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Abstract Since the discovery that non-small cell lung cancer (NSCLC) is driven by epidermal growth factor
receptor (EGFR) mutations, the EGFR tyrosine kinase inhibitors (EGFR-TKIs, e.g., gefitinib and elrotinib) have
been effectively used for clinical treatment. However, patients eventually develop drug resistance. Resistance to
EGFR-TKIs is inevitable due to various mechanisms, such as the secondary mutation (T790M), activation of
alternative pathways (c-Met, HGF, AXL), aberrance of the downstream pathways (K-RAS mutations, loss of
PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorph-
ism), histologic transformation, ATP binding cassette (ABC) transporter effusion, etc. Here we review and
summarize the known resistant mechanisms to EGFR-TKIs and provide potential targets for development of new
therapeutic strategies.
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1. EGFR signal pathway and cancers

EGFR, also known as ERBB1 and HER1, is a transmembrane
tyrosine kinase receptor (RTK). EGFR is a member of the human
epidermal receptor (HER) family and a crucial component of cell
signal pathways. Binding with ligands (EGF and TGF-α) leads to
conformational changes in EGFR and homodimerization or hetero-
dimerization with other HER family members. There is subsequent
autophosphorylation of the cytoplasmic tyrosine kinase (TK) domain
with the help of adapter proteins (e.g., SHC and GRB-2), which
triggers downstream signaling. There are three main downstream
pathways: (1) rat sarcoma (RAS)/rapidly accelerated fibrosarcoma
(RAF)/mitogen-activated protein kinase (MAPK) pathway; (2)
phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) path-
way and (3) janus kinase (JAK)/signal transducers and activators of
transcription (STAT) pathway, which stimulates mitosis, leading to
cell proliferation and inhibition of apoptosis1. These pathways are
crucial in normal cell growth (Fig. 1).

EGFR also serves as a stimulus for cancer growth. EGFR gene
mutations and protein overexpression, both of which activate down-
stream pathways, are associated with cancers, especially lung cancer.
The importance of EGFR to lung cancers supports the concept of
‘oncogene addiction’. Tyrosine kinase inhibitors (TKIs) have been
used to treat the cancer harboring EGFR mutations or aberrant
activation of EGFR. TKIs can inhibit the EGFR TK domain
reversibly through competitive binding with ATP2. TKIs also lead
Figure 1 EGFR and its signal pathway. There is subsequent autophospho
of adapter proteins (e.g., SHC and GRB-2), triggers downstream signaling.
and (3) JAK/STAT pathways.
to tumor cell death through BCL2-like 11 (BIM)-mediated apoptosis.
However, patients with EGFR-activating mutations benefit from
treatment with EGFR-TKIs (e.g., gefitinb and erlotinib) for less than
approximately 1 year, after which drug resistance develops.

The etiology of EGFR-TKI resistance is complex. According to
the cell signal transduction pathway, the etiology of EGFR-TKI
resistance can be divided into subsequent categories.
2. EGFR mutations induce drug resistance, especially the
secondary mutation T790M

The EGFR gene, located in the 7p12�14 region in the short arm
of chromosome 7, consists of 28 exons. The tyrosine kinase
function is encoded by exons 18�24. Currently, more than 90%
of the known EGFR mutations reside in exons 19�21 (Fig. 2).
The rate of mutation in exon 19 is the highest, accounting for more
than 60% of overall mutations3.

2.1. Secondary mutation—T790M

A secondary mutation of the EGFR gene reported in 2005 conferred
acquired resistance to EGFR-TKIs4. This mutation (located in exon 20)
results in the substitution of methionine for threonine at position 790
(T790M) in the kinase domain. Threonine 790 has been designated as
a “gatekeeper” residue, important for regulating inhibitor specificity in
rylation of the cytoplasmic tyrosine kinase domain, which, with the aid
The principal pathways included: (1) RAS/RAF/MEK, (2) PI3K/AKT



Figure 2 Aberration of HER families. Members of HER families get involved in the resistance to EGFR-TKIs. The secondary mutations of
EGFR, EGFR-vIII, the overexpression of HER2 or mutations of HER2 contribute to the resistance in the presence of EGFR-TKIs. Compared to the
other HER proteins, there are currently no mutational alterations known to confer oncogenic activities to HER3. In most cases, HER3
phosphorylation is driven by one of HER family kinase partners, like HER1 and HER2. What's more, resistance can also occur through
amplification of the proto-oncogene c-Met and the c-Met-mediated phosphorylation of HER3. HER3 serves as a key activator of downstream
PI3K/AKT and MEK/MAPK signal pathways through dimerization with other HER family proteins or other molecules.
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the ATP binding pocket. The T790M mutation enhances affinity of the
ATP binding pocket for ATP, thus successfully competing with the
TKIs, thereby conferring resistance5. Currently, two theories can
explain the production of the second mutations: subcloning and
induced mutation/acquisition6. Although the second mutation rarely
occurs prior to treatment, it is found in approximately half of EGFR
TKIs-treated patients. Experiments have identified a proportion of TKI-
naive tumors that carry T790M, and these resistant clones may be
selected after exposure to TKIs7,8. The T790M mutation can coexist
with other mutations, like L858R and D761Y. The T790M mutation
also possesses enhanced phosphorylating activity, especially in combi-
nation with the L858R mutation. The combination leads to lung cancer
cell survival, indicating that the T790M mutant is actually an
oncogene9. Furthermore, cyclin D1 and Hsp90 may contribute to
resistance in cancer cells harboring the T790M mutant by inhibiting the
degradation of EGFR and maintaining the conformation of mutant
EGFR10. Recently, the Hsp90 inhibitor ganetespib has been shown to
enhance the anti-tumor effect of TKIs11.
2.2. Other secondary resistance mutations: L747S, D761Y and
T854A

The non-T790M secondary mutations mainly include D761Y,
L747S and T854A12–14. They reduce the sensitivity of mutant
EGFR to EGFR-TKIs, but the resistance mechanism remains
unknown. A possible explanation may be that these secondary
resistance mutations modify the conformation of EGFR and the
combination between EGFR and TKIs. In addition, they may
affect gefitinib-induced apoptosis and inhibit BIM up-regulation.
Recently, another new insertion mutation on exon 20 of EGFR has
been reported (Pro772_His773insGlnCysPro)15,16. It was found in
an individual who never smoked. The patient had previously been
treated with cisplatin and gemcitabine, followed by carboplatin
and pemetrexed. Finally, the patient developed resistance to
erlotinib. Additional mutations still remain to be discovered.
However, according to the reports of EGFR-mutated TKI-resi-
stant patients, the frequency of non-T790M secondary mutations
is low.
3. The aberrated activation of the bypass pathways induce
resistance

The synchronous activation of redundant kinases also can induce
resistance via activation of bypass pathways (Figs. 2 and 3).
EGFR-TKI treatment of patients harboring such a change is not
effective.

3.1. The aberrance of other members of HER family

The HER family is comprised of EGFR, HER2, HER3 and HER4.
These receptors have a cytoplasmic TK domain which can be
activated by ligand binding, followed by dimerization. Although



Figure 3 Synchronous activation of redundant kinases and abnormality of the downstream pathway.
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HER2 appears to have no intrinsic ligand-binding capability, it can
interact reversibly with ligand-activated EGFR or HER3 to form
active heterodimers which activate downstream signals to govern
cell proliferation and migration. Overexpression of HER2 and
mutations of HER2 are involved in resistance of EGFR-TKIs17.
Therefore, HER2 is a useful target for treatment. A covalent,
irreversible inhibitor of HER2, afatinib, can overcome the resis-
tance of the patient harboring HER2 overexpression or HER2 gene
mutations18. Compared to the other HER proteins, there are
currently no mutational alterations known to confer oncogenic
activities to HER3, but HER3 also takes part in resistance of
EGFR-TKIs. HER3 phosphorylation is driven by one of the other
HER family kinase partners, like HER1 and HER2, or through
amplification of the proto-oncogene c-Met19. HER3 serves as a
key activator of downstream PI3K/AKT and MEK/mitogen-
activated protein kinase (MAPK) pathways and contributes to
survival of the most tumor cells. However, researchers have found
that a heregulin–EGFR–HER3 autocrine signaling axis mediated
acquired lapatinib resistance in HER2þ breast cancer models
which no longer depended on HER2–HER3–PI3K signal path-
way20. What's more, overexpression of HER3 in COLM-5 cells
can lead to significant resistance to gefitinib in vitro and in vivo21.
All of these studies highlight the central role of HER3 in cancers.
Targeting of HER3 receptor with a monoclonal antibody, such as
MM-121 or MM-111 is an effective strategy currently under
preclinical study and clinical evaluation22.
3.2. Amplification of c-Met

c-Met is a transmembrane RTK. Binding with its ligand, hepato-
cyte growth factor (HGF) triggers receptor dimerization and
phosphorylation, leading to conformational changes of c-Met that
activates the TK domain and activates a wide range of different
cellular signal pathways, including those involved in proliferation,
motility, migration and invasion. Although c-Met is important in
the control of tissue homeostasis under normal physiological
conditions, it has also been found to be aberrantly activated in
human cancers via gene mutation, amplification or protein over-
expression. In 2007, the second most common primary resistance
to EGFR-TKIs involved amplification of the c-Met oncogene in
HCC827 NSCLC cells after exposure to gefitinib. In c-Met-
resistant patients, c-Met amplified clones existed prior to EGFR-
TKIs therapy and were selected out by treatment23. The resistant
mechanism of EGFR-TKIs may involve HER3-PI3K/AKT signal-
ing by maintaining HER3 phosphorylation in the presence of
gefitinib, which is independent of EGFR kinase activity19.
Besides, a high MET gene copy number leads to shorter survival
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in patients with NSCLC. Clinical trials have demonstrated that
concurrent inhibition of EGFR and c-Met can overcome resistance
of EGFR-TKIs and improve patient outcomes.

3.3. Overexpression of HGF

HGF is the ligand for c-Met. HGF acts as a pleiotropic factor and
cytokine, promoting cell proliferation, survival, motility, scattering,
differentiation and morphogenesis.

Overexpression of HGF is another EGFR-TKIs resistance
mechanism and it may be more common among patients with
mutations who had no response24. One study showed that HGF
induces resistance by activating c-Met which restores phospho-
rylation of downstream MAPK/extracellular signal-regulated
kinases (ERK1/2) and PI3K/AKT pathways25. Interestingly,
although amplification of c-Met activates downstream pathways
by activating ERBB3, HGF induces downstream pathways
through c-Met; this activation is independent of ERBB3 or EGFR.
The resistance induced by HGF not only appears in the NSCLS,
but also exists in breast cancers. Blockade of EGFR and the
downstream pathways can overcome HGF-mediated resistance.

3.4. The abnormality of insulin growth factor receptor (IGFR)

As early as 2002, it had been suggested that IGF-1 receptor (IGF-
1R) signaling through PI3K may represent a novel and potentially
important mechanism of resistance to anti-EGFR therapy. In 2008,
researchers found that the loss of expression of IGF-binding
proteins (IGFBPs) in tumor cells treated with EGFR-TKIs
increased the activation of IGF-IR signaling which, in turn,
mediates resistance of EGFR-TKIs26,27. Inhibition of IGF-IR
signaling disrupted the association of IRS-1 with PI3K and
restored the ability of gefitinib to down-regulate PI3K/AKT
signaling and to inhibit cell growth. Concomitant inhibition of
both EGFR and IGFIR was required to abort PI3K signaling, and
treatment of the resistant cells with an IGFIR inhibitor restored
their sensitivity to EGFR TKIs. Another study found that activa-
tion of IGF-1R can alter phosphorylation state and subcellular
localization of p27, which can promote cell proliferation and cell
motility28. Thus, IGF-1R and p27 can be used to be a biomarker of
cell cycle arrest and response to therapy.

3.5. The abnormality molecules of multiple angiogenic pathways

Angiogenesis is an essential step in tumor growth and metastasis.
Impaired vascularity and hypoxia can lead to increased metastasis
and treatment resistance. Thus, targeting multiple angiogenic
pathways may not only improve antitumor activity but also reduce
the risk of resistance29. Important targets for the development of
novel antiangiogenic therapies include vascular endothelial growth
factors (VEGFs), fibroblast growth factors (FGFs), platelet-derived
growth factors (PDGFs), and their receptors.

3.5.1. The VEGFs and their receptors
The VEGF family and receptors are important regulators of
angiogenesis and vascular permeability. Overexpression of vascu-
lar endothelial growth factor receptor (VEGFR) 1 in tumor cells
leads to cell survival and invasion. It also reduces the inhibition by
EGFR inhibitors and reduces sensitivity to gefitinib. Activation of
the EGFR signal can increase the expression of VEGF. Researchers
have demonstrated that a VEGF/VEGFR2 feed-forward loop in
NSCLC cells expressing VEGFR2, which leads to a signal
amplification and a boost in VEGF secretion, is required for
establishment of fully angiogenic tumors in vivo. This VEGF/
VEGFR2 signaling cascade via VEGFR2/PI3K/mTOR induces an
mTOR-dependent regulation of VEGF secretion30. And VEGF
secretion is induced by the upregulation of HIF-1α. Thus, the
VEGF/VEGFR system is associated with resistance of anti-EGFR
drugs through activation of downstream signal pathways via
EGFR-independent mechanisms31. The therapeutic use of agents
able to inhibit both EGFR and VEGFR may help to efficiently
inhibit the activation of bypass pathways and overcome EGFR
inhibitor resistance.

3.5.2. The fibroblast growth factors and their receptors
The FGFs and the receptors (FGFRs) are involved in multiple
cellular functions. During embryonic development, FGFs play a
part in morphogenesis. In adults, FGFs are involved in wound
healing and tissue repair as well as regulating the nervous system.
FGFs also participate in tumor angiogenesis. FGFR autocrine
signaling has been implicated in NSCLC cell lines. In 2010,
researchers found EGFR-TKIs (gefitinib) increased the expression
of FGFR2 and FGFR3. Importantly, FGFR2 and FGFR3 are
capable of mediating FGF2 and FGF7 stimulated ERK activation,
leading to cell survival and invasion and reducing the sensitivity to
EGFR-TKIs32. FGFR activation is an escape mechanism in human
lung cancer cells resistance to afatiniab, that may compensate for
the loss of EGFR-driven signaling pathway33. Treatment of
NSCLC patients with combinations of EGFR and FGFR specific
inhibitors (e.g., PD173074) or FGF antibodies may be potential
strategy to enhance efficacy of single EGFR-TKIs.

3.5.3. The platelet-derived growth factors and their receptors
(PDGFRs)
PDGFs are isolated from human platelets and promote angiogen-
esis. As angiogenesis factors, PDGFs/PDGFRs are closely related
to tumor development. PDGFs/PDGFRs can induce tumor cell
proliferation and migration, and inhibit apoptosis. In 2013,
Akhavan et al.34 found that a physiologic RTK switch to the
PDGFRβ was required to maintain the growth of EGFR variant III
(EGFRvIII)/EGFR-activated in response to EGFR-TKIs. Combi-
nation of EGFR and PDGFR inhibitors may overcome resistance
of EGFR-TKIs.

3.6. EGFRvIII

EGFRvIII is a tumor-specific mutation that results from in-frame
deletion of 801 base pairs spanning exons 2–7 of the coding
sequence. This deletion removes 267 amino acids from the
extracellular domain, creating a junction site between exons 1
and 8 and a new glycine residue. EGERvIII has expressed in many
kinds of tumors.

EGFRvIII confers enhanced tumorigenicity through multiple
mechanisms and pathways. EGFRvIII expression is associated with
the activation of downstream PI3K/AKT/mTOR pathway and increases
proliferation and cell cycle progression mediated by a decrease in the
level of p27KIP1. EGFRvIII also has been shown to activate the NF-κB
pathway and regulate expression of IL-835. Furthermore, EGFRvIII
induces angiopoietin-like 4 expression through the ERK/c-Myc path-
way and promotes tumor angiogenesis in malignant gliomas36. Cells
harboring EGFRvIII have an enhanced capacity for dysregulated
growth, survival, invasion and angiogenesis. EGFRvIII is an attractive
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target and predictor in cancer immunotherapy because it is not
expressed in normal tissue.

3.7. Overexpression of or overactivated Anexelekto (AXL)

AXL belongs to the Tyro/Axl/Mer (TAM) family of RTK.
Growth-arrest-specific protein 6 (GAS6) is a ligand for AXL.
Activation of AXL increases cell migration, aggregation and
growth through multiple downstream pathways. AXL was over-
expressed in EGFR-mutant NSCLC tumor xenografts with
acquired resistance to erlotinib37. The researchers suggested that
the AXL upregulation may activate AKT, MAPK or NF-κB
signaling to promote resistance to erlotinib, perhaps in association
with epithelial mesenchymal transition (EMT) process via indu-
cing Slug expression38. Inhibitors of AXL (MP-470 or XL-880)
enhance erlotinib sensitivity particularly in the context of NSCLC
with acquired resistance to EGFR-targeting TKIs. Therefore, the
inhibitors of AXL or GAS6 may overcome the AXL-mediated
resistance of EGFR-TKIs.

3.8. Excess secretion of interleukin-6 (IL-6)

IL-6 is a cytokine which plays an important role in many chronic
inflammatory diseases. Binding to the membrane-bound IL-6
receptor (IL-6R) causes the recruitment of two gp130 co-receptor
molecules and the activation of intracellular signaling cascades via
gp130. However, some reports suggest that IL-6 expression is
involved in the regulation of tumor growth and metastatic spread,
including lung cancers. One study demonstrated that activation of
the IL-6R/JAK1/STAT3 pathway induced de novo resistance to
irreversible EGFR-TKIs in NSCLC harboring T790M39. Afatinib
activated IL-6R/JAK1/STAT3 signaling via autocrine IL-6 produc-
tion40. Inhibition of the IL-6R/JAK1/STAT3 signal pathway can
reverse the resistance. JAK1 activates STAT3 activity which is
stopped rapidly by the major negative regulator suppressor of
cytokine signaling 3 (SOCS3) in normal cells. However, association
of the IL-6 receptor with the EGFR can activate STAT3 in presence
of the inhibition of SOCS3 to JAK1 and JAK241. Besides, paracrine
or autocrine stimulation of the TGF-β axis also increases the
secretion of IL-6 and promotes resistance42.

3.9. Amplification of Crk-like protein (CRKL)

CRKL is a member of adapter proteins that participates in signal
transduction in response to both extracellular and intracellular
stimuli, such as growth factors, cytokines and the oncogenic BCR-
ABL fusion protein. Oncogenic CRKL activates the SOS1/RAS/
RAF/ERK and SRC/C3G/RAP1 pathways. Amplification of the
CRKL gene was observed in 1/11 lung cancer patients with EGFR
mutations who acquired resistance to EGFR-TKIs43. Amplification
of CRKL in EGFR-mutant cells induces resistance to gefitinib by
activating ERK and AKT signaling44. What's more, overexpres-
sion of CRKL promotes cell invasion via upregulating MMP9
expression and activating ERK pathway45. Therefore, CRKL can
be a potential target in the treatment of NSCLC.

3.10. Overexpression and activation of integrin beta1

Beta1 subunit of integrin is an adhesion molecule, sharing
common downstream signaling elements with EGFR, such as
the PI3K/AKT and ERK1/2 pathways. Overexpression of integrin
β1 induces gefitinib resistance, accompanied by increases in cell
adhesion and migration46. Subsequently, researchers found that β1
integrin activated an alternative survival pathway in breast cancer
cells harboring resistance to lafatinib, which led to activation of β1
integrin's downstream kinases, FAK and SRC. Inhibition of β1
integrin by AIIB2 can enhance the sensitivity to EGFR-TKIs47.
Further study found that ligand-dependent activation of integrin β1
could induce EGFR-TKIs resistance through activating c-Met and
downstream pathways48. Kanda et al.49 identified the integrin β1/
Src/AKT signal pathway as a key mediator of acquired resistance
to EGFR-targeted anticancer drugs. Researchers have also found
that integrin mediates a stem-like phenotype and confers resistance
to EGFR-targeted therapy through enhancing downstream cou-
pling to a KRAS/RalB/NF-κB pathway50. Therefore, integrin β1
and the pathway molecules provide potential agents for over-
coming the resistance mediated by integrin β1.
4. Abnormal downstream pathways induce drug resistance

The abnormal downstream pathways also can result in the
resistance to EGFR-TKIs, even though the cells have not harbored
any other mutations. The mutation of K-RAS, the loss of
phosphatase and tensin homolog (PTEN), the mutations of
PIK3CA and BRAF are the main points (Fig. 3).

4.1. K-RAS mutation

The RAS proteins include K-RAS, N-RAS and H-RAS. The RAS
proteins are GTPases that are molecular switches for a variety of
critical cellular activities and their function is tightly and temporally
regulated in normal cells. Oncogenic mutations of RAS genes, which
create constitutively-active RAS proteins, can result in uncontrolled
proliferation or survival in tumor cells. In 2005, Pao et al.51 showed
that mutations in K-RAS are associated with primary resistance to
single-agent gefitinib or erlotinib. If the mutations occur at codons
12, 13, 59, 61, 63, 116, 117, 119 or 146, its structure is altered by
binding sites for guanine, affecting normal function. The effects of
these mutations can be translated either in a reduction of the activity
of oncoprotein GTPases, blocking it into the active form bound to
GTP, or in decreased binding affinity and increasing the change in
GDP by GTP attachment52. In total, 80% of K-RAS mutations occur
in codon 12, and other mutations are mainly located in codons 13
and 61. RAS gene alteration is poor prognostic factors for survival of
patients with NSCLC. Additionally, several studies have clearly
demonstrated that RAS uses additional effectors to promote tumor-
igenesis53. Very little is known about the relevant mechanisms.

4.2. Loss of PTEN

PTEN dephosphorylates PI-(3, 4, 5)-triphosphate, which mediates
activation of AKT, thereby negatively regulating the PI3K/AKT/
mTOR pathway and leading to G1 cell cycle arrest and apoptosis.
In addition, PTEN inhibits cell migration and spreading through
regulation of focal adhesion kinase as well as regulates p53 protein
levels and activity.

PTEN deleted on chromosome 10 is a tumor suppressor gene on
chromosome 10q23.3 and encodes a 403 amino acid dual-
specificity lipid and protein phosphatase. The loss of PTEN has
only been investigated in a small number of NSCLC cases.
However, PTEN loss contributes to erlotinib resistance in EGFR
mutant lung cancer by activation of AKT and EGFR54,55. The
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absence of PTEN protein expression is an independent prognostic
marker in early stage resected lung adenocarcinoma. Inhibition of
the PI3K/AKT/mTOR signal pathway can be an effective strategy
to NSCLC harboring the EGFR activating mutations that acquires
resistance to both TKIs and radiotherapy due to PTEN loss56.
4.3. Mutations of BRAF (v-RAF murine sarcoma viral oncogene
homolog B1)

BRAF, another component of the EGFR/RAS/RAF signal trans-
duction pathway, encodes a RAS-regulated kinase that mediates
cell growth, differentiation, apoptosis and malignant transforma-
tion. Mutations of BRAF (G469A, V600E and V599E) were found
in several tumors, including malignant melanoma and colorectal
cancer. Thus, BRAF mutations also induce drug resistance57.
Activating BRAF mutations, especially the common mutant
V599E, induces constitutive activation of the signal transduction
pathway, providing a potent pro-mitogenic force that drives
malignant transformation. The BRAF V599E mutant shows greatly
increased activity in the RAF/MEK/ERK pathway both in vitro
and in vivo. Here, BRAF provides a new target for the treatment to
overcome the mutant BRAF-mediated resistance.
4.4. A downstream mutation in PIK3CA

The PIK3CA gene, encoding a catalytic subunit of the PI3K,
is mutated or amplified in various neoplasias, including lung
cancer. Infrequently, a downstream mutation in PIK3CA has been
identified as a mechanism of resistance58. Recently, a study
Figure 4 Apoptosis pa
demonstrated that PIK3CA mutations frequently coexist with
EGFR or K-RAS mutations59. Patients with single PIK3CA
mutation in NSCLC have poor prognosis. The role of mutant
PIK3CA in oncogenic signaling requires further investigation,
including development of novel targets for therapeutic intervention
in cancers harboring PIK3CA mutations.

4.5. The aberrant expression of NF1

Neurofibromin, the RAS GTPase-activating protein, is encoded by
NF1 gene. A recent study demonstrated that reduced expression of
NF1 was associated with erlotinib resistance due to a failure to fully
inhibit RAS/RAF/MEK/ERK pathway60. Combination therapy with
EGFR and MEK inhibitors may restore sensitivity to EGFR-TKIs.
5. Impairment of a pathway that is essential for EGFR-
TKIs-mediated apoptosis: a common intrinsic deletion
polymorphism in the gene encoding BIM

BIM is a pro-apoptotic member of the B-cell CLL/lymphoma-2
(BCL-2) family, and plays a critical role in inducing cell apoptosis
and tumor metastasis. Consequently, BIM has become the focus of
intense interest as a potential target for cancer chemotherapy. Its
upregulation is required for apoptosis induced by EGFR and
EGFR-TKIs in tumors harboring EGFR mutations. The poly-
morphism switched BIM splicing from exon 4 to exon 3, which
resulted in expression of BIM isoforms lacking the pro-apoptotic
BCL2-homology domain 3 (BH3)61 (Fig. 4). Although the
polymorphism was sufficient to confer intrinsic TKI resistance in
thway mediated by BIM.
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chronic myelogenous leukemia (CML) and EGFR NSCLC cell
lines, this resistance could be overcome with BH3-mimetic drugs.
Recently, researchers have shown that the PP2A activator FTY720
could induce apoptosis of CML cells via dual activation of BIM
and BID and overcome various types of resistance of TKIs62.
6. Histologic transformation

6.1. The EMT

EMT is a physiological process during embryogenesis that appears
to be reinstated in adult tissues undergoing wound healing and
tissue regeneration, or under certain pathological conditions, such as
fibrosis and cancer. EMT is characterized by the combined loss of
epithelial cell junction proteins, such as E-cadherin, and the gain of
mesenchymal markers, such as vimentin and N-cadherin63. In the
EMT process, epithelial cells lose their features, gain properties of
mesenchymal, and become motile and invasive (Fig. 3).

In 2005, a transition to a mesenchymal phenotype was noted
among patients treated with EGFR-TKIs. EMT may be induced by
the activation of AXL via the PI3K/AKT pathway. One study also
showed that loss of E-cadherin can activate EGFR–MEK/ERK/
ZEB1/MMP2 axis, which is responsible for promoting invasion in
NSCLC64. Tumor cells undergoing EMT are also known to increase
the secretion of specific factors, including cytokines, chemokines
and growth factors, which could play an important role in tumor
progression. Well-established signals include those initiated by
Figure 5 The potential targets for the relative treat
TGF-β, FGF, EGF and HGF, all of which have been shown to
promote EMT in various tumor cell models. Other possible pathways
or factors that have been reported to be associated with EMT include
IL-8, IL-6, Notch-1, SOX9, FoxO4, SRC and CRIPTO-165–69.
Co-targeting the relative molecules of these pathways and EGFR
can reverse the resistance mediated by EMT70. However, the specific
mechanism of EMT still remains unknown.

6.2. Small cell transformation

Conversion to small-cell carcinoma has been seen at the time of
development of resistance. Tumor cells retained the original EGFR
mutations but developed a histopathologic small-cell phenotype,
which may benefit from a standard chemotherapy for small cell
lung cancer71. Interestingly, after a period of conventional
cytotoxic treatment, susceptibility to TKIs may redevelop.
Research into this phenomenon is still insufficient.
7. ATP binding cassette (ABC) effusion

The ABC transporters are transmembrane proteins that involved in
transporting biologically important substrates across the cellular
membranes, such as amino acids, cholesterol, hydrophobic drugs
and antibiotic. Overexpression of ABC transporters can reduce
drug uptake, increase drug efflux and lead to low drug density in
the cytoplasm, which will come to a lower drug efficacy and
finally acquire drug resistance. When EGFR-TKIs (lapatinib)
ment to overcome the resistance to EGFR-TKIs.
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binds to the ATP binding cassette, sub-family B, member 1
(ABCB1) and ATP binding cassette, sub-family G, member 2
(ABCG2), substrate-binding sites with high affinity induced over-
expression of ABC transporters72. Other ABC transporters, such as
ATP binding cassette, sub-family C, member 1 (ABCC1) and
ABCC10 also participate in drug resistance. Given the ABC
transporter influence on TKI actions, ABC transporter inhibitors
may reverse the resistance. In addition, researchers73 found that
GW583340 and GW2974, EGFR and HER-2 inhibitors can
reverse ABCG2- and ABCB1-mediated drug resistance.
8. Echinoderm microtubule-associated protein-like 4-the
anaplastic lymphoma kinase (EML4-ALK) fusion gene and the
ALK secondary mutation

The EML4-ALK fusion oncogene was identified as a novel
genetic alteration in NSCLC74. Patients harboring ALK
Table 1 Therapeutic strategies and clinical trials to overcome resist

Resistant mechanism Strategy

EGFR mutation
T790M EGFR-TKIs combined/þantibodie

T790M-specific inhibitors
c-Met inhibitorsþPI3K inhibitors
HSP90 inhibitors
EGFR-TKIsþMEK inhibitors
Glycolysis inhibitionþEGFR-TKIs

Bypass pathway
HER family abnormality HER inhibitorsþEGFR-TKIs
c-Met amplification EGFR-TKIsþc-Met inhibitors

HGF overexpression EGFR-TKIsþPI3K inhibitors
Triple inhibition of EGFR/Met/VE

IGFR abnormality IGFR inhibitorsþEGFR-TKIs
EGFRvIII EGFRvIII antibodies
VEGF/VEGFR abnormality EGFR-TKIsþVEGF inhibitors

MEK inhibitorsþVEGF inhibitors
PDGF/PDGFR abnormality EGFR-TKIsþPDGF inhibitors
FGF/FGFR abnormality EGFR-TKIsþFGF inhibitors
IL-6 abnormality IL-6 antibodies
AXL abnormality AXL inhibitors
CRKL amplification Unknown
Integrin beta1 overexpression Unknown

Downstream pathway
K-RAS mutations PI3K inhibitorsþMEK inhibitors
BRAF mutations BRAF inhibitorsþMEK inhibitors
Loss of PTEN mTOR inhibitors/AKT inhibitors
PIK3CA mutation EGFR-TKIsþPI3K inhibitors
Low expression of NF1 Unknown

Apoptosis pathway
BIM BH3 deletion EGFR-TKIsþPP2A activator

Histologic transformation
EMT EGFR-TKIsþMEK1/2 inhibitors
SCLC transformation PlatinumþVP16/EGFR-TKIs

ABC effusion EGFR-TKIsþHER-2 inhibitors

Unknown mechanism EGFR-TKIs combined
EGFR-TKIsþglycolysis inhibitors
rearrangements tend to be non-smokers or light smokers, have
a history of adenocarcinoma, and tend to be younger in age75.
The EML4-ALK fusion gene was present at a high frequency in
Chinese NSCLC patients, particularly in those with adenocar-
cinomas lacking EGFR/K-RAS mutations76. Recently, crizoti-
nib was identified as a potent inhibitor of ALK and MET
tyrosine kinases77. Crizotinib was well tolerated and resulted
in important tumor shrinkage in NSCLC EML4-ALK positive
patients. However, some patients have resistance to crizotinib
and other EML4-ALK inhibitors are in development.
Researchers78,79 found that the naive NSCLC patients with
ALK rearrangements also had concurrent EGFR activating
mutations. The resistance mechanisms to ALK TKIs may be
mediated by both ALK secondary mutation and a bypass
signaling pathway such as EGFR. These mechanisms can
occur independently, or in the same cancer. Combination
therapy with EGFR-TKIs and ALK inhibitors can improve
the anti-tumor effect.
ance of EGFR-TKIs, "–" stands for no drugs for therapy.

Clinical research Ref.

s Afatinibþcexitumab 80
CO-1686/AZD9291 81,82
GDC0973þGDC0941 83
Luteolin/ganetespib 11,84
AfatinibþARQ 197 85
AfatinibþAUY922 86

Afatinib/dacomitinib 18,87
Erlotinibþcrizotinib 88
Dacomitinibþcrizotinib
GefitinibþPI-103 89

GF – 90
AG1024þgefitinib –

– –

ZD6474 91
ZD6474þPD0325901 30
– –

– –

Siltuximab 92
NPS-1034 93
Unknown –

Unknown –

GDC-0941þAZD6244 94
Dabrafenibþtrametinib 95
– –

GefitinibþBKM120 96
Unknown –

ErlotinibþFTY720 gefitinibþFTY720 62

– –

– –

GW583340/GW2974 73

Afatinibþcexitumab 80
ErlotinibþAUY922
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9. Therapeutic strategies to overcome resistance

The existence of various resistance mechanisms is clear, and it is
wise to identify the specific mechanisms in a patient so that a
suitable, effective strategy can be chosen. The next generation of
EGFR-TKIs and specific antibodies of the relative molecules are
under development. MicroRNAs will soon be employed in treating
resistance to EGFR-TKIs in cancers. Clinical trials are engaged in
examining the potential targets less susceptible to resistance. The
relative clinical trials or therapeutic strategies are listed in the
table (Table 111,18,30,62,73,80–96 and Fig. 5). In practice, combined
treatments or therapies with multiple targets may show more
powerful efficacy, and the multi-targeting drugs may show super-
ior efficacy.
10. Conclusions

Increasing evidence shows that the primary or acquired resistance
to first- or second-generation EGFR-TKIs explains why patients
who initially benefited from these treatments later do not. Though
some of the mechanisms of resistance have been identified, much
additional information is needed to understand and overcome
resistance to these agents.
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