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Abstract
Photoactivated disinfection has a strong local antimicrobial effect. In the field of dentistry it

is an emerging adjunct to mechanical debridement during endodontic and periodontal treat-

ment. In the present study, we investigate the effect of photoactivated disinfection using

riboflavin as a photosensitizer and blue LED light for activation, and compare it to photoacti-

vated disinfection with the widely used combination of toluidine blue O and red light. Ribofla-

vin is highly biocompatible and can be activated with LED lamps at hand in the dental office.

To date, no reports are available on the antimicrobial effect of photoactivated disinfection

using riboflavin/blue light on oral microorganisms. Planktonic cultures of eight organisms

frequently isolated from periodontal and/or endodontic lesions (Aggregatibacter actinomy-
cetemcomitans, Candida albicans, Enterococcus faecalis, Escherischia coli, Lactobacillus
paracasei, Porphyromonas gingivalis, Prevotella intermedia and Propionibacterium acnes)
were subjected to photoactivated disinfection with riboflavin/blue light and toluidine blue O/

red light, and survival rates were determined by CFU counts. Within the limited irradiation

time of one minute, photoactivated disinfection with riboflavin/blue light only resulted in

minor reductions in CFU counts, whereas full kills were achieved for all organisms when

using toluidine blue O/red light. The black pigmented anaerobes P. gingivalis and P. inter-
media were eradicated completely by riboflavin/blue light, but also by blue light treatment

alone, suggesting that endogenous chromophores acted as photosensitizers in these bac-

teria. On the basis of our results, riboflavin cannot be recommended as a photosensitizer

used for photoactivated disinfection of periodontal or endodontic infections.

Introduction
Photoactivated disinfection (PAD) has proven to have a strong antimicrobial effect on a range
of different microorganisms including bacteria and fungi [1–4]. PAD involves the activation of
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a photosensitizer (PS) by light of an appropriate wavelength, which generates reactive oxygen
species (ROS) when molecular oxygen is present. During PAD, photosensitizing molecules
attach to microbial cell structures and become excited to a high energy triplet state when light
of an appropriate wavelength is captured by the chromophores of the PS. The triplet state PS
may then react further via one or both of two pathways that lead to microbial killing: In type I
reactions, triplet state PS reacts directly with microbial constituents by electron transfer. This
produces radical ions which react with oxygen to generate ROS that can be detrimental to
microbial membrane integrity [5, 6]. In type II reactions, triplet state PS transforms ground
state molecular oxygen from the regular triplet configuration into the highly reactive singlet
state. Singlet oxygen then causes oxidation of microbial constituents such as lipids, proteins
and nucleic acids.

PAD is currently employed in several medical disciplines, including dentistry where it is
emerging as an adjunct to mechanical procedures of biofilm debridement in the fields of end-
odontics and periodontology. The success of endodontic treatment is dependent on the com-
plete removal of microorganisms from the intricate root canal system [7, 8], a condition that is
not always achieved by conventional chemo-mechanical debridement [9–13]. Likewise, the
outcome of periodontal therapy is dependent on the removal of pathogenic biofilms from the
subgingival crevice.

For both diseases, PAD represents a promising therapeutic approach. Due to the high affin-
ity of certain PS to bacterial membranes [14], the short half-life and the short diffusion paths of
ROS [15], a strong and local disinfection can be achieved. Moreover, the unspecific mechanism
of action renders the development of bacterial resistance unlikely [1, 14, 16].

Various light sources and PS are available for PAD. Most studies conducted in the field of
dentistry use lasers to activate the PS [17–20], but excitation can as well be performed effi-
ciently with less expensive conventional LED lamps [21–23]. Among the different PS employed
in the field of dentistry, PAD with toluidine blue O (TBO) has been studied extensively, and it’s
antimicrobial effect on oral pathogens is well documented [21–31].

Riboflavin (RFV, vitamin B2) is a promising alternative photosensitizing molecule. It is a
micronutrient and an intrinsic PS which generates ROS when irradiated with blue light [32]. It
is highly biocompatible and can be activated with LED lamps at hand, used for curing compos-
ite, in the dental office. Owing to its advantageous and well known toxicological and pharma-
cokinetic properties [33–35], RFV is labeled ‘generally recognized as safe’ by the FDA [36].

At present, literature on the effect of PAD using RFV/blue light to kill bacteria is sparse
[37], and no reports focus on oral microorganisms. We therefore investigate the effect of PAD
using RFV/blue light on a range of different endodontic and periodontal pathogens in plank-
tonic suspension, and compare it to the effect of PAD using a combination of TBO and red
light.

Materials and Methods

Microorganisms and culture conditions
Organisms included in the study were Aggregatibacter actinomycetemcomitans (HK915), Can-
dida albicans (NCO 09001; = ATCC 11775), Enterococcus faecalis (DSM 20478), Escherichia
coli (ATCC 11775), Lactobacillus paracasei (DSM 5622), Porphyromonas gingivalis (ATCC
33277), Prevotella intermedia (CCUG 24041) and Propionibacterium acnes (DSM 1897).

A. actinomycetemcomitans was cultivated on chocolate agar (Statens Serum Institut, Copen-
hagen, Denmark) in air enriched with 5% CO2; C. albicans, E. faecalis, E. coli and L. paracasei
were grown on blood agar (Statens Serum Institut, Copenhagen, Denmark) under aerobic con-
ditions; P. acnes was grown on blood agar under anaerobic conditions; P. gingivalis and P.
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intermedia were cultivated anaerobically on modified Columbia blood agar (Statens Serum
Institut, Copenhagen, Denmark). All microorganisms were grown at 36.5°C.

Prior to experimental use, all organisms were grown in liquid culture until late exponential
phase. A. actinomycetemcomitans, P. gingivalis, P. intermedia and P. acnes were cultivated in
plaque medium [38]; C. albicans, E. faecalis, E. coli and L. paracasei were grown in tryptic soy
broth (Scharlab, Barcelona, Spain). See S1 Table for details.

Light sources and photosensitizers
Two LED lamps were used: FotoSan 630 LAD pen, emitting light in the red spectrum with a
power peak at 630 nm, and FlashMax P3 460 emitting light in the blue spectrum with a power
peak at 460 nm. Relative spectral power distributions are shown in S1 Fig. Both lamps were
equipped with short, cone-shaped conductive tips (planktonic tip, Ø 4 mm at the cone end)
during treatment of microorganisms.

Photosensitizers used were watery solutions of TBO, used in conjunction with FotoSan 630
LAD pen, and RFV, used in conjunction with FlashMax P3 460. Both photosensitizers were
prepared to a concentration of 266 μmol L-1 and stored in the dark until experimental use.
Light sources and photosensitizers were provided by CMS Dental (Copenhagen, Denmark).

PAD treatment
Microorganisms were centrifuged for 5 min at 5.000 rpm and washed once in 0.9% sterile
saline. For each organism, optical density measurements (Novaspec II, Pharmacia Biotech,
Cambridge, England; 550 nm) were calibrated to cell counts in a microscopic counting cham-
ber (Bürker-Türk, Glaswarenfabrik Karl Hecht “Assistent”, Sondheim/Rhön, Germany), and
cell concentrations were adjusted to 107-108 mL-1 spectrophotometrically (see S1 Table).

For both photosensitizers (P) and the respective red or blue light sources (L), four different
treatments were carried out on each organism. 1) PAD treatment (P+L+): Bacterial/fungal sus-
pensions were vortexed for 30 s, after which 60 μL of bacterial suspension and an equal volume
of photosensitizer solution (final concentration: 133 μmol L-1) were transferred to the lid (area:
0.64 cm2) of a sterile 1.5 mL Eppendorf tube and mixed with a sterile pipette. One minute after
application of the photosensitizer, the suspension was irradiated for 1 min with the corre-
sponding light source. During the irradiation of planktonic cells, the light tip was mounted and
the cone end was held just above the suspension at the level of the lid entrance; 1 mm from the
surface of the bacterial suspension. For both light sources, an energy dose of 24 J was delivered
to the suspension (power: 0.4 W; fluence: 37.7 J/cm2; fluence rate: 0.63 W/cm2). 2) Negative
control treatment (P-L-): Microbial suspensions were mixed with 60 μL of 0.9% sterile saline
and the light source was placed in the irradiation position for 1 min without emitting light. 3)
Photosensitizer alone (P+L-): Microbial suspensions and photosensitizer solution were mixed
and the corresponding light source was held in irradiation position for 1 min without irradiat-
ing. 4) To test the effect of the light sources alone (P-L+), microbial suspensions and sterile
saline were mixed and irradiated for 1 min. The same microbial parent suspension was used
for each series of four treatments.

Immediately after treatment, samples of 100 μL were removed from the lids, subjected to
serial dilution and cultivated on agar plates. Counts of colony-forming units (CFU) were deter-
mined on at least three replicate agar plates. All experiments were performed in duplicate.

To determine the effect of irradiation time on bacterial killing, suspensions of E. faecalis
were subjected to PAD using different irradiation intervals. 60 μL of bacterial suspension and
60 μL of either TBO or RFV were mixed in Eppendorf lids and irradiated for 0 s, 10 s, 30 s, 1
min or 2 min with the corresponding light source. Again, the same microbial parent
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suspension was used. Serial dilution, plating and counting of CFU were performed as previ-
ously described. The experiments were performed in duplicate.

Statistical analysis
The CFU count data were assumed to follow a Poisson distribution with a mean inversely propor-
tional to the dilution factor. Data from each organism were analyzed separately by Poisson regres-
sion methodology using robust standard errors to account for a possible overdispersion. For both
PAD systems (RFV/blue light, TBO/red light) the effect of each treatment (P+L+, P+L-, P-L+)
was expressed as a survival fraction with a 95% confidence interval relative to the negative control
(P-L-). To compare PAD with RFV/blue light (PADRFV) to PADwith TBO/red light (PADTBO),
an interaction term was included in the regression model. The interaction term represented the
ratio of the survival fractions for PADTBO relative to the survival fraction for PADRFV. In the anal-
ysis of the time series data the treatment effect (P+L+ relative to P-L-) was also estimated by Pois-
son regression as a survival fraction for each PAD system and each irradiation period. All survival
fractions were converted to log10 reductions. For all calculations, p-values below 0.05 were consid-
ered as statistically significant and p-values below 0.001 as statistically highly significant.

Results
Overall, PAD using RFV/blue light (PADRFV) killed less microorganisms than PAD with TBO/
red light (PADTBO). In planktonic suspensions of C. albicans, E. coli and E. faecalis, PADRFV

did not reduce the amount of viable cells significantly. Moderate effects of PADRFV were
observed for A. actinomycetemcomitans and L. paracasei, with mean log10 reductions of 1.11
and 1.36, respectively (p<0.001). A minor effect of PADRFV was observed for P. acnes (0.29
log10 reduction, p<0.001), but treatment with blue light alone led to a similar reduction (0.21
log10 reduction, p<0.001).

PADRFV only achieved full kills in the cases of P. gingivalis and P. intermedia (p<0.001).
However, both species were also eradicated by 1 min of irradiation with blue light alone
(p<0.001).

Experiments with different irradiation times showed that the effect of PADRFV on E. faecalis
increased slightly with longer irradiation times. 0.22 log10 reduction was achieved after 10 s, 0.25
log10 reduction after 30 s, 0.37 log10 reduction after 1 min and 0.40 log10 reduction after 2 min.

When PADTBO was performed, total microbial killing was observed of all the species
included. The effect of PADTBO was significantly stronger than the one of PADRFV for all
organisms (p<0.001), except for P. intermedia and P. gingivalis, where PADRFV resulted in
complete eradication, too.

Experiments with different irradiation times showed that E. faecalis was eradicated
completely after 30 s of irradiation, and even 10 s of irradiation led to a 5.27 log10 reduction
(p<0.001).

TBO alone had a moderate yet significant effect on A. actinomycetemcomitans (0.46 log10
reduction, p<0.001) and P. gingivalis (0.69 log10 reduction, p = 0.001). Moreover, slight but
statistically significant reductions were observed for treatment with TBO alone on L. paracasei
(0.06 log10 reduction, p = 0.01) and treatment with blue light alone on C. albicans (0.05 log10
reduction, p = 0.04) and E. faecalis (0.09 log10 reduction, p = 0.02). All results are presented in
Fig 1, S2 Table and S2 Fig.

Discussion
On a theoretical plane, Riboflavin offers some advantages as a photosensitizer for photoacti-
vated disinfection. It is a highly biocompatible molecule that can be used intraorally without
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Fig 1. Effect of PAD using riboflavin (RFV)/blue light or toluidine blue O (TBO)/red light on selected
microorganisms. For both PAD systems, CFU/mL of all species were determined after PAD treatment (P+L
+), treatment with light alone (P-L+) and treatment with the photosensitizer alone (P+L-) and compared to
negative control treatment (P-L-). * p<0.05; *** p<0.001.

doi:10.1371/journal.pone.0140720.g001
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reservation [36]. With its faint yellow color, it does not stain the hard tissues of the tooth as
severely as TBO, which is advantageous in aesthetically important regions. Moreover, it can be
excited with blue light emitting LED lamps at hand in the dental office. Implementing PAD
with Riboflavin and blue light in dental treatments would thus require minimal effort.

It has previously been shown that RFV can be excited with blue light emitting LED lamps
used for composite curing and that ROS are generated [32]. However, our study clearly shows
that the antimicrobial effect of PAD with RFV and blue light cannot compete with the one of
PAD using TBO and red light.

PADRFV left C. albicans, E. coli and E. faecalis unaffected, and it only had a moderate effect
of less than 2 log reductions on A. actinomycetemcomitans, L. paracasei and P. acnes when
compared to negative control treatment. The irradiation time series experiments performed on
E. faecalis showed a tendency to a more pronounced antibacterial effect when cultures were
irradiated for 2 min. Even longer irradiation times are likely to increase the antimicrobial effect
of PAD with RFV and blue light, but they would be inacceptable in a dental clinical setting and
were therefore not tested. PADRFV with longer exposure times might still be tested in other
medical disciplines where the sites of infection are more easily accessible and treatment does
not require the continuous presence of health care personnel [33, 37, 39–41].

Interestingly, PADRFV had a strong antibacterial effect on P. gingivalis and P. intermedia. Within
one minute of irradiation, full kills were achieved for both organisms. However, control treatment
with irradiation alone equally resulted in full kills of both species. P. gingivalis and P. intermedia
belong to the black pigmented Bacteroides group that possesses the endogenous chromophores μ-
oxo bisheme and hematin [42, 43]. Their respective absorption maxima being situated at 393 nm
[44] and 398 nm [45], it is likely that μ-oxo bisheme and hematin acted as photosensitizers and
caused bacterial killing in the experiments [46–48]. The same mechanism likely explains the mod-
erate effect of blue light on P. acnes, which equally produces intracellular photosensitizing porphy-
rins, mainly coproporphyrin III [49]. All three organisms have previously been shown to be
susceptible to blue light treatment. Effects observed on P. acneswere moderate [50, 51], while
stronger effects, comparable to the ones we observed, were reported for treatment of P. gingivalis
and P. intermediawith light doses comparable to the ones used in the present study [46, 52, 53].

By comparison, PADTBO had a strong effect on all eight investigated organisms. Full kills
were achieved within the rather short irradiation time of one minute, and the time series exper-
iments conducted with planktonic cultures of E. faecalis show that even shorter irradiation
times of 30 s (full kill) or 10 s (3.7 log10 reduction) are adequate to obtain a powerful antibacte-
rial effect. It is important to point out that an LED light source and not a laser was used for
treatment. Most studies investigating the antibacterial effect of PADTBO employ lasers that cost
more than LED lamps and are subjected to strong power output limitations to avoid causing
damage to adjacent tissues. Comparison of treatment results from the present study with
results from other studies obtained with laser light shows that LED light sources should be con-
sidered as cheaper and safer alternatives for PAD [29, 54–56].

Unlike blue light, treatment with red light alone did not result in strong reductions for any
of the tested organisms. Previous studies have reported moderate effects of red light on P.
acnes, P. intermedia and P. gingivalis [57, 58], but absorption by endogenous porphyrins in the
red spectrum is comparatively low [43], and compared to blue light, higher energy doses are
required to achieve antimicrobial effects [46].

The poor effect of PADRFV may be explained by a lower ROS production from RFV com-
pared to TBO [32]. Moreover, the uncharged state of RFV may be unfavorable. It has been
reported that cationic PS such as TBO show a better interaction with the Gram-negative cell
membrane, which allow for a stronger antimicrobial effect [14]. The present study, however, did
not demonstrate an inferior effect of PADRFV on Gram-negatives compared to Gram-positives.
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While the effect of PADTBO on pathogens in planktonic suspension is strong, a number of
problems encountered in clinical situations may compromise the effect in vivo: 1. Biofilms, and
especially multi-species biofilms, are more resistant to treatment than planktonic cells [59]. 2.
The propagation of light to the site of infection is hampered by local factors (deep periodontal
pockets, intricate root canal anatomy). 3. The photosensitizer might be inactivated and ROS
absorbed by molecules in biological fluids (blood, pus, gingival crevicular fluid, saliva). 4. Low
availability of oxygen in deep periodontal pockets and in root canals might limit the production
of ROS and thus the effect of PAD.

Conclusion
The present study shows that Riboflavin is not suitable as a photosensitizer for use in endodon-
tic or periodontal therapy. Limited microbial kills of PAD using riboflavin/blue light were
observed for most of the investigated species within the short irradiation times that are practi-
cable in a dental clinical setting. Photoactivated disinfection with toluidine blue O and red light
provided by an LED lamp, on the other hand, had an excellent antimicrobial effect on all inves-
tigated species and merits further research. LED light sources should be considered as cheaper
and safer alternatives to lasers for photoactivated disinfection.

Supporting Information
S1 Fig. Relative spectral power distribution of the LED lamps. Power peaks of the red (A)
and blue (B) LED lamps match the excitation maxima of toluidine blue O (630 nm) and ribo-
flavin (460 nm).
(TIF)

S2 Fig. Effect of PAD on E. faecalis using different irradiation times. SF = survival fraction;
PAD = photoactivated disinfection; RFV = riboflavin; TBO = toluidine blue O.
(TIF)

S1 Table. Growth conditions of the employed organisms. Optical densities corresponding to
cell concentrations of 107-108 mL-1.
(DOCX)

S2 Table. Effect of PAD compared to negative control treatment. P+L+ = photosensitizer,
light (treatment); P+L- = photosenzitizer, no light; P-L+ = sterile saline; Log10 = log10 reduc-
tion; SF = survival fraction; CI = confidence interval; RFV = riboflavin; TBO = toluidine blue
O; � = statistically significant reduction.
(DOCX)
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