100 average depth [median (SD),
range: 178� (31.15), 112–296] (Table S2). Following initial
filtering criteria [all reads with mapping quality (MQ) >30,
average MQ>30, base quality (QUAL) >50, high-quality
read depth (DP) >20], we identified 2945 SNP loci, where at
least one specimen had a cSNP or hSNP identified (2812
loci were identified where at least one specimen had a cSNP
and 167 loci were identified where at least one specimen
had an hSNP; these are not mututally exclusive as cSNPs in
one specimen could be hSNPs in another). After removing
SNPs in PE/PPE regions, 2654 SNP loci, where at least one
specimen had a cSNP or hSNP identified (2573 cSNP and
94 hSNP loci), remained. A narrower distribution of Phred-
scaled stand bias (SP) scores was present amongst cSNPs as
compared to hSNPs [mean (SD): 0.18 (1.28) versus 32.08
(30.74), respectively, Fig. S2]. We therefore additionally fil-
tered for only variants with SP<60 (maximum observed
cSNP SP: 58) and required >1 variant read on both strands.

Manual inspection of the alignments revealed that many
positions initially called as hSNPs were probably due to
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alignment error, where the alternative allele was almost
exclusively on reads that had been soft-clipped during map-
ping (Fig. S3, Table S3). Consequently, we removed all reads
with less than 100 aligned base pairs (representing 3.5% of
reads with MQ >30 in all specimens) from our analysis. Sev-
enteen loci had differential SNP calls following this filtering
step; five loci which were erroneously called as hSNPs previ-
ously were subsequently called as reference and six loci
which failed the filtering protocol before removing clipped
reads were included following this additional step.

The final dataset included 2598 SNP loci, where at least one
specimen had a cSNP or hSNP identified (2542 loci were

identified where at least one specimen had a cSNP and 63

loci were identified where at least one specimen had an

hSNP). cSNP distances ranged from 0 to 1237 (Table S4).

hSNP bases were shared between one and 25 specimens

(Fig. S4, Table S5). Specimens belonged to lineage 4 (Euro-

American, n=5) or lineage 2 (East-Asian, n=20) (Table S1).

There was no evidence of co-infection by multiple lineages

of M. tuberculosis. Lineage 4 specimens were 672–675

cSNPs from H37Rv and lineage 2 specimens were 1196–

1237 cSNPs from H37Rv. The number of observed hSNPs

per specimen was correlated with the distance from H37Rv

(R2=0.34); this suggests some inferred hSNPs may in fact be

Fig. 1. Schematic description of our final analysis pipeline (Supplementary Methods). ADF, high-quality allelic depth on the forward

strand; ADR, high-quality allelic depth on the reverse strand; BAM, binary alignment map; bp: base pair; DP, high-quality read depth;

Indels, small insertions and deletions; MQ, Phred-scaled average mapping quality; QUAL, Phred-scaled base quality score; SAM,

sequence alignment map; SP, Phred-scaled strand bias P-value; PE, proline-glutamic acid; PPE, proline-proline-glutamic acid,

PE_PGRS, proline-glutamic acid_polymorphic guanine-cytosine-rich sequence; RF, read frequency, high-quality variant reads/total

high-quality reads.
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generated by alignment errors, resulting from structural

polymorphisms present in our specimens which are not in

the reference genome. However, mapping the lineage 2

genomes to a lineage 2 reference did not significantly

impact phylogenetic analysis or transmission inferences

(Supplementary Results, Tables S6 and S7, Figs S5 and S6),

consistent with a previous cSNP-based study [35].

A comparison of key quality metrics after filtering is shown
in Table 1 and Fig. S7. On average, read depth was higher at
observed hSNPs. Strand bias, base quality bias, mapping
quality bias and read position bias were all more significant
amongst hSNPs. Mapping quality was similar between
cSNPs and hSNPs. Given the limited number of hSNPs
shared across all specimens (indicative of alignment-
induced false positives) (n=6) compared to our initial analy-
sis (n=25), we believe our filtering protocol has probably
removed the majority of false positive hSNPs. Statistical
tests comparing cSNP and hSNP metrics were not con-
ducted due to the correlated nature of these data.

Given the removal of reads marked as PCR duplicates in
published analyses of M. tuberculosis sequencing data [35],
we compared whether the inclusion of this step influenced
our results. No significant differences in the number of
cSNPs or hSNPs was observed and epidemiological infer-
ences remained the same (Supplementary Results, Fig. S8).

SNPs correlate with epidemiological data

Epidemiological data suggested three separate transmission
chains (n=2, 2 and 4) (Table S1). This correlated with the
genetic data (Fig. 2, Table S4) as specimens from cases
within presumed transmission chains were 0–2 cSNPs apart
and were >10 cSNPs from those without epidemiological
links. Specimens from epidemiologically linked cases were

also phylogenetically clustered with high bootstrap P-values
(Fig. 2).

Amongst transmission pairs (described in [36]), one had
identical hSNPs (BC14-Mtb181 and BC14-Mtb263, cSNP
distance: 1), while the other (BC12-Mtb044 and BC13-
Mtb143, cSNP distance: 2) had an hSNP which was present
in the 2012 specimen and present as a cSNP in the 2013
specimen, and three hSNPs present in the 2012 specimen
were not observed in 2013. This may indicate a bottleneck
during transmission, which would be consistent with the
small infectious dose ofM. tuberculosis [37].

Among the outbreak cluster involving four cases with pair-
wise cSNP distances between 0 and 1, there was a nearly
identical pattern of hSNPs. The same hSNPs were also
observed in the fifth lineage 4 specimen (BC12-Mtb107),
which was 14–15 cSNPs from the outbreak cluster and not
identified as being epidemiologically linked. This suggests
that the observed hSNPs may be due to real underlying
structural variation that is present within our specimens
(and therefore epidemiologically relevant) but is not found
in the reference, thereby resulting in alignment errors.

Our dataset also included four serial specimens collected
between 2004 and 2007 (Table S1) from a single patient
(‘Patient A’) diagnosed with multi-drug resistant (MDR)
M. tuberculosis (Supplementary Results). These specimens
differed from one another by a maximum of two cSNPs and
11 hSNPs. There was one hSNP present in the 2004 speci-
men that was called as reference in the remaining speci-
mens. Two novel cSNPs, unique to these specimens, were
observed in the 2006 specimens. One of these cSNPs was
called as an hSNP in the 2007 specimen (82% variant read
frequency); as this would have been missed by standard
consensus-based SNP calling, this illustrates that hSNPs can
provide additional information when determining genetic
distance. Nine additional hSNPs were present in the 2007
specimen. While these may be due to within-host evolution,
they may more likely be due to sampling; the bacteria in the
previous sputum samples might not have been representa-
tive of the full range of diversity generated within the lung, a
limitation of all genomic analysis of M. tuberculosis [38].
Alternatively, while there was no evidence of co-infection
with a different M. tuberculosis lineage, co-infection with
another closely related lineage 2 strain from outside our col-
lection or laboratory cross-contamination [39] are also pos-
sible explanations. Otherwise, observed hSNPs and cSNPs
were the same for all four specimens (Supplementary
Results, Table S8, Fig. S9).

We also observed congruence in the phylogenetic signal
present in hSNPs and cSNPs (Fig. 3). When we constrained
a cSNP-based phylogeny to the topology of that created
with hSNPs, the likelihood was �14 586.23, compared to
�12 306.80 for a phylogeny defined only by cSNPs. Con-
straining the cSNP-based phylogeny to a set of randomly
generated tree topologies resulted in much lower likelihood
[mean (SD): �25 087.74 (450.46)]. Additionally, we found

Table 1. Quality metrics comparing consensus and heterogeneous

SNPs after the final filtering protocol

DP, high-quality read depth; QUAL, recalibrated base quality score;

MQ, average mapping quality; SP, Phred-scaled strand bias P-value;

BQB, Mann–Whitney U test of base quality bias; MQB, Mann–Whitney U

test of mapping quality bias; RPB, Mann–Whitney U test of read

position bias.

cSNP hSNP

Mean SD Mean SD

DP 161.84 41.34 232.84 88.17

QUAL 228.00 0.36 209.13 34.66

MQ 59.71 1.95 59.42 1.57

SP 0.16 1.02 10.44 11.10

BQB* 0.98 0.09 0.68 0.30

MQB* 1.00 0.03 0.91 0.22

RPB* 0.98 0.10 0.28 0.10

*As BQB, MQB and RPB are only defined at positions with reference

and variant reads, we assume an RPB value of 1.0 for SNPs with

100% variant reads
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the cSNP ML tree and the bootstrap replicates were congru-
ent with the hSNP topology based on the AU test (P>0.05
for all comparisons). This suggests the phylogenetic signal
provided by the hSNPs is much better than expected by
chance. However, the KC distance was greater between
cSNP and hSNP topologies (109.20) as compared to random
[mean (SD): 68.44 (11.96)]. Furthermore, a tanglegram
revealed differences between the cSNP and hSNP topolo-
gies, indicating that while hSNPs may provide additional
information in the case of very closely related infections,
they should be used as a complement to cSNP-based analy-
ses and not independently for inferences of transmission.

Conclusion

We have used WGS data to identify within-host heterogene-
ity in M. tuberculosis amongst patients in British Columbia,
Canada. Reliable methods to characterize within-host het-
erogeneity are needed to incorporate these data into
epidemiological investigations. Our data included epidemio-
logically and/or genetically linked specimens from two M.
tuberculosis lineages.

We identified sources of bias leading to false positive identi-
fication of hSNPs, including excessively clipped reads, read
depth, base quality, strand bias, base quality bias, mapping
quality bias and read placement bias scores. We also
observed concordance between hSNPs, cSNPs and epidemi-
ological data. In one case, a shared variant was identified
solely between two epidemiologically linked cases, BC12-
Mtb044 and BC13-Mtb142; had hSNPs not been included
in the analysis, this would have been missed. This affirms
that the inclusion of hSNPs may provide additional resolu-
tion to inferences of transmission.

Ultra-deep sequencing may help to identify additional
hSNPs and provide further discrimination between trans-
mission events. Furthermore, long read sequencing may be
useful in the identification of both cSNPs and hSNPs in
repetitive regions of the genome. As suggested by Worby
et al. [14], we expect hSNPs present in only a small num-
ber of very closely genetically related specimens to be the
most informative; hSNPs found in a large number of unre-
lated infections probably reflect systematic analysis errors,
or repeated mutation. Ultimately, the potential benefits of

Fig. 2. Maximum-likelihood (ML) phylogeny generated using an alignment of 2542 cSNPs, rooted on the H37Rv reference (REF). TVMe

+ASCwas identified as the best-fit model based on the Bayesian information criterion. Ultrafast bootstrap support values are anno-

tated in blue (support values >95% indicate high confidence) and epidemiological data provided by the BCCDC (British Columbia Centre

for Disease Control) are indicated in the top left. Branches without annotation are not epidemiologically linked to other cases in the

dataset. Each column at the right represents an informative hSNP as compared to H37Rv, ordered by position in the genome and col-

oured by supporting variant read frequency percentage. The scale bar corresponds to the number of subsitutions per site.
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this approach will be shown by applying the pipelines we
describe here to larger datasets with low strain diversity.

While we have focused here predominantly on biases
related to sequencing and bioinformatics approaches, it is
important to recognize that all included samples were cul-
tured prior to sequencing. There is currently limited knowl-
edge about the impact of culture on heterogenous alleles.
One study from 2017 compared sequencing from sputum
with sequencing from MGIT culture using 17 paired sam-
ples and found that the median number of hSNPs was the
same regardless of sequencing source [40]. However,
another study with similar sample size found the opposite,
with a significant loss of diversity when sequencing from
MGIT culture [41]. Thus, it is possible that sequencing from
culture influenced the hSNPs identified. Further investiga-
tion is needed on the impact of culture on detection of these
heterogeneous alleles.
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