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Abstract: To discover novel herbicidal compounds with favorable activity, a range of phenylpyridine-
moiety-containing α-trifluorothioanisole derivatives were designed, synthesized, and identified
via NMR and HRMS. Preliminary screening of greenhouse-based herbicidal activity revealed that
compound 5a exhibited >85% inhibitory activity against broadleaf weeds Amaranthus retroflexus,
Abutilon theophrasti, and Eclipta prostrate at 37.5 g a.i./hm2, which was slightly superior to that of
fomesafen. The current study suggests that compound 5a could be further optimized as an herbicide
candidate to control various broadleaf weeds.
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1. Introduction

Organosulfur compounds are widely present in animals and plants due to their physi-
ological activities, such as diallyl disulfide compounds in garlic, isothiocyanate compounds
in cruciferous vegetables and some fruits, and sulfur-containing amino acids and vita-
mins. These molecules play a vital role in maintaining the metabolism of organisms and
various life activities. Therefore, many researchers have conducted in-depth research on
these compounds and found that some molecules containing thioheterocycles, thioureas,
sulfonamides, thioethers, sulfoxides, sulfones, and other structures show biological activ-
ity [1–8]. For instance, Wang et al. [9] reported a class of sulfonylurea compounds with
high herbicidal activities against Echinochloa crusgalli and Digitaria sanguinalis for pre- and
post-emergence treatment and noted that they were safe for peanut as post-emergence
treatment. A range of 5-substituted sulfonylurea derivatives discovered by Li et al. [10]
showed good herbicidal activities against Amaranthus retroflexus and Brassica campestris for
pre-emergence treatment. It is worth noting that compounds containing sulfide, sulfoxide,
and sulfone structures have been widely used in materials [11,12], medicine [13–15], and
pesticides [16–22] in the past few decades (Figure 1). The pre-emergence herbicide pyroxas-
ulfone, discovered by Todoroki et al. [23], exhibited excellent herbicidal activity and crop
safety, and it is currently used in the field.

Substituted 2-phenylpyridines discovered by Schaefer et al. exhibited good inhi-
bition activity against weeds [24,25]. Substituted 3-(pyridin-2-yl)benzenesulfonamide
derivatives disclosed by Liu et al. showed excellent inhibitory activity against a variety
of weeds [26–28]. Du et al. also reported that a range of kresoxim-methyl derivatives
containing phenylpyridine moieties exhibited higher inhibitory activities against broadleaf
weeds than mesotrione [29,30].

Herein, 18 novel α-trifluorothioanisole derivatives were synthesized through intro-
ducing phenylpyridine moieties into α-trifluorothioanisole. The inhibitory activities of the
resultant compounds against broadleaf and grass weeds were determined.
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Figure 1. Structures of reported sulfur-containing compounds.

2. Results and Discussions
2.1. Chemistry

The synthesis procedures for the target compounds used in this work are outlined in
Scheme 1. Intermediates 3a–3f were obtained according to the literature [31]. The target
compounds 5a–5f were prepared via nucleophilic substitution reaction from intermediates
3a–3f and compound 4. In addition, compounds 5a–5f were oxidized to yield compounds
6a–6f and 7a–7f using 3-chloroperbenzoic acid or hydrogen peroxide as oxidants according
to previously disclosed methods [32,33]. After synthesis, all target compounds were
characterized via HRMS and NMR. X-ray diffraction crystallography was further used to
confirm the structure of compound 5a (Figure 2). The crystal data of compound 5a and the
NMR spectrum of all target compounds are shown in the Supplementary Materials.
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Figure 2. The X-ray crystal structure of compound 5a.

2.2. Greenhouse Herbicidal Activity Assays

As can be seen from Table 1, some target compounds exhibited excellent inhibitory
activity against the tested dicotyledonous weeds but proved ineffective against monocotyle-
donous weeds. Of these, at 150 g a.i./hm2, compounds 5a, 5f, 6b, and 7a exhibited >80%
inhibitory activity when used for the post-emergence treatment of the broadleaf weeds
AT, AR, and EP, while compounds 6f and 7f exhibited >80% activity against AT and AR.
Furthermore, compound 5a also effectively suppressed the growth of DS and SV, which
was slightly better than the positive control fomesafen. Other compounds exhibited varying
levels of general herbicidal activity. Further analysis revealed that compound 5a exhibited
>85% inhibition against AT, AR, and EP for post-emergence treatment at 37.5 g a.i./hm2,
which was slightly superior to the inhibition ability of fomesafen, whereas compound 5f
also exhibited >70% inhibition against these three weeds.

Table 1. The structures and herbicidal activities of α-trifluoroanisole derivatives for post-emergence
treatment in a greenhouse assay setting.

Compound
Chemical Structure Dosage/

(g a.i./hm2)
Weed a

R1 R2 EC DS SV AT AR EP

5a H H
150 10 ± 2 90 ± 5 80 ± 3 100 ± 0 100 ± 0 90 ± 2
75 0 ± 0 20 ± 3 0 ± 0 95 ± 1 100 ± 0 90 ± 5

37.5 0 ± 0 0 ± 0 0 ± 0 90 ± 3 100 ± 0 85 ± 4
5b H F 150 0 ± 0 50 ± 4 30 ± 5 60 ± 2 70 ± 5 85 ± 1
5c H Cl 150 0 ± 0 0 ± 0 0 ± 0 0 ± 0 100 ± 0 40 ± 5
5d H NO2 150 0 ± 0 0 ± 0 0 ± 0 20 ± 4 20 ± 2 100 ± 0
5e H CF3 150 0 ± 0 0 ± 0 0 ± 0 0 ± 0 20 ± 3 100 ± 0

5f F F
150 20 ± 4 75 ± 2 60 ± 5 100 ± 0 95 ± 1 100 ± 0
75 0 ± 0 0 ± 0 0 ± 0 100 ± 0 100 ± 0 95 ± 1

37.5 0 ± 0 0 ± 0 0 ± 0 70 ± 5 90 ± 2 80 ± 4
6a H H 150 0 ± 0 0 ± 0 0 ± 0 30 ± 1 90 ± 4 30 ± 3
6b H F 150 0 ± 0 0 ± 0 0 ± 0 100 ± 0 100 ± 0 80 ± 5
6c H Cl 150 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
6d H NO2 150 0 ± 0 0 ± 0 0 ± 0 0 ± 0 80 ± 5 0 ± 0
6e H CF3 150 0 ± 0 0 ± 0 0 ± 0 0 ± 0 80 ± 2 0 ± 0
6f F F 150 0 ± 0 0 ± 0 0 ± 0 90 ± 3 80 ± 4 30 ± 3
7a H H 150 0 ± 0 0 ± 0 0 ± 0 90 ± 4 85 ± 3 80 ± 1
7b H F 150 0 ± 0 0 ± 0 0 ± 0 20 ± 2 95 ± 1 70 ± 5
7c H Cl 150 0 ± 0 0 ± 0 0 ± 0 0 ± 0 30 ± 3 0 ± 0
7d H NO2 150 0 ± 0 0 ± 0 0 ± 0 0 ± 0 80 ± 4 0 ± 0
7e H CF3 150 0 ± 0 0 ± 0 0 ± 0 0 ± 0 60 ± 2 0 ± 0
7f F F 150 0 ± 0 0 ± 0 0 ± 0 100 ± 0 90 ± 5 70 ± 2

fomesafen /
150 68 ± 4 76 ± 3 78 ± 5 98 ± 2 100 ± 0 76 ± 5
75 63 ± 1 69 ± 5 67 ± 3 92 ± 2 95 ± 3 67 ± 4

37.5 47 ± 3 44 ± 2 56 ± 4 90 ± 1 87 ± 5 55 ± 2
a EC, Echinochloa crusgalli; DS, Digitaria sanguinalis; SV, Setaria viridis; AT, Abutilon theophrasti; AR, Amaranthus
retroflexus; EP, Eclipta prostrate.
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From Table 1, we can see that the herbicidal activities of compound 5 were slightly
better than those of compounds 6 and 7. According to the SAR of compound 5 in the field
of herbicidal activity, when R1 and R2 were both substituted by hydrogen atoms (5a), the
activities of compound 5 against three broadleaf weeds were better than those of other
compounds. For compound 6, when R1 was substituted by a hydrogen atom and R2 was
substituted by a fluorine atom (6b), the herbicidal activities of compound 6 were optimal.
For compound 7, the optimal herbicidal activities were observed when R1 and R2 were
substituted by either hydrogen atoms or fluorine atoms (7a, 7f).

3. Materials and Methods
3.1. Instrumentation

All reagents and other materials were purchased from commercial sources and used
without additional purification unless otherwise noted. A B-545 melting point instrument
was used to determine melting point without calibration. A Bruker AV-400 or AV-500 MHz
spectrometer was used to generate NMR spectra with DMSO-d6 or CDCl3 serving as
solvents. An Agilent 6545 Q-TOF LCMS spectrometer was used for mass spectrometry.
A Bruker D8 Venture diffractometer was utilized to collect crystallographic data.

3.2. Synthesis

The synthesis methods of the title compounds are outlined in Scheme 1.

3.2.1. General Approach to the Synthesis of Compounds 3a–3f

2,3-Dichloro-5-(trifluoromethyl)pyridine 1 (5 mmol), triphenylphosphorus (0.5 mmol),
K2CO3 (10 mmol), substituted p-hydroxybenzeneboronic acid 2a–2f (5.5 mmol), and pal-
ladium(II) acetate (0.25 mmol) were mixed and stirred for 6 h with CH3CN (10 mL) and
CH3OH (5 mL) at 50 ◦C under N2. Thereafter, the mixture was extracted using ethyl
acetate (30 mL × 3), rinsed using brine, and concentrated. The remaining residue was then
recrystallized using ethanol and water as solvents at 70 ◦C to obtain compounds 3a–3f [31].

3.2.2. General Approach to the Synthesis of Compounds 5a–5f

Substituted phenylpyridines 3a–3f (2 mmol), N,N-dimethylformamide (10 mL), and
NaH (3 mmol, 0.12 g) were mixed and stirred at 20 ◦C for 30 min under N2. Next,
4-trifluoromethylthiobenzyl bromide (2.4 mmol) was added and stirred for 8 h at 60 ◦C. The
mixture was extracted thrice using ethyl acetate (30 mL × 3), rinsed using brine, and con-
centrated. Residues were then purified via silica gel column chromatography using ethyl
acetate (EA) and petroleum ether (PE) (VEA:VPE=1:15) to obtain compounds 5a–5f [31].

3.2.3. General Approach to the Synthesis of Compounds 6a–6f

Compounds 5a–5f (0.5 mmol), 85% 3-chloroperbenzoic acid (0.5 mmol), and dichloromethane
(10 mL) were mixed and stirred at 20 ◦C for 6 h. The mixture was evaporated to remove
the solvent. Residues were then purified via silica gel column chromatography using ethyl
acetate (EA) and petroleum ether (PE) (VEA:VPE=1:7) to obtain compounds 6a–6f [32].

3.2.4. General Approach to the Synthesis of Compounds 7a–7f

Compounds 5a–5f (0.4 mmol), 30% hydrogen peroxide (1.6 mmol), and trifluoroacetic
acid (2 mL) were mixed and stirred at 60 ◦C for 6 h. Thereafter, the mixture was made
alkaline using a sodium hydroxide solution, extracted thrice using ethyl acetate (30 mL × 3),
rinsed using Na2SO3, and concentrated. Residues were then purified via silica gel column
chromatography using ethyl acetate (EA) and petroleum ether (PE) (VEA:VPE=1:10) to
obtain compounds 7a–7f [33].

3-chloro-5-(trifluoromethyl)-2-(4-((4-((trifluoromethyl)thio)benzyl)oxy)phenyl)pyridine (5a):
White solid, yield 78.8%, m.p. 93.2–95.4 ◦C. 1H NMR (500 MHz, DMSO-d6) δ: 8.99 (s, 1H),
8.51 (s, 1H), 7.76 (dd, J = 8.4, 3.4 Hz, 4H), 7.64 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H),
5.29 (s, 2H). 13C NMR (126 MHz, DMSO-d6) δ: 159.17, 158.79, 144.27 (q, J = 4.0 Hz), 140.63,
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136.27, 135.71 (q, J = 3.1 Hz), 131.02, 129.57 (q, J = 308.4 Hz), 129.37, 129.17, 128.82, 124.39
(q, J = 33.0 Hz), 122.86 (q, J = 273.4 Hz), 122.29 (q, J = 2.0 Hz), 114.37, 68.43. HRMS (ESI):
calculated for C20H13ClF6NOS [M+H]+ 464.0305, 466.0276, found 464.0308, 466.0277.

3-chloro-2-(3-fluoro-4-((4-((trifluoromethyl)thio)benzyl)oxy)phenyl)-5-(trifluoromethyl)pyridine
(5b): White solid, yield 85.9%, m.p. 63.5–65.0 ◦C. 1H NMR (500 MHz, DMSO-d6) δ: 9.01 (d,
J = 0.9 Hz, 1H), 8.55 (s, 1H), 7.79 (d, J = 8.1 Hz, 2H), 7.70–7.64 (m, 3H), 7.61 (d, J = 8.6 Hz,
1H), 7.41 (t, J = 8.7 Hz, 1H), 5.38 (s, 2H). 13C NMR (126 MHz, DMSO-d6) δ: 157.57, 150.96
(d, J = 244.7 Hz), 147.15 (d, J = 10.6 Hz), 144.33 (q, J = 3.9 Hz), 140.06, 136.34, 135.89 (q,
J = 3.3 Hz), 129.79 (d, J = 6.7 Hz), 129.58 (q, J = 308.3 Hz), 129.42, 128.92, 126.27 (d, J = 3.2 Hz),
124.85 (q, J = 33.1 Hz), 122.80 (q, J = 273.4 Hz), 122.59 (q, J = 1.9 Hz), 117.22 (d, J = 20.0 Hz),
114.71, 69.36. HRMS (ESI): calculated for C20H10ClF7NOS [M−H]− 480.0065, 482.0036,
found 480.0064, 482.0043.

3-chloro-2-(3-chloro-4-((4-((trifluoromethyl)thio)benzyl)oxy)phenyl)-5-(trifluoromethyl)pyridine
(5c): White solid, yield 94.0%, m.p. 82.0–83.5 ◦C. 1H NMR (400 MHz, DMSO-d6) δ:
9.02 (s, 1H), 8.57 (s, 1H), 7.88 (s, 1H), 7.78 (t, J = 10.5 Hz, 3H), 7.67 (d, J = 7.2 Hz, 2H),
7.40 (d, J = 8.3 Hz, 1H), 5.41 (s, 2H). 13C NMR (101 MHz, DMSO-d6) δ: 157.49, 154.37,
144.38 (q, J = 3.9 Hz), 140.14, 136.38, 135.89 (q, J = 3.1 Hz), 130.94, 130.25, 129.68, 129.60 (q,
J = 309.1 Hz), 129.45, 128.62, 124.87 (q, J = 33.4 Hz), 122.81 (q, J = 274.1 Hz), 122.48, 121.21,
113.62, 69.28. HRMS (ESI): calculated for C20H10Cl2F6NOS [M−H]− 495.9770, 497.9740,
found 495.9767, 497.9740.

3-chloro-2-(3-nitro-4-((4-((trifluoromethyl)thio)benzyl)oxy)phenyl)-5 (trifluoromethyl)pyridine
(5d): White solid, yield 86.5%, m.p. 114.5–116.5 ◦C. 1H NMR (400 MHz, DMSO-d6) δ:
9.06 (s, 1H), 8.63 (s, 1H), 8.35 (d, J = 2.2 Hz, 1H), 8.11 (dd, J = 8.8, 2.2 Hz, 1H), 7.80 (d,
J = 8.1 Hz, 2H), 7.65 (d, J = 8.1 Hz, 2H), 7.61 (d, J = 8.9 Hz, 1H), 5.51 (s, 2H). 13C NMR
(101 MHz, DMSO-d6) δ: 156.76, 151.71, 144.63 (q, J = 3.6 Hz), 139.64, 138.99, 136.51, 136.12
(q, J = 3.5 Hz), 135.49, 129.74, 129.66 (q, J = 308.8 Hz), 129.27, 128.63, 126.42, 125.33 (q,
J = 33.3 Hz), 122.83 (q, J = 274.1 Hz), 122.66 (q, J = 1.9 Hz), 115.28, 69.85. HRMS (ESI):
calculated for C20H10ClF6N2O3S [M−H]− 507.0010, 508.9981, found 507.0010, 508.9983.

3-chloro-5-(trifluoromethyl)-2-(3-(trifluoromethyl)-4-((4 ((trifluoromethyl)thio)benzyl)oxy)
phenyl)pyridine (5e): White solid, yield 93.4%, m.p. 111.6–113.5 ◦C. 1H NMR (400 MHz,
DMSO-d6) δ: 9.07 (s, 1H), 8.62 (s, 1H), 8.13 (d, J = 8.8 Hz, 1H), 8.10 (s, 1H), 7.83 (d, J = 8.0 Hz,
2H), 7.67 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 8.7 Hz, 1H), 5.52 (s, 2H). 13C NMR (101 MHz,
DMSO-d6) δ: 157.42, 156.64, 144.47 (q, J = 3.6 Hz), 139.94, 136.39, 135.93 (q, J = 3.5 Hz),
135.35, 129.60 (q, J = 308.7 Hz), 129.51, 129.06, 128.33, 128.15 (q, J = 5.1 Hz), 125.02 (q,
J = 33.3 Hz), 123.45 (q, J = 273.6 Hz), 122.80 (q, J = 274.1 Hz), 122.48 (q, J = 1.8 Hz), 117.04 (q,
J = 30.7 Hz), 113.76, 69.21. HRMS (ESI): calculated for C21H10ClF9NOS [M−H]− 530.0033,
532.0004, found 530.0031, 532.0010.

3-chloro-2-(2,3-difluoro-4-((4-((trifluoromethyl)thio)benzyl)oxy)phenyl)-5-(trifluoromethyl)
pyridine (5f): White solid, yield 80.2%, m.p. 79.5–82.0 ◦C. 1H NMR (500 MHz, CDCl3)
δ: 8.84 (d, J = 1.1 Hz, 1H), 8.06 (d, J = 1.5 Hz, 1H), 7.71 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.3 Hz,
2H), 7.19–7.15 (m, 1H), 6.92–6.89 (m, 1H), 5.26 (s, 2H). 13C NMR (126 MHz, CDCl3) δ: 155.42,
149.29 (dd, J = 252.8, 11.0 Hz), 149.28 (dd, J = 8.2, 2.8 Hz), 144.45 (q, J = 3.6 Hz), 141.76 (dd,
J = 249.8, 14.4 Hz), 139.03, 136.78, 134.93 (q, J = 3.2 Hz), 132.36, 129.68 (q, J = 308.6 Hz),
128.26, 127.20 (q, J = 33.9 Hz), 124.84 (t, J = 3.6 Hz), 124.65, 122.74 (q, J = 273.6 Hz), 120.22
(d, J = 12.2 Hz), 110.36 (q, J = 2.6 Hz), 70.97. HRMS (ESI): calculated for C20H9ClF8NOS
[M−H]− 497.9971, 499.9942, found 497.9969, 499.9949.

3-chloro-5-(trifluoromethyl)-2-(4-((4-((trifluoromethyl)sulfinyl)benzyl)oxy)phenyl)pyridin (6a):
White solid, yield 41.7%, m.p. 123.3–124.7 ◦C. 1H NMR (400 MHz, DMSO-d6) δ: 9.00 (s,
1H), 8.53 (s, 1H), 7.94 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 8.3 Hz, 2H), 7.76 (d, J = 8.7 Hz, 2H), 7.19
(d, J = 8.8 Hz, 2H), 5.35 (s, 2H). 13C NMR (101 MHz, DMSO-d6) δ: 159.17, 158.87, 144.40
(q, J = 3.7 Hz), 143.20, 135.85 (q, J = 3.4 Hz), 134.70 (q, J = 1.4 Hz), 131.14, 129.50, 129.28,
128.67, 126.26, 124.83 (q, J = 337.5 Hz), 124.47 (q, J = 32.9 Hz), 122.96 (q, J = 273.7 Hz), 114.45,
68.47. HRMS (ESI): calculated for C20H13ClF6NO2S [M+H]+ 480.0254, 482.0225, found
480.0254, 482.0227.
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3-chloro-2-(3-fluoro-4-((4-((trifluoromethyl)sulfinyl)benzyl)oxy)phenyl)-5-(trifluoromethyl)
pyridine (6b): White solid, yield 80.3%, m.p. 113.0–115.0 ◦C. 1H NMR (400 MHz, DMSO-d6)
δ: 9.02 (s, 1H), 8.57 (s, 1H), 7.97 (d, J = 7.8 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H), 7.69 (dd, J = 12.2,
1.5 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H), 7.43 (t, J = 8.6 Hz, 1H), 5.45 (s, 2H). 13C NMR (101 MHz,
DMSO-d6) δ: 157.59, 150.96 (d, J = 245.2 Hz), 147.10 (d, J = 10.4 Hz), 144.36 (q, J = 3.7 Hz),
142.56, 135.91 (q, J = 3.2 Hz), 134.94 (q, J = 1.0 Hz), 129.88 (d, J = 6.6 Hz), 129.44, 128.68,
126.31, 126.25, 124.86 (q, J = 33.1 Hz), 124.77 (q, J = 337.7 Hz), 122.81 (q, J = 273.9 Hz),
117.26 (d, J = 19.9 Hz), 114.75, 69.38. HRMS (ESI): calculated for C20H10ClF7NO2S [M−H]−

496.0014, 497.9985, found 496.0015, 497.9993.
3-chloro-2-(3-chloro-4-((4-((trifluoromethyl)sulfinyl)benzyl)oxy)phenyl)-5-(trifluoromethyl)

pyridine (6c): White solid, yield 50.1%, m.p. 119.3–120.3 ◦C. 1H NMR (400 MHz, DMSO-d6)
δ: 9.01 (s, 1H), 8.58 (s, 1H), 7.96 (d, J = 8.1 Hz, 2H), 7.87–7.83 (m, 3H), 7.76 (dd, J = 8.6, 1.9 Hz,
1H), 7.40 (d, J = 8.7 Hz, 1H), 5.46 (s, 2H). 13C NMR (101 MHz, DMSO-d6) δ: 157.55, 154.35,
144.47 (q, J = 3.9 Hz), 142.68, 135.98 (q, J = 3.3 Hz), 134.86 (q, J = 1.0 Hz), 131.02, 130.37,
129.78, 129.53, 128.44, 126.33, 124.93 (q, J = 33.2 Hz), 124.83 (q, J = 337.6 Hz), 122.88 (q,
J = 274.1 Hz), 121.23, 113.67, 69.30. HRMS (ESI): calculated for C20H10Cl2F6NO2S [M−H]−

511.9719, 513.9689, found 511.9718, 513.9692.
3-chloro-2-(3-nitro-4-((4-((trifluoromethyl)sulfinyl)benzyl)oxy)phenyl)-5-(trifluoromethyl)

pyridine (6d): Yellow solid, yield 96.2%, m.p. 116.0–118.0 ◦C. 1H NMR (400 MHz, DMSO-d6)
δ: 9.09 (s, 1H), 8.66 (s, 1H), 8.41 (d, J = 2.1 Hz, 1H), 8.17 (dd, J = 8.8, 2.1 Hz, 1H), 8.01 (d,
J = 8.1 Hz, 2H), 7.87 (d, J = 8.2 Hz, 2H), 7.67 (d, J = 8.9 Hz, 1H), 5.61 (s, 2H). 13C NMR
(101 MHz, DMSO-d6) δ: 156.67, 151.67, 144.54 (q, J = 3.6 Hz), 142.05, 138.94, 136.03 (q,
J = 3.5 Hz), 135.44, 134.97, 129.67, 129.31, 128.30, 126.38, 126.28, 125.30 (q, J = 33.3 Hz),
124.77 (q, J = 337.8 Hz), 122.76 (q, J = 274.1 Hz), 115.28, 69.86. HRMS (ESI): calculated for
C20H10ClF6N2O4S [M−H]− 522.9959, 524.9930, found 522.9961, 524.9921.

3-chloro-5-(trifluoromethyl)-2-(3-(trifluoromethyl)-4-((4-((trifluoromethyl)sulfinyl)benzyl)
oxy)phenyl)pyridine (6e): White solid, yield 51.1%, m.p. 117.9–120.1 ◦C. 1H NMR (400 MHz,
DMSO-d6) δ: 9.05 (s, 1H), 8.60 (s, 1H), 8.09 (d, J = 9.8 Hz, 2H), 7.98 (s, 2H), 7.82 (d, J = 5.1 Hz,
2H), 7.54 (d, J = 6.4 Hz, 1H), 5.55 (s, 2H). 13C NMR (101 MHz, DMSO-d6) δ: 157.40, 156.58,
144.48 (q, J = 2.7 Hz), 142.44, 135.95, 135.37, 134.86 (q, J = 1.5 Hz), 129.53, 129.15, 128.20,
128.09, 126.29, 125.04 (q, J = 33.2 Hz), 124.77 (q, J = 339.3 Hz), 123.44 (q, J = 273.4 Hz),
122.80 (q, J = 274.3 Hz), 117.06 (q, J = 30.8 Hz), 113.78, 69.23. HRMS (ESI): calculated for
C21H10ClF9NO2S [M−H]− 545.9983, 547.9953, found 545.9985, 547.9960.

3-chloro-2-(2,3-difluoro-4-((4-((trifluoromethyl)sulfinyl)benzyl)oxy)phenyl)-5-(trifluoromethyl)
pyridine (6f): White solid, yield 48.4%, m.p. 122.4–24.4 ◦C. 1H NMR (500 MHz, CDCl3) δ:
8.79-8.75 (m, 1H), 7.99 (d, J = 1.5 Hz, 1H), 7.78 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 8.5 Hz, 2H),
7.13–7.10 (m, 1H), 6.86–6.83 (m, 1H), 5.25 (s, 2H). 13C NMR (126 MHz, CDCl3) δ: 154.15,
148.13 (dd, J = 253.0, 11.6 Hz), 147.93 (dd, J = 8.1, 3.1 Hz), 143.30 (q, J = 3.9 Hz), 140.90,
140.59 (dd, J = 250.4, 14.4 Hz), 134.73 (q, J = 1.5 Hz), 133.79 (q, J = 3.5 Hz), 131.19, 127.08,
126.08 (q, J = 33.9 Hz), 125.42, 123.76 (t, J = 4.0 Hz), 123.66 (q, J = 335.8 Hz), 121.56 (q,
J = 273.6 Hz), 119.28 (d, J = 12.4 Hz), 109.16 (d, J = 3.1 Hz), 69.60. HRMS (ESI): calculated
for C20H9ClF8NO2S [M−H]− 513.9920, 515.9891, found 513.9916, 515.9887.

3-chloro-5-(trifluoromethyl)-2-(4-((4-((trifluoromethyl)sulfonyl)benzyl)oxy)phenyl)pyridine (7a):
White solid, yield 40.1%, m.p. 132.7–134.8 ◦C. 1H NMR (500 MHz, DMSO-d6) δ: 9.02–8.97
(m, 1H), 8.53 (d, J = 1.5 Hz, 1H), 8.19 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 8.5 Hz, 2H), 7.78–7.75
(m, 2H), 7.21–7.18 (m, 2H), 5.45 (s, 2H). 13C NMR (126 MHz, DMSO-d6) δ: 158.92, 158.78,
147.74, 144.32 (q, J = 3.8 Hz), 135.76 (q, J = 3.5 Hz), 131.12, 131.03, 129.65, 129.23, 128.92,
128.58, 124.46 (q, J = 32.9 Hz), 122.88 (q, J = 273.3 Hz), 119.41 (q, J = 326.7 Hz), 114.42,
68.10. HRMS (ESI): calculated for C20H11ClF6NO3S [M−H]− 494.0058, 496.0028, found
494.0061, 496.0035.

3-chloro-2-(3-fluoro-4-((4-((trifluoromethyl)sulfonyl)benzyl)oxy)phenyl)-5-(trifluoromethyl)
pyridine (7b): White solid, yield 48.4%, m.p. 111.8–114.0 ◦C. 1H NMR (400 MHz, DMSO-d6)
δ: 9.02 (s, 1H), 8.58 (s, 1H), 8.23 (d, J = 8.2 Hz, 2H), 7.95 (d, J = 8.4 Hz, 2H), 7.71 (dd, J = 12.3,
1.9 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.41 (t, J = 8.7 Hz, 1H), 5.54 (s, 2H). 13C NMR (101 MHz,
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DMSO-d6) δ: 157.57, 150.93 (d, J = 245.4 Hz), 147.12, 146.91 (d, J = 10.5 Hz), 144.37 (q,
J = 3.9 Hz), 135.92 (q, J = 3.4 Hz), 131.11, 130.09 (d, J = 6.8 Hz), 129.47, 128.96, 128.79, 126.34
(d, J = 3.2 Hz), 124.90 (q, J = 33.3 Hz), 122.81 (q, J = 274.0 Hz), 119.41 (q, J = 327.6 Hz),
117.33 (d, J = 19.8 Hz), 114.76, 68.99. HRMS (ESI): calculated for C20H10ClF7NO3S [M−H]−

511.9964, 513.9934, found 511.9968, 513.9937.
3-chloro-2-(3-chloro-4-((4-((trifluoromethyl)sulfonyl)benzyl)oxy)phenyl)-5-(trifluoromethyl)

pyridine (7c): White solid, yield 68.9%, m.p. 142.6–144.8 ◦C. 1H NMR (500 MHz, DMSO-d6)
δ: 9.04–9.00 (m, 1H), 8.57 (d, J = 1.5 Hz, 1H), 8.24 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 8.5 Hz,
2H), 7.90 (d, J = 2.2 Hz, 1H), 7.78 (dd, J = 8.6, 2.2 Hz, 1H), 7.40 (d, J = 8.7 Hz, 1H), 5.57 (s,
2H). 13C NMR (126 MHz, DMSO-d6) δ: 157.43, 154.12, 147.14, 144.36 (d, J = 3.7 Hz), 135.86
(d, J = 3.3 Hz), 131.07, 130.97, 130.50, 129.71, 129.45, 128.74, 128.66, 124.91 (q, J = 33.3 Hz),
122.78 (q, J = 273.4 Hz), 121.23, 119.39 (q, J = 326.9 Hz), 113.64, 68.94. HRMS (ESI): calculated
for C20H10Cl2F6NO3S [M−H]− 527.9668, 529.9639, found 527.9664, 529.9640.

3-chloro-2-(3-nitro-4-((4-((trifluoromethyl)sulfonyl)benzyl)oxy)phenyl)-5-(trifluoromethyl)
pyridine (7d): Yellow solid, yield 24.8%, m.p. 129.1–131.6 ◦C. 1H NMR (500 MHz, DMSO-d6)
δ: 9.06 (d, J = 0.9 Hz, 1H), 8.62 (d, J = 1.4 Hz, 1H), 8.40 (d, J = 2.3 Hz, 1H), 8.25 (d, J = 8.4 Hz,
2H), 8.15 (dd, J = 8.8, 2.3 Hz, 1H), 7.95 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.9 Hz, 1H), 5.67
(s, 2H). 13C NMR (126 MHz, DMSO-d6) δ: 156.61, 151.50, 146.52, 144.51 (q, J = 3.8 Hz),
138.85, 136.00 (q, J = 3.6 Hz), 135.50, 131.09, 129.65, 129.47, 128.86, 128.61, 126.43, 125.30 (q,
J = 33.3 Hz), 122.72 (q, J = 273.5 Hz), 119.38 (q, J = 326.8 Hz), 115.26, 69.51. HRMS (ESI):
calculated for C20H10ClF6N2O5S [M−H]− 538.9909, 540.9879, found 538.9905, 540.9882.

3-chloro-5-(trifluoromethyl)-2-(3-(trifluoromethyl)-4-((4-((trifluoromethyl)sulfonyl)benzyl)
oxy)phenyl)pyridine (7e): White solid, yield 35.2%, m.p. 111.2–113.4 ◦C. 1H NMR (400 MHz,
DMSO-d6) δ: 9.05 (s, 1H), 8.61 (s, 1H), 8.26 (d, J = 8.1 Hz, 2H), 8.13 (d, J = 9.0 Hz, 1H), 8.09
(s, 1H), 7.93 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.7 Hz, 1H), 5.65 (s, 2H). 13C NMR (101 MHz,
DMSO-d6) δ: 157.39, 156.37, 146.94, 144.49 (q, J = 3.6 Hz), 135.95 (q, J = 3.4 Hz), 135.44,
131.17, 129.55, 129.34, 128.77, 128.46, 128.22 (q, J = 5.3 Hz), 125.07 (q, J = 33.0 Hz), 123.44
(q, J = 273.5 Hz), 122.80 (q, J = 274.1 Hz), 119.41 (q, J = 327.3 Hz), 117.04 (q, J = 30.7 Hz),
113.77, 68.90. HRMS (ESI): calculated for C21H10ClF9NO3S [M−H]− 561.9932, 563.9902,
found 561.9935, 563.9913.

3-chloro-2-(2,3-difluoro-4-((4-((trifluoromethyl)sulfonyl)benzyl)oxy)phenyl)-5-(trifluoromethyl)
pyridine (7f): White solid, yield 37.7%, m.p. 102.8–104.8 ◦C. 1H NMR (500 MHz, CDCl3) δ:
8.77 (d, J = 1.1 Hz, 1H), 8.02 (d, J = 8.3 Hz, 2H), 7.99 (d, J = 1.6 Hz, 1H), 7.72 (d, J = 8.4 Hz,
2H), 7.15–7.11 (m, 1H), 6.87–6.82 (m, 1H), 5.29 (s, 2H). 13C NMR (126 MHz, CDCl3) δ: 155.22,
149.30 (dd, J = 253.0, 11.3 Hz), 148.83 (dd, J = 8.2, 3.1 Hz), 145.53, 144.47 (q, J = 3.8 Hz),
141.75 (dd, J = 250.2, 14.3 Hz), 134.96 (q, J = 3.5 Hz), 132.35, 131.42, 131.27, 128.14, 127.29 (q,
J = 33.9 Hz), 124.99 (t, J = 3.9 Hz), 122.70 (q, J = 273.6 Hz), 119.92 (q, J = 326.4 Hz), 120.71
(d, J = 12.5 Hz), 110.29 (d, J = 3.1 Hz), 70.38. HRMS (ESI): calculated for C20H9ClF8NO3S
[M−H]− 529.9869, 531.9840, found 529.9869, 531.9824.

3.3. Herbicidal Activity Test

Levels of herbicidal activity for compounds 5a–5f, 6a–6f, and 7a–7f against the
monocotyledonous weeds Digitaria sanguinalis (DS), Echinochloa crusgalli (EC), and
Setaria viridis (SV), and the dicotyledonous weeds Abutilon theophrasti (AT), Amaranthus
retroflexus (AR), and Eclipta prostrate (EP) were determined using previously disclosed
methods [29–31,34].

All target compounds were dissolved in N,N-dimethylformamide, diluted to an appro-
priate dose with distilled water containing 0.1% Tween-80 emulsifier, and used for seedlings
at the three-leaf stage with three replicates. Seedlings treated with N,N-dimethylformamide
and distilled water containing 0.1% Tween-80 emulsifier served as blank controls, with
fomesafen-treated seedlings serving as positive controls. The application rates were 150, 75,
and 37.5 g a.i./ha. Herbicidal activity was assessed visually after a 20-day period, with the
results being listed in Table 1.
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4. Conclusions

In conclusion, 18 novel α-trifluorothioanisole derivatives containing phenylpyridine
moieties were prepared as candidate herbicides. The preliminary herbicidal activity assay
results show that some target compounds exhibited good herbicidal activities against
broadleaf weeds at 150 g a.i./hm2. Among these, compound 5a possessed excellent activity
(>85%) against AT, AR, and EP at 37.5 g a.i./hm2, which was slightly superior to fomesafen.
Furthermore, compound 5f possessed good activity (>70%) against AT, AR, and EP at
37.5 g a.i./hm2, which was equivalent to that of fomesafen. Thus, compound 5a may be a
lead compound for further structural optimization.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27185879/s1, Table S1: Crystal data and structure re-
finement parameters of compound 5a; Table S2: Bond angles of compound 5a; Table S3: Atomic
coordinates (×104) and equivalent isotropic displacement parameters (Å2 × 103) of the nonhydrogen
atoms; Table S4: Hydrogen coordinates (× 104) and isotropic displacement parameters (Å2 × 103);
Table S5: Bond lengths of compound 5a; Figure S1–S36:1H NMR and 13C NMR spectra of target
compounds 5a-5f, 6a-6f, and 7a-7f.
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