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Ischaemia/reperfusion (I/R) injury of the heart represents a major health burden mainly associated with acute coronary syndromes.
While timely coronary reperfusion has become the established routine therapy in patients with ST-elevation myocardial infarction,
the restoration of blood flow into the previously ischaemic area is always accompanied by myocardial injury. The central mechanism
involved in this phenomenon is represented by the excessive generation of reactive oxygen species (ROS). Besides their harmful
role when highly generated during early reperfusion, minimal ROS formation during ischaemia and/or at reperfusion is critical
for the redox signaling of cardioprotection. In the past decades, mitochondria have emerged as the major source of ROS as well as
a critical target for cardioprotective strategies at reperfusion. Mitochondria dysfunction associated with I/R myocardial injury is
further described and ultimately analyzed with respect to its role as source of both deleterious and beneficial ROS. Furthermore,
the contribution of ROS in the highly investigated field of conditioning strategies is analyzed. In the end, the vascular sources of

mitochondria-derived ROS are briefly reviewed.

1. Introduction

Ischaemia/reperfusion (I/R) injury of the heart represents
a major health burden mainly associated with acute coro-
nary syndromes. Each year, myocardial infarction (MI) is
responsible for the death of millions of persons and, more
importantly, due to the aging of the population, represents the
first cause of chronic heart failure worldwide [1]. Thus, it is not
surprising that it has been predicted, already 10 years ago, that
more than 40% of US population will suffer from heart failure
as end stage of cardiovascular pathologies by the year 2030
[2].

Timely coronary reperfusion by either thrombolysis or
primary coronary artery angioplasty has become the estab-
lished routine therapy in patients with ST-elevation MI

(STEMI) which effectively decreases infarct size and reduces
mortality [3]. Paradoxically, restoration of the blood flow
into an ischaemic area is always accompanied by myocardial
injury [4]. In fact, several distinctive pathophysiological
changes have been systematically associated with revascu-
larization. These changes, collectively denominated “reper-
fusion injury,” comprise both (i) reversible (sublethal) events
such as reperfusion-induced arrhythmias and myocardial stun-
ning (prolonged but fully reversible contractile dysfunction)
and (ii) irreversible (lethal) ones, namely, the accelerated
necrosis in tissue that has been already irreversibly injured
(the “oxygen paradox”) [5], the induction of microvascular
obstruction (responsible for the no-reflow phenomenon), and
the lethal reperfusion injury (death of cardiomyocytes that
were potentially viable at the end of the ischaemic event, that
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is, prior to reperfusion) (reviewed in [6-8]). Although the
existence of this last major event was at the time a matter of
debate [9, 10], substantial experimental evidence supported,
firstly, the fact that irreversible reperfusion injury (through
necrosis, apoptosis, and autophagy) exists [11] and, secondly,
the concept that early reperfusion represents a window of
opportunity for the delivery of adjunctive therapies capable
of preventing cardiomyocyte death [12-14].

During the past four decades, a tremendous research
effort was put forward to elucidate the pathophysiology of
I/R injury and identify strategies that are able to provide car-
dioprotection at reperfusion, that is, to enhance the amount
of myocardium salvaged by timely restoration of the blood
flow [6, 7, 14, 15]. In this respect, the mitochondrion is the
organelle that has been unanimously indicated as the major
culprit responsible for the development of cardiomyocyte
death [11, 16-19] and, also, the primary target in protecting
the heart against the deleterious effects of reperfusion injury
[20-23].

Among the main mechanisms that underlie mitochon-
drial dysfunction and, ultimately, cardiomyocyte death in
the setting of I/R injury, namely, calcium dysregulation, ATP
depletion, release of proapoptotic proteins, and oxidative
stress, the last issue, that is, excessive formation of reactive
oxygen species (ROS) with the subsequent damage of cell
constituents, plays a central role as it is able to trigger and/or
potentiate each of the other mentioned mechanisms [24].

However, in neither field has the well-known principle
stated by Paracelsus “dosis sola venenum facit” (“the dose
alone makes the poison”) been more true as in the case of
redox biology. Indeed, while increased oxygen radical pro-
duction is the central mechanism involved in postischaemic
myocardial injury, minimal ROS formation is critical for the
redox signaling of cardioprotection (reviewed in [25-31]).

Basic cardiovascular research has witnessed the discovery
of a myriad of ways to protect the heart/cardiomyocytes in
various experimental models of I/R injury. Despite the fact
that clinical application of these strategies has been thus far
limited [32], the development of specific molecules targeting
mitochondria of living cells for therapeutic gain is a rapidly
evolving field and a number of drugs have already entered
clinical testing [21, 33-36].

Mitochondria dysfunction associated with postischaemic
myocardial injury is further described and ultimately ana-
lyzed with respect to its role as source of both deleterious and
beneficial reactive oxygen species in the setting of I/R injury
and for cardioprotective signaling, respectively. Last but not
least, the potential vascular sources of mitochondria-derived
ROS are briefly reviewed.

2. Mitochondria Dysfunction in
Ischaemia/Reperfusion Injury:
Historical Perspective

Mitochondria occupy a fixed fractional volume (~21% of the
total heart mass) in mammalians and are strategically placed
in the vicinity of myofibrils to ensure the delivery of a huge
amount of ATP (ten times the cardiac mass) which is largely
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generated via oxidative phosphorylation and required for the
myocardial contraction that occurs within a wide workload
range [37]. Since the heart is strictly dependent on aerobic
metabolism, it is not surprising that cardiac pathology is
intimately intricated with mitochondrial impairment in the
setting of myocardial I/R injury. Moreover, heart is primarily
a postmitotic organ and, therefore, the death of cardiomy-
ocytes is the major phenomenon that underlies this organ
pathology.

Most of our research knowledge regarding the structural
and biochemical changes elicited by experimental ischaemia
and reperfusion comes from the pioneering studies started
in the late 60s by Robert Jennings. In his seminal papers, he
provided a clear definition of lethal ischaemic injury as being
“the ischaemic injury of sufficient severity and duration that
the involved cells will continue to degenerate and become
necrotic despite reoxygenation by reperfusion of arterial
blood” [38, 39]. This definition points to the gradual pattern
of the process, in which irreversibly injured ischaemic car-
diomyocytes will ultimately progress to the loss of membrane
integrity and necrotic cell death. At the end of prolonged
ischaemic episodes (e.g., 40 min in dogs), mitochondria in
irreversibly injured cells contain one or more small (80-
150 ym) amorphous matrix densities, being ascribed as “the
most reliable indicator of irreversibility” [40, 41]. Interest-
ingly, these dense matrix deposits (consisting primarily of
lipids and little calcium) were considered a characteristic
feature not only of ischaemia-related irreversible injury of
the heart but also of drug and toxic-induced injury in liver
and kidney [41]. Besides the gradual pattern of progression
to death, when reperfused in vivo after prolonged periods
of ischaemia, cardiomyocytes undergo an abrupt irreversible
injury characterized by hypercontracture and a rapid increase
in permeability of the sarcolemmal membrane responsible
for the release of intracellular enzymes [42], observations
relevant for the phenomenon of lethal reperfusion injury.
Mitochondria in these cells showed diffuse swelling and
accumulated a second type of matrix densities, distinct
from the amorphous ones already present at the time of
reperfusion; these granular dense bodies contained a large
amount of calcium precipitated as an initially undefined form
of calcium phosphate [40, 41]. As noticed in a critical review,
the most important finding of the classical studies was that the
hallmark events of irreversible injury, that is, hypercontrac-
ture and calcium overload, required functional (coupled) mito-
chondpria in order to occur [43]. Indeed, hypercontracture of
sarcomeres into contraction bands [44] and mitochondrial
accumulation of calcium as well as the enzymes release were
all lessened by inhibiting mitochondrial respiration with the
subsequent decrease in ATP synthesis (reviewed in [45, 46]).
Accordingly, it was evident already almost 4 decades ago
that restoration of mitochondrial function in myocardial cells
after severe ischaemia was the major culprit for the double-
edged sword effect of reperfusion, since ATP production via
oxidative phosphorylation was mandatory for the recovery
of cardiomyocytes but appeared to also contribute to the
postischaemic cell death. Despite the thoroughly performed
experiments, it should be mentioned that Jennings and Gan-
ote refrained themselves from affirming a causal relationship
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between the “observed changes in mitochondrial structure
and function and the death of the myocardial cell” due to the
technical limitations at that time [40].

Similarly, these authors acknowledged the role of exces-
sive production of oxygen free radicals at reperfusion and
their toxic effects on both myocardium and vasculature;
however, they admitted only the possibility that in the case of
irreversibly injured myocytes “free radicals might accelerate
the degradation of dead cells, but not kill any cells which
were otherwise viable” [42]. Moreover, 15 years ago, both the
existence and, more importantly, the clinical relevance of the
reperfusion injury were strongly questioned [47].

The disrupted mitochondrial electron system has been
already identified by the mid-70s as a potential source of
oxyradicals (in particular superoxide) in the setting of I/R
injury; the process is further contributed by a decrease
in the free radical scavenging capacity due to the loss of
mitochondrial reduced superoxide dismutase and reduced
glutathione (reviewed in [48]). The uncontrolled reactivation
of mitochondria upon oxygenation with subsequent ROS
generation has also been considered responsible for the
peroxidation of cardiac lipids, increased sarcolemmal perme-
ability, and enzyme release; the events have been prevented
in the presence of either superoxide dismutase or reduced
glutathione administered at the end of hypoxia and during
reoxygenation [49].

Indeed, as Halliwell mentioned, it was the time when “the
field of free radicals and antioxidants was simple: free radicals
are bad, antioxidants must be good” [50]. The huge amount
of research carried in the past decades in the field provided a
progressive change of the paradigm, namely, that “too many
oxidants are bad, but some may be good” [44]. Undoubtedly,
free radicals account for the harmful effects (oxidative attack
of proteins, lipids, and DNA) only when rapidly generated
in elevated concentrations (e.g., during the postischaemic
reperfusion) whereas in low or moderate amounts they act
as signaling molecules with a critical role in the regulation
of several fundamental physiological and adaptive processes
(including cardioprotection).

3. Mitochondria as Sources of Harmful ROS

3.1 Oxidative Stress: Old and New Definitions. Oxidative
stress has been classically defined as the spatiotemporal,
quantitative imbalance between increased ROS formation
(prooxidant stress) and decreased ROS removal (antioxidant
defense) that is responsible for cellular damage [51, 52]. It has
to be mentioned that the term does not refer only to the over-
production of “true” free radicals (molecules containing one
or more unpaired electrons), such as superoxide anion (the
primary ROS) and hydroxyl radical, but also to the increased
generation of highly reactive nonradical derivatives, mainly
hydrogen peroxide, peroxynitrite, and singlet oxygen [53].
However, ten years ago Jones proposed a new definition
of stress as being “an imbalance between oxidants and antiox-
idants in favor of the oxidants, leading to a disruption of redox
signaling and control and/or molecular damage,” pointing
to the crucial role of disrupting the ROS-mediated signal

transduction [54]. Moreover, Jones challenged the free radical
dependent-oxidative stress theory by postulating the radical-
free “redox hypothesis” according to which oxidative stress
occurs via the disruption of thiol pathways due to aberrant
generation of nonradical oxidants in distinct subcellular
compartments [55]. In this respect, the term has been recently
redefined in that oxidative stress should be perceived rather
as a subcellular deleterious event than as a global threat to
the whole cell [53]. In any case, regardless of the theory,
mitochondria are the organelles that lie at the heart of redox
biology being at the same time the sources of harmful and
beneficial ROS and the main targets for oxidation.

3.2. Mitochondrial Sources of Harmful ROS. Mitochondria
consume about 98% of the inhaled oxygen in order to
produce the energy required to sustain life [56]. The increased
efficiency of the oxidative phosphorylation in eukaryote cells
comes at a price of mitochondrial generation of ROS; thus,
ROS production and lethal reperfusion injury appear to be
both a sort of “necessary evil” [57, 58].

Mitochondria have been conventionally recognized as the
major cellular source for ROS production. Indeed, several
expert research groups have systematically studied along the
years the mitochondrial origins of ROS; in this respect, the
reader is referred to several comprehensive reviews of the
topic [59-71]. Moreover, it has to be mentioned that an
unbiased estimation of the contribution of mitochondrial
sources to oxidative stress in living cells requires not only
multiple ROS reporter molecules but also parallel assessment
of parameters that may induce artifacts as well as testing
conditions that could interfere with the mitochondrial gen-
eration of oxidants [72]. What is unequivocally established
so far is that ROS can be generated in vitro as either
an accidental or an obligatory by-product of mitochon-
drial metabolism [73]. The former case is best exemplified
by a dysfunctional electron transport system (ETS) (due
to toxic or stress-related inhibition, mutational damage,
and elevation of mitochondrial membrane potential due to
metabolic causes) whereas the latter is best exemplified by the
increased activity/expression or assembly failure of enzymes
with defined metabolic roles [51, 57, 73]. More recently, the
group of Koopman suggested that local ROS and/or reactive
nitrogen species (RNS) involved are short-term regulation of
mitochondrial morphology (fusion and fission) and function
via nontranscriptional pathways [74].

There is plethora of experimental evidence supporting the
roles of complexes I and III of the ETC as major generators
of superoxide, the primary ROS (reviewed in [26, 59-61, 64—
66, 84] and summarized in Table 1). Interestingly, Forkink et
al. have recently suggested that the increase in ROS levels is
not surpassing the capacity of the antioxidant systems within
the cells [153]. In this respect, they demonstrated that chronic
inhibition of CI and CIII in HEK293 cells (i) stimulated
oxidation of the ROS sensor hydroethidine, (ii) increased
cytosolic (but not mitochondrial) H,O, levels, and (iii) was
not associated with oxidative stress or cell death [153].

In the past years, several studies have also demonstrated
the role of complex IT defectin *O,~ overproduction (Table 1).
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TaBLE 1: Continued.

ROS sources

Experimental model:
references

Experimental model:

ROS sources
references

Inner membrane

CI (NADH dehydrogenase):
inner side

CII (succinate dehydrogenase):
inner side

CIII (ubiquinol-cytochrome ¢
reductase): inner and outer side

Hyperphosphorylation of CIV
(cytochrome ¢ oxidase)

Glycerophosphate
dehydrogenase (a.k.a.
glycerol-3-phosphate

dehydrogenase, a.k.a. nGPDH):

outer side

Dihydroorotate dehydrogenase
(DHO): outer side

(i) Bovine hearts: [75-83]
(ii) Rat heart: [80, 84-86]
(iii) Rat brain: [60, 86, 87]
(iv) Rat lung: [88]

(v) Rat liver: [84]

(vi) Rat skeletal muscle:
[84, 89-91]

(vii) Cell cultures: [79]
(viii) Human brain: [87]

(i) Rat heart: [92, 93]

(ii) Bovine heart: [94-96]
(iii) Rat brain: [97]

(iv) Rat skeletal muscle: [98]
(v) Yeast: [99]

(vi) E. coli: [100]

(i) Bovine heart:

[95, 96, 101, 102]

(ii) Rat heart: [84, 103, 104]
(iii) Rat liver: [84, 105]

(iv) Rat brain: [104]

(v) Rat skeletal muscle: [84]
(vi) Mouse skeletal muscle:
[106]

(vii) R. capsulatus strains:
[107]

(i) Rabbit hearts and mouse
monocyte macrophages: [108]

(i) Mouse heart, brain, and
kidney: [109]

(ii) Hamster brown adipose
tissue: [110]

(iii) Drosophila: [111]

(i) Rat brain & liver: [112]
(i) Rat skeletal muscle: [113]
(iii) Rat tissues (skeletal
muscle, liver, GI tract, etc.):
[114]

(iv) Cell lines: [115]

(v) Human skin and kidney:
[114]

(i) Rat brain: [122]

(ii) Rat hearts: [123]

(iii) Mouse liver, kidney, and
heart: [124-126]

(iv) Mouse aorta: [127]

(v) Rat aorta: [128]

(vi) Cell line: [129]

(vii) Human atrial samples:
[130]

Monoamine oxidases (MAO-A
and MAO-B)

Intermembrane space

p66™™ (growth factor adaptor
She)

(i) Mouse liver: [116]
(ii) Mouse aorta: [117]

Matrix

Aconitase (mitochondrial- (m-)

aconitase)

Alpha-ketoglutarate
dehydrogenase complex
(KGDHG, a.k.a. 2-oxoglutarate
dehydrogenase)

(i) Bovine heart: [118]

(i) Bovine heart: [119]
(ii) Mouse brain: [120]

Outer membrane

Cytochrome b5 reductase

(i) Human brain tissue: [121]

Among these, the groups of Quinlan et al. [98] and Siebels
and Drose [94] have studied ROS generation at complex
II in artificial conditions, such as a low concentration of
succinate and inhibition of respiratory chain downstream to
CII [94, 98]. Finally, ROS generation by complex IV was
demonstrated to be rather relevant in pathological conditions
by Prabu et al. since hyperphosphorylation of complex IV
on ischaemic hearts increases the electron leakage and,
therefore, the *O,~ production [108].

In addition to the ETS, several other mitochondrial sites
(see Table 1) can be also responsible for ROS production in
a tissue-specific manner and dependent on the experimental
conditions [64]. Moreover, one of the most pertinent obser-
vations has been recently formulated by Andreyev et al.; these
authors acknowledged the fact that, in line with the observer
effect postulated in quantum physics, directly assessing ROS
production using the conventional systems is not possible
without changing the process [57].

3.3. Mitochondrial ROS Generation in Ischaemic/Reperfused
Heart. Physiological, low concentrations of mitochondrial
ROS are considered to exert beneficial effects on cardio-
vascular function [97]. Accordingly, a tight redox con-
trol is responsible for cardiomyocyte differentiation and
excitation-contraction coupling [154, 155]. On the contrary,
ROS overproduction is responsible for the so-called phe-
nomenon “ROS-induced ROS release” [70, 156] or the
“kindling radicals” concept [157, 158], which postulates that
(extra)mitochondrial ROS trigger mitochondrial ROS pro-
duction, with a pathological impact on (1) cardiac cells
via the cellular bioenergetic decline which leads to the
impairment of excitation-contraction coupling, arrhythmias,
cardiac hypertrophy, apoptosis, necrosis, and fibrosis [71]; (2)
endothelial cells, with 2 major effects: (i) the inflammatory
vascular reaction involved in the pathogenesis of atheroscle-
rosis, hypertension, and diabetes [159] via the activation of
Ca*"-activated potassium channel (KCa channel) coupled
with intracellular signaling of PKG-la activation in the
smooth muscle cells [160, 161] and (ii) the coronary collateral
growth inhibition [162] via the coronary dilation mediated by
the activation of voltage-dependent potassium channels (Kv
channels) and thiol redox-dependent signaling [163, 164].

In the setting of I/R injury the contribution of
mitochondria-derived ROS to oxidative stress is particularly
true for the metabolically active organs, such as heart and
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Ischaemia

Reperfusion

(i) ETC disruption
]

(i) ETC disruption
(ii) NADPH oxidases
(iii) Xanthine oxidase
(iv) NOS uncoupling
(v) MAOs

(vi) p66™

(i) | ETC activity

(ii) | A¥m (ii) MMP .
(iii) ATP depletion (iit) NO/superoxide
interactions

Név) mPTP opening + Ca?*

(v) Oxidation of lipids,
proteins, DNA, and RNA|

(i) Inflammatory mediators

(iv) Adhesion molecules
(v) Leucocytes and platelets
activation

dysregulation

Inflammation
and capillary
plugging
( J
Y
’ Cardiomyocyte death

FIGURE 1: Mitochondrial ROS contribution to I/R injury. Cellular hypoxia secondary to ischaemia results in disruption of ETC activity in
the IMM (inner mitochondrial membrane) with subsequent ROS production. Increased activity of MAOs, NADPH oxidase, and p66*™;
conformational changes of xanthine oxidase; and/or NO synthase uncoupling further amplify ROS production upon reoxygenation. Increased
mitochondrial ROS damages mtDNA and RNA with ETC impairment. Dysfunctional ETC will amplify ROS generation, leading to a vicious
cycle of mitochondrial cumulative damage, decreased mitochondrial membrane potential (Ay,,) and respiration, mPTP opening with cellular
swelling and Ca** dysregulation, and oxidation of lipids and proteins. Postischaemic ROS generation also stimulates an inflammatory
response, with the release of chemical mediators and expression of adhesion molecules by endothelial cells and leukocytes. ROS-dependent
activation of MMPs (matrix metalloproteinases) is also responsible for the functional impairment of several proteins and receptors. The
inflammatory response and the activation of leucocytes and platelets trigger the narrowing of capillaries during reperfusion, accelerating the
progression towards cardiomyocyte death. (Illustration realized thanks to Servier Medical Art.)

brain [26]. Both hyperoxia (at reperfusion) and, also (albeit
counterintuitively), hypoxia (during the ischaemic period)
are able to trigger ROS production (Figure 1, [26, 68, 165]).
During ischaemia, cardiomyocytes become hypoxic and
the mitochondrial ETC complexes are highly reduced;
the reaction of the electrons leaking from the respiratory
complexes with residual oxygen will generate the superoxide
anion. At reperfusion, hyperoxygenation will be associated
with marked superoxide and superoxide-downstream
ROS (mainly, hydrogen peroxide, peroxynitrite, and the
hydroxyl radical) both due to electron leakage and due to
a decrease in the detoxification capacity of mitochondria
(Figure 1, [71]). An important consequence due to myocardial
I/R is the change in the mitochondrial balance NO/°O,",
with an increased NO production, subsequent excess of
ONOO"™ synthesis, and an increase of the related protein
tyrosine nitration [166]. An enzyme with high susceptibility
to oxidative stress is aconitase, whose activity is clearly
impaired during myocardial I/R, followed by the increase
of hydroxyl radicals release [167], an observation which
could be suggestive for using the oxidative inactivation of
mitochondrial aconitase activity as an additional marker of
myocardial infarction [71].

The major contributor to ROS overproduction during I/R
is related to the oxidative impairment of mitochondrial com-
plex I along with a corresponding decrease in NADH-linked
state 3 oxygen consumption and enhanced NADH-linked
ROS production, respectively [168, 169], and reviewed in [23,
71]. During reperfusion, the NADH-ferricyanide reductase
activity (the enzymatic activity of NADH dehydrogenase) is
restored, which partially explains the *O,~ production during
reperfusion, since NADH dehydrogenase is one of the major
sources for ‘O, generation at complex I. Impaired complex
I activity during reperfusion might be also responsible for
ROS-induced damage of mitochondrial cardiolipin and res-
piratory supercomplexes that further increases the electron
leakage at complex I and induces a vicious cycle of oxidative
stress that ultimately leads to mitochondrial dysfunction
(169, 170]. Lastly, an important protein tyrosine nitration of
complex I in the postischaemic heart was demonstrated with
a subsequent inactivation of complex I [166].

The involvement of complex II in ROS production in
ischaemic hearts is unclear, despite the fact that diazoxide or
atpenin A5 (specific complex II inhibitors) has been proven
to exert cardioprotective effects by activating mitochondrial
ATP-sensitive potassium (mK,rp) channels [71].



Oxidative Medicine and Cellular Longevity

TABLE 2: Potential mechanisms responsible for the decrease in ROS generation.

Site of action

Mechanism

(1) UCP2 or UCP3 overexpression [131-133]

Reduced mitochondrial ROS production via mitochondrial
uncoupling with subsequent Ay depolarization

(2) Brief transient mPTP opening [134]

Reduced ROS production and/or release into the cytosol via a
reversible Ay depolarization

Observation: a prolonged mPTP opening triggers apoptosis and
cell death (135, 136]

(3) Recruitment of hexokinase (HK) at the mitochondrial outer
membrane [137]

Increased coupled respiration with subsequent reduced electron
leak and ROS production

(4) Glutathionylation of CIT and CV [92, 138, 139]

Decreased activity of CII and CV

(5) Glutathionylation of the 51-kDa (NDUFV1) and 75-kDa
(NDUFS1) CI subunits [79, 81, 140, 141]

Decreased activity of CI

Observation: however, CI inactivation is not necessarily linked to
reduced ROS production since Taylor and collaborators
demonstrated that glutathionylation of CI was associated to
increased superoxide production [142]

(6) Reduction of electrons input [143, 144]

Lowered cellular glucose uptake and stimulation of pyruvate
conversion to lactate with secretion of the latter into the
extracellular environment

(7) Mild uncoupling [145, 146] and inhibition of succinate
dehydrogenase [147] via the action of potassium channel
openers

Inhibition of CI with subsequent reduction of H,O, release into
the cytosol

Complex III is also considered an important source for
mitochondrial ROS production in ischaemic hearts [171],
due to increased lipid peroxidation of cardiolipin required
for complex III activity [172] and increased protein tyrosine
nitration [166]. The electron leakage at complex III was asso-
ciated with pharmacological preconditioning by diazoxide
(the classic mitoK yrp channel opener) via the inhibition of
complex II with and transient generation of signaling ROS at
complex III [173].

Lastly, complex IV-mediated ROS production can also
be enhanced in ischaemic hearts via the activation of mito-
chondrial protein kinase A (PKA) which increased hyper-
phosphorylation of complex IV [108, 161]. Moreover, Spear et
al. demonstrated that PKA-mediated depression of complex
IV activity was reversed by blocking fl-adrenergic receptor
activation during I/R, with a subsequent reduction of the
myocardial injury [167].

Another recently investigated mitochondrial source for
ROS generation is represented by monoamine oxidases
(MAOQs), two isoforms, MAO-A and MAO-B, located on
the outer mitochondrial membrane. These FAD-containing
dehydrogenases catalyze the electron transfer from the bio-
genic amines to O, and constantly generate hydrogen perox-
ide (H,0,) as by-product. MAO-derived H, O, is the primary
signaling molecule when generated in minute amounts and
becomes harmful when highly generated during conditions
associated with oxidative stress [73]. Accordingly, in settings
of postischaemic reperfusion or heart failure, the increased
activity of MAO-A isoform significantly contributed to the
aggravation of myocardial injury [174-177] and progres-
sion towards the maladaptive left ventricle hypertrophy
and remodeling, respectively [125, 178]. These studies have
unequivocally demonstrated the role of MAO-A in cardiac
pathology; however, recent experimental data also reported

the presence and contribution of MAO-B isoform to oxida-
tive stress in the murine cardiovascular system [126, 128, 179].
We have recently demonstrated that both MAOs isoforms are
expressed in atrial appendages harvested from patients with
cardiovascular pathology (i.e., valvular disease and coronary
heart disease), with the predominance of the MAO-B isoform
(Duicu et al, in press). To date there is only one study in
the literature showing that an increased activity of MAO-B is
responsible for the induction of mitochondrial dysfunction
and cardiac structural/functional alterations in mice with
experimentally induced heart failure [126].

3.4. Antioxidant Strategies in Ischaemia/Reperfusion Injury.
The mitochondrial antioxidant system is a network of high
complexity (the reader is referred to several comprehensive
reviews [51, 57, 143]) and comprises 3 major categories: (1)
the first one includes superoxide dismutase 2 (MnSOD)
and catalase, which exert their ROS neutralizing activity
independent of the reducing equivalents; (2) the second one
includes peroxiredoxins 3 and 5 (Prx3 and Prx5, located in the
mitochondrial matrix), which depend on thioredoxin (Trx)
and thioredoxin reductase (TRx2) for their regeneration; (3)
the third one includes glutathione peroxidases 1 and 4 (GPX1
and GPX4) and glutaredoxins, which depend on GSH and
glutathione reductase (GR) to regenerate GSH [57]. The last
two categories of ROS scavengers depend on NADPH, which
in turn is regenerated by 3 mitochondrial matrix enzymes:
isocitrate dehydrogenase (NADP-linked), malic enzyme,
and transhydrogenase [60]. The individual contribution of
these enzymes to mitochondrial NADPH regeneration is far
from being elucidated [180].

The mechanisms that potentially could underlie the
mitigation of ROS generation are listed in Table 2.
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Therapeutic antioxidant approaches against the I/R
myocardial injury have been disappointingly ineffective [181-
184] or even harmful [53], most probably because the applied
strategies were not able to distinguish between deleterious
and beneficial ROS generation [29] and these differences
between animal and human pathological models [185].
However, recent data have proven an enhanced therapeutic
efficiency of novel synthetic antioxidants in ameliorating the
I/R-linked oxidative stress with a subsequent cardioprotective
effect. Such antioxidants include NO-based and vitamin E
(MitoVit-E) molecules which are able to sequester antioxi-
dants in mitochondria and Alda 1, a small molecule activator
of aldehyde dehydrogenase-2, a mitochondrial enzyme that
detoxifies aldehydes involved in myocardial I/R (reviewed in
[29]). In bovine aortic endothelial cells exposed to oxidative
stress, MitoVit-E significantly decreased ROS production and
apoptosis [186], yet it was not neuroprotective in striatal
medium-spiny neurons subjected to acute perinatal hypoxic—
ischaemic brain injury [187]. An important disadvantage of
MitoVit-E is that its scavenging activity is not regenerated
[188]. At variance, mitoquinone (MitoQ) containing the
antioxidant coenzyme Q (quinone) is regenerated by ETC
after detoxifying ROS and was proven to inhibit mitochon-
drial oxidative stress in rodent models of I/R [189]. Another
synthetic mitochondrial scavenger is the plastoquinone SkQl,
which used in a lower concentration than that of MitoQ was
also able to reduce the infarct size and arrhythmias in rats
subjected to I/R [190].

Of a particular promise for the inhibition of deleterious
ROS induced by I/R injury might be the gene therapy
approaches as demonstrated so far by two recent studies
that used target upregulation of mitochondrial antioxi-
dant enzymes like MnSOD or matrix peroxiredoxins [191]
or overexpressed prosurvival molecules such as aldehyde
dehydrogenase-2 microRNAs [192].

4. Mitochondria as Sources of Beneficial ROS

Until the 80s, I/R injury was considered a black or white
phenomenon, the cardiomyocytes being provided with no
more than two options—recovery or death. However, starting
with the 80s, it became apparent that myocardial cells
exposed to a variety of insults, including ischaemia, have an
innate ability to mount several cardioprotective responses
and an inherent program for survival. In the early days
of myocardial I/R research, it was found that while the
reintroduction of oxygen through reperfusion was essential
for recovery, this also caused a burst of free radicals finally
leading to myocardial injury [193]. Based on the concept
that ROS only have deleterious effects, the administration
of free radical scavengers was thought to be an appro-
priate solution in this situation. Several studies reported
protective effects of this strategy, which unfortunately were
surprisingly not supported by other independent laborato-
ries [194]. Nowadays, it is largely accepted that some ROS
represent intracellular mediators in physiological processes
like vasodilation, cell growth, and angiogenesis and redox
signaling is an important determinant of epigenetic and

genetic regulation of cellular function. It has now become
abundantly clear that, in cardioprotection against I/R injury,
ROS present a delicate beneficial to deleterious switch [28]
and this cross talk to and from mitochondria [157] might
be favorable since the inhibition of a single source of ROS
partially or even completely abrogated the oxidative stress
[127].

The most powerful intrinsic mechanism of cardiopro-
tection is represented by ischaemic preconditioning (IPC)
which has been reported to cause adaptation to ischaemia
in, virtually, all experimental settings from cell cultures to
mammals. This strategy was first established by Murry et
al. in 1986 [195] and describes the ability of brief periods of
nonlethal ischaemia alternated with reperfusion to protect
the heart from a subsequent prolonged lethal or “index”
ischaemia. In 2003, the term postconditioning (PostC) was
coined by the group of Vinten-Johansen to define a series
of brief mechanical interruptions of reperfusion that were
early applied within the first 3 minutes of reperfusion, elicited
an anti-infarct protection comparable to the one induced
by IPC [196]. The introduction of this appealing term as
a novel strategy to limit lethal reperfusion injury, even if
criticized by some authors who considered it as a form of
modified reperfusion or compared it to “an old wine in a new
bottle” [197], has the huge merit of resuscitating the concept
that more myocardium can be salvaged by adding adjunct
therapies to the early reperfusion. IPC and PostC require
direct intervention on the heart, which may be challenging
in some clinical situations. Remote ischaemic conditioning
(RIC) was developed as a procedure performed by applying
brief cycles of nonlethal I/R in a vascular territory remote
from the heart. Although it is similarly cardioprotective to
IPC and PostC, the fact that it is implemented at a distance
from the organ of interest constitutes an evident advantage
[198]. All these strategies represent endogenous self-defense
mechanisms that are dependent on ROS generation. The
identification of the most relevant sources of ROS and the
threshold at which they lose their potentially protective effect
and become damaging to cellular function and integrity still
represents an unmet need in the field of cardioprotection
[27].

4.1. Ischaemic Preconditioning. To date, no other strategy
aimed at reducing I/R injury has proven itself to be more
effective than IPC and thousands of paper tackled the
mechanisms underlying its protective effect with numerous
signaling molecules being identified as participating in the
signal transduction sequence [199]. Among these, the gener-
ation of sublethal amounts of ROS during the short cycles of
ischaemia and/or reperfusion has been consistently reported
to be the trigger of IPC, possibly through the oxidation of
protective cytosolic kinases [200]. The direct consequence of
minute ROS generation prior to the prolonged ischaemia was
the triggering of a “ROS-induced ROS decrease” response
during the postischaemic reperfusion in every species tested.
The observation that the deleterious burst of ROS upon
reperfusion is reduced when IPC is applied has been demon-
strated 20 years ago [201] and is still valid until today [202].



In addition, administration of exogenous ROS induces a
protective effect similar to IPC [203], whereas antioxidants
decrease or abolish cardioprotection [204, 205].

Mitochondria have emerged as the major source of ROS
generation within the cardiac myocytes in the setting of
preconditioning [206]. The PKCe activated by IPC induces
the stimulation of mitochondrial K,rp channels causing a
slight increase in H,O, production which eventually leads to
the inhibition of the mitochondrial permeability transition
pore (mPTP) [207], seemingly the final effector of IPC
[208]. Within this cascade of events, there might be a
direct interaction between ROS and mPTP components or
the sublethal oxidative stress can set in motion signaling
pathways that decrease mitochondrial susceptibility to mPTP
opening [27]. Also, a small level of ROS can be generated
through a brief opening of the mPTP that may play an
important role in cardioprotection [209]. In line with this
observation, it has been reported that the inhibition of CyP-
D results in abolition of ROS formation and of IPC-related
cardioprotection, respectively [210].

In addition, it may be that all forms of cardiomyocyte
stress lead to ROS signaling and that this could represent a
mechanism for gaining ischaemic tolerance, as data suggests
that hyperthermic preconditioning is reliant on ROS produc-
tion [211].

An important source of mitochondrial H,O, generation
is the activation of MAO-A (as discussed in Section 3) during
reperfusion with the occurrence of apoptosis in isolated
cardiac myocytes; indeed, in lower concentrations, H,O, was
found to be partly responsible for the cardioprotective effect
of IPC [212]. Supporting this claim, MAO inhibition in the
settings of IPC has been reported to abolish cardioprotection
(D1i Lisa, unpublished observations, cited by [213]). However,
in a recent study in isolated rat hearts subjected to a pre-
conditioning protocol, we have demonstrated that bracketing
the IPC episodes with MAO inhibitors did not interfere with
the antinecrotic protection but potentiated the postischaemic
functional recovery [214].

4.2. Ischaemic Postconditioning. Even though IPC is indeed
the most efficient strategy, postconditioning (PostC) also
proved to afford cardioprotection, although slightly less so
than the former in terms of decreasing the infarct size.
Penna et al. were the first to notice that ROS are needed to
trigger PostC-related protection too [215]. In line with this
observation, other studies have proven that PostC-mediated
protection was abolished in the presence of ROS scavengers
at the beginning of reperfusion [215, 216].

Cardioprotection is also possibly mediated by the preven-
tion of mPTP opening by acidosis during the PostC cycles,
while the intermittent bursts of oxygen throughout the brief
I/R episodes allow mitochondria to produce just enough
ROS in a moment when other enzymes, responsible for the
generation of massive quantities of free radicals, are not yet
reactivated. The consequent activation of the PKC pathway
leads to the sensitization of adenosine receptors, signaling
via the RISK pathway [199], and, finally, the prevention
of mPTP formation even after the pH returned to normal
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[213]. Although all the mentioned evidence supports the idea
that PostC-related cardioprotection is dependent on redox
signaling, it is also apparent that the type, concentration, and
the sources of ROS may be key factors in triggering protection
at the time of reperfusion [213]. Contrary to the limited
clinical applicability of IPC, PostC applied to humans in the
cardiac catheterization laboratory has provided encouraging
results by two clinical studies [217, 218], whereas others found
no cardioprotective effects [219, 220]. Such discrepancies
might be the result of different inclusion/exclusion criteria
and the differences in the PostC chosen protocols. Thereby,
the results of the DANAMI-3 trial (NCT01435408) designed
to investigate postconditioning in STEMI patients are awaited
this year with real interest [221].

4.3. Remote Ischaemic Conditioning. Remote ischaemic con-
ditioning (RIC) was firstly described in 1993 by Przyklenk
et al. [222] who noted that brief episodes of I/R applied
in one region of the heart are protective for remote vir-
gin myocardium in a separate myocardial territory. The
mechanisms behind RIC are very complex and occur in
three interrelated stages: (1) the I/R stimulus induces the
synthesis of protective factors in the remote organ; (2) the
protective signal is transmitted through a complex neu-
rohumoral interaction to the target organ; (3) the events
taking place in the target organ result in the protective
effect.

Presumably, the signaling pathways activated in the
remote and the target organ, respectively, are similar to
those described in IPC and PostC [198]. Again, ROS pro-
duction is part of the signaling cascade involved. Once the
cardioprotective signal resulting from the ischaemic remote
organ reaches the heart, it binds to G-protein cell surface
coupled receptors which activate intracellular kinases like
PKC-¢ and other signaling molecules such as ROS and the
mitochondrial K,pp channel [223]. It has been demonstrated
that IPC and remote ischaemic preconditioning (RIPC)
both rely on free radicals to induce cardioprotection, as
N-2-mercaptopropionyl glycine, an antioxidant, is capable
of completely blocking the beneficial effect of RIC when
ischaemia is induced by infrarenal occlusion of the rat aorta
[224]. Also, in a model of RIPC obtained by occlusion
of the mouse femoral artery, the ischaemia applied in the
remote organ induced S-nitrosation of mitochondrial com-
plex I in cardiomyocytes, which resulted in a reduction
of ROS (i.e., H,0,) in the reperfused myocardium at risk
[225].

As in the case of PostC, RIPC has been successfully
translated to humans and recent pilot studies showed that it
is able to improve clinical outcome and prognosis (excellently
reviewed by [221]). In order to confirm these proof-of-
concept studies, two multicentre trials of RIPC are cur-
rently ongoing, namely, NCT01857414 (CONDI II trial) and
NCT 02342522 (ERIC-PPCI trial).

Despite the successful results in animal models (reviewed
in [30]) and in several pilot human studies (see above), the
results of the cardioprotective trials targeting mitochondria
have been rather disappointing (Table 3).
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TaBLE 3: Cardioprotective strategies targeting mitochondria in clinical trials.

Trial Strategy Results
Worsened heart failure during the
initial hospitalization,
A bolus injection of CsA rehospitalization for heart failure,

NCTO01502774 (CIRCUS trial)

administered at the onset of
myocardial reperfusion in patients
with anterior ST-segment-elevation
MI (STEMI)

and adverse left ventricular
remodeling at 1 year in 59.0% of the
395 patients randomized to
cyclosporine and 58.1% of the 396
individuals randomized to placebo
[148]

NCT01374321 (MITOCARE trial)

L.v. bolus administration of
TRO40303 (an inhibitor of mPTP
opening) in STEMI patients
undergoing primary PCI
(percutaneous coronary
intervention)

TRO40303 did not show any
protective effects as compared to
placebo in preventing reperfusion
injury in STEMI patients treated
with primary PCI [149]

NCT01572909 (EMBRACE STEMI trial)

MTP-131 (a cell-permeable peptide
that preserves the integrity of
cardiolipin, enhances mitochondrial
energetics, and improves myocyte
survival during reperfusion in
animal models) administration for
1h among first-time anterior STEMI
subjects undergoing primary PCI
for a proximal or mid left anterior
descending (LAD) artery occlusion

Administration of MTP-131 was not
associated with a significant
reduction in infarct size or clinical
outcomes [150]

NCT01584453 (NITRITE-AMI trial)

Intracoronary injection of nitrite
during primary PCI in STEI
patients

The phase II showed that
intracoronary nitrite infusion did
not change the infarct size. Yet, in a
subgroup of patients with TIMI
flow <1, nitrite reduced infarct size
and MACE and improved
myocardial salvage index indicating
a follow-up with the phase III of the
clinical trial [151]

NCT01388504 (NIAMI trial)

Intravenous sodium nitrite
administration immediately prior to
PCI in patients with acute STEMI

Myocardial infarct size did not
differ between nitrite and placebo
groups. There were no significant
differences in plasma troponin I and
CK area under the curve, left
ventricular volumes, and ejection
fraction measured at 6-8 days and
at 6 months and final infarct size
measured at 6 months [152]

5. Mitochondria-Derived ROS and
Endothelial Dysfunction

The mitochondrial content in the endothelial cells is rather
poor as compared to other cells, for example, 2-6% of
the rat cell volume versus 28% in hepatocytes or 32% in
cardiomyocytes [226, 227]. At variance from cardiomyocytes,
endothelial mitochondrial content and energy requirements
are relatively reduced, glycolysis being the main source
of ATP production [228]. Nowadays these organelles are
considered major players in both cell signaling and vascular
disease [188]. Moreover, mitochondrial cellular distribution
represents a key factor for its function. In this view, the group

of Gutterman demonstrated in endothelial cells isolated from
human coronary arterioles that mitochondria are anchored
to the cytoskeleton being thus responsible for ROS release in
response to cell deformation by shear stress [229]. Another
relevant study sustaining this theory demonstrated that
pulmonary artery exposed to hypoxia induced a retrograde
mitochondrial movement requiring microtubules and the
microtubule motor protein dynein, changes that lead to
a perinuclear clustering of mitochondria [230]; moreover,
this mitochondrial redistribution was associated with ROS
accumulation in the nucleus, which was further reduced by
nocodazole which destabilized the microtubules and, thus,
suppressed the perinuclear clustering of mitochondria [230].
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In recent years, an increasing attention has been payed to
the alterations of mitochondrial fusion and fission, due to
their harmful consequences on cellular bioenergetics and
endothelial dysfunction in the settings of cardiovascular
disorders [74, 231, 232].

A wealth of clinical and experimental studies unequiv-
ocally demonstrated that endothelial dysfunction represents
a central event in the pathogenesis of cardiovascular diseases
(recently reviewed in [233]). Risk factors, such as aging,
hypercholesterolemia, hyperglycemia, smoking, infections,
and hypoxia, alter the mitochondrial membrane potential
(Ay,,), with a subsequent contribution to excessive mito-
chondrial ROS production [233]. If the membrane is depo-
larized, complexes I and III show an increased activity in
order to restore membrane potential, thus leading to ROS
generation [226]. Metabolic disease states associated with
high nutrient availability and low ATP demand are charac-
terized by membrane hyperpolarization which also results
in excessive ROS [227]. The consequential modifications of
mitochondrial components affect the mtDNA, proteins, and
lipids which in turn will stimulate ROS production, creating
thus a vicious cycle that promotes vascular disease [234,
235]. Moreover, the mtDNA damage is responsible for the
alteration of the ETS components expression, leading to an
increased ROS production [236].

Apart from complexes I and III of the respiratory chain,
another important source of mitochondria-derived ROS
in endothelial cells is nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase 4 (NOX-4), which is the most
highly expressed Nox family member in the endothelial
layer of vasculature, being localized in many intracellular
compartments, including mitochondria [237, 238]. Endothe-
lial cells and basal ROS production, mainly H,O, (rather
than O,”) as stated by [239], require NOX-4 and its
homolog NOX-2 [238]. More recently, it was suggested that
NOX-4 has rather a preventive function, since it protected
the vasculature during ischaemic or inflammatory stress
[240]. Thus, the contribution of NOX-4 to ROS signaling,
angiogenesis, oxidative stress, endothelial dysfunction, and
inflammation processes is far from being fully elucidated
[240-244].

Another mitochondrial source of ROS is the growth fac-
tor adapter protein p66°™. In physiological conditions, p66°'°
is included in a high-molecular-weight inhibitory protein
complex located in the mitochondrial matrix or even in
the cytoplasm. Circumstances associated with proapoptotic
signals, such as hypoxia, activate p66"™ which migrates in
the mitochondrial intermembrane space, where, through the
oxidation of cytochrome ¢, it generates H, O, [116]. Moreover,
p66™™ can become active via phosphorylation by protein
kinase C in conditions associated with hyperglycemia, con-
tributing thus to diabetic endothelial dysfunction [117, 245].
p66°™ deletion in models of vascular injury has yielded
beneficial effects [117, 246], supporting thus the statement
about its implication in oxidative stress [227].

Mitochondrial ~ ATP-sensitive  potassium  channel
(mitoK,rp) represents a regulator of mitochondrial free
oxygen radicals. Although it has not been the focus of
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interest in vascular dysfunction so far, its activation seems
to protect cultured endothelial cells from ischaemic cell
death and to maintain vasodilating capacity in Langendorff-
perfused guinea-pig hearts suffering from I/R injury
[247, 248]. Furthermore, glibenclamide, a nonselective K yrp
channel blocker, abolished the IPC-induced preservation
of endothelium-dependent dilation in the human forearm,
while the mitoK,rp opener diazoxide mimicked the IPC
protection [249, 250]. These potassium channels also
demonstrated the ROS-induced ROS release theory, since
ROS produced by another cellular structure acted by opening
mitoK,rp, stimulating the generation of mitochondrial ROS
[157, 251]. It might be, thus, reasonable to assume that the
inhibition of these channels might be protective. As in the
case of cardiomyocytes, the phenomenon of ROS-induced
ROS release can equally contribute to the pathogenesis of
endothelial dysfunction [252].

Lastly, H,O, generated by MAO-A in vascular smooth
muscle cells contributes to serotonin-induced vasocon-
striction [253]. Although it was clearly demonstrated that
endothelial cells express MAOs [254], the exact role of these
enzymes in modulation of endothelial function has not been
fully characterized. Recently, we have described the role of
MAOs as mediators of endothelial dysfunction in two murine
models of acute (induced with lipopolysaccharide, LPS) and
chronic (induced with angiotensin II, AII) [127] oxidative
stress or after the induction of experimental diabetes [128].
Both isoforms increased the expression of vascular MAOs
with subsequent high H,O, generation. This mechanism was
deemed responsible for the induction of oxidative stress,
altered level of cGMP with a central role in NO-mediated
signaling, and a consecutive impairment of aortic rings
relaxation [127]. It is important to note that all changes
induced by MAOs activation were reversed by the MAO-
A and MAO-B inhibitors [127], proving thus the contribu-
tion of mitochondria-derived ROS to endothelial dysfunc-
tion.

Reperfusion following ischaemia is associated with an
increased endothelial generation of ROS and endothelin
and a reduced availability of nitric oxide. This latter event
promotes neutrophil adhesion to the vascular endothelium
and platelet aggregation, which, coupled with the effect of
endothelin, will eventually lead to vasoconstriction which
is responsible for the no-reflow phenomenon; the adhesion
of neutrophils will further enhance ROS release from the
endothelium and neutrophils [255]. ROS production repre-
sents, thus, an important path in mitochondrial signaling
[227], which explains the huge interest in the elucidation of
their sources and regulatory mechanisms.

Obviously, the nature of mitochondrial ROS signaling in
endothelial cells is still a matter of debate. It may be that
the significance of mitochondrial ROS in endothelial cell
signaling varies according to vascular bed and risk factor
burden [256]. Accordingly, there is evidence that dilation
of human cardiac arterioles depends on ETC-derived ROS
[229] and that antioxidant therapy blunted the dilation of the
healthy human brachial artery [257]. On the other hand, in
coronary arteries of atherosclerotic patients, H,O, scavengers
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improved endothelium-dependent dilation [258], an effect
also noticed in diabetic freshly isolated arterioles treated with
mitochondria-targeted antioxidants [259].

In conclusion, targeting vascular ROS definitely repre-
sents an important research direction in order to alleviate
endothelial dysfunction [260].

6. Conclusion

Despite the unequivocal beneficial effects of reperfusion
in ceasing the progression of irreversible damage, it is
largely accepted nowadays that (i) reperfusion is a double-
edged sword as it is able to induce per se the myocardial
lethal reperfusion injury which paradoxically alleviates the
beneficial effects of revascularization and (ii) there is an
unmet need and a strong interest in developing clinically
effective cardioprotective interventions, which are able to
further reduce infarct size in association with revasculariza-
tion procedures. Mitochondrial dysfunction and the resulting
oxidative stress are central in the pathogenesis of I/R injury
and the drugs that can antagonize cardiomyocyte death
by modulating mitochondrial function have started to be
systematically investigated in clinical setting. Indeed, novel
antioxidant compounds selectively targeting mitochondria
appear to be an effective strategy to protect the heart against
the deleterious effects of both ischaemic and reperfusion
injury, two sides of the same coin. However, since the
signaling mechanisms mediating I/R-induced mitochondrial
dysfunction are diverse, a combination of pharmacological
compounds or coadministration of drugs acting simultane-
ously on distinct targets should be envisaged.
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