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Abstract: Perennial ryegrass (Lolium perenne) is the most cultivated cool-season grass worldwide
with crucial roles in carbon fixation, turfgrass applications, and fodder for livestock. Lolium perenne
forms a mutualism with the strictly vertically transmitted fungal endophyte, Epichloë festucae var lolii.
The fungus produces alkaloids that protect the grass from herbivory, as well as conferring protection
from drought and nutrient stress. The rising concentration of atmospheric CO2, a proximate cause
of climatic change, is known to have many direct and indirect effects on plant growth. There is
keen interest in how the nature of this plant–fungal interaction will change with climate change.
Lolium perenne is an obligately outcrossing species, meaning that the genetic profile of the host is
constantly being reshuffled. Meanwhile, the fungus is asexual implying both a relatively constant
genetic profile and the potential for incompatible grass–fungus pairings. In this study, we used a
single cultivar, “Alto”, of L. perenne. Each plant was infected with one of four strains of the endophyte:
AR1, AR37, NEA2, and Lp19 (the “common strain”). We outcrossed the Alto mothers with pollen
from a number of individuals from different ryegrass cultivars to create more genetic diversity in
the hosts. We collected seed such that we had replicate maternal half-sib families. Seed from each
family was randomly allocated into the two levels of the CO2 treatment, 400 and 800 ppm. Elevated
CO2 resulted in an c. 18% increase in plant biomass. AR37 produced higher fungal concentrations
than other strains; NEA2 produced the lowest fungal concentrations. We did not find evidence of
genetic incompatibility between the host plants and the fungal strains. We conducted untargeted
metabolomics and quantitative proteomics to investigate the grass-fungus interactions between and
within family and treatment groups. We identified a number of changes in both the proteome and
metabalome. Taken together, our data set provides new understanding into the intricacy of the
interaction between endophyte and host from multiple molecular levels and suggests opportunity
to promote plant robustness and survivability in rising CO2 environmental conditions through
application of bioprotective epichloid strains.

Keywords: Epichloë festucae var. lolii; Lolium perenne L.; metabolomics; quantitative proteomics; plant
defense response; climate change; genetic compatibility; mutualism
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1. Introduction

Grasslands are important biomes throughout the world, and their responses to climatic change
are the subject of much research [1]. Prominent among this work is the study of perennial ryegrass
(Lolium perenne L.). This grass is native to Europe but widely planted and naturalized throughout the
temperate world [2]. It is economically important to the dairy and beef industries [3] as well as in many
turfgrass applications [4]. Perhaps because of its economic importance, there have been many studies
of this plant’s response to climatic change generally and rising CO2 concentrations more specifically.
Much of this work was done in growth chambers in the mid to late 1990s, with a few notable longer
term Free Air CO2 Enrichment (FACE) experiments in the late 1990s and early 2000s. Lolium perenne
responds positively to elevated CO2, with: increasing rates of photosynthesis, carbon assimilation,
and net primary production [5–9]; Specific Leaf Area (SLA) declines, while Leaf Area Index (LAI) tends
to increase [10–15]; and plants show faster rates of leaf and tiller elogation, higher rates of tillering and
greater tiller densities [5,11–13,15–21]. Elevated CO2 also leads to: greater yield, greater biomass both
above- and belowground, and higher root to shoot ratios of biomass allocation [5,6,8,11,15,17,21–33];
nitrogen (N) concentrations tend to decline [10,34], N cycling rate tends to increase while harvested
N declines [35], crude protein concentrations increase while crude fibre concentrations decrease [30],
soluble protein concentrations decline, as do chlorophyll concentrations, while high molecular weight
carbohydrates increase [25]. It is important to note that many of these conclusions show a complex
interaction with N supply.

Perennial ryegrass is often found in a mutualistic relationship with an obligate fungal endophyte
Epichloë festucae var lolii (≡ Neptyphodium lolii ≡ Acremonium lolii; [36]). The Epichloë genus is a
monophyletic clade of systemic endophytic fungi that colonize most aboveground tissues but are
usually absent from the roots. Some Epichloë species cause “choke disease” whereby the fungus
suppresses the host’s seed production, using the culms as a site to produce fungal ascospores that
disperse to infect new host plants. However, many Epichloë are also able to colonize the grass
ovary, ovule, and embryo asymptomatically without damaging the seed and transmit themselves
vertically from one host generation to the next. Indeed, some Epichloë exhibit choke disease on some
tillers and seed colonization on other tillers. Thus, these species simultaneously undergo sexual
recombination combined with horizontal transmission between hosts, and clonal reproduction coupled
with vertical transmission from one host generation to the next. Still other species do not reproduce
sexually, and transmission to the next generation is restricted to vertical transmission [37]. Strictly
vertical transmission means that the endophyte must evolve into a mutualist if it is to persist in the grass
population (for review and discussion see [38]). However, some have challenged the notion that strictly
vertically transmitted endophytes are mutualists, particularly in native grasses. For example ([39],
p. 25; emphasis added),

“Endophytic fungi, especially asexual, systemic endophytes in grasses, are generally
viewed as plant mutualists, mainly through the action of mycotoxins, such as alkaloids
in infected grasses, which protect the host plant from herbivores. Most of the evidence
for the defensive mutualism concept is derived from studies of agronomic grass cultivars,
which may be atypical of many endophyte-host interactions. I argue that endophytes in
native plants, even asexual, seed-borne ones, rarely act as defensive mutualists. In contrast to
domesticated grasses where infection frequencies of highly toxic plants often approach 100%,
natural grass populations are usually mosaics of uninfected and infected plants. The latter,
however, usually vary enormously in alkaloid levels, from none to levels that may affect
herbivores. This variation may result from diverse endophyte and host genotypic combinations
that are maintained by changing selective pressures, such as competition, herbivory and
abiotic factors....”
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Here, and elsewhere, Faeth and colleagues posit “genetic incompatibility” between the host
plant’s changing genotypes and the much more slowly changing endophytic fungus’s genotype as a
mechanism that can give rise to parasitic vertically transmitted fungi.

The most recent taxonomic revision of this genus [36] shows that it comprises 34 species,
three subspecies, and six varieties (i.e., 43 distinct lineages). Whether these species reproduce:
only sexually (two species plus one subspecies), only asexually (23 species plus five varieties),
or both sexually and asexually (nine species plus two subspecies) largely determines their mode(s) of
transmission into the next generation. Sexual reproduction in these species provides the ability for
horizontal transmission of the fungus from one individual host plant to another. Strictly asexually
reproducing species seem to be limited exclusively to vertical transmission into the next generation.

Epichloë festucae var lolii is a strictly vertically transmitted species. The host–fungus relationship
has been described as a “defensive mutualism” because the plant benefits from alkaloids produced by
the fungus that seem to protect the plant from some forms of herbivory [40]. The fungus also improves
grass performance under drought and nutrient stress [41–44], although these reported benefits are not
universal (see e.g., [45] for review and further references). As a result of these benefits, endophyte
infected pastures are more productive and exhibit better persistence (see e.g., [46] for review and further
references). Unfortunately for farmers, the common toxic strain of the endophyte causes a condition in
grazing mammals called “ryegrass staggers”. In a review article, (Cunningham and Hartley [47] p. 1)
described the situation thus:

“Ryegrass Staggers is the name given to a condition of tetanic muscle spasm that develops
under certain conditions in grazing sheep, cattle, or horses. In most cases, the pastures
on which animals become affected have contained a considerable proportion of perennial
ryegrass, and this has given rise to the name, though there is no direct proof that ryegrass is
the cause; at least one out-break has occurred on short-rotation ryegrass.”

It was not until the early 1980s that researchers discovered the association of the affliction
with the presence of a potent neurotoxic indole-diterpene alkaloid, lolitrem B, produced by the
Epichloë fungi [48,49]. This tension between pasture production and persistence on the one hand,
and detriments to animal health on the other, caused plant breeders to look for so called “safe
endophytes.” They have attempted to capitalize on the natural variation among endophyte strains in
their alkaloid production profiles, selecting different strains for different applications, and transferring
these fungi to elite seed lines for commercialization [50,51]. Several promising strains have been
discovered and a few have been brought to market, including AR1, AR37, and NEA2. The common
toxic strain (Lp19) of the endophyte, usually denoted simply as E+, produces: lolitrem B, peramine,
and ergovaline. NEA2 produces all three alkaloids but at more moderate levels than the E+ strain.
AR1 produces only peramine, while AR37 does not produce any of the three alkaloids found in
the E+ strain but rather produces a different set called epoxy-janthitrems (see [52] and references
therein). These so-called “novel” strains induce other metabolic changes in the host plants beyond
the differences in alkaloid production [53–55]. A similar plant breeding strategy has been taken with
a closely related grass-endophyte system Schedonorus arundinaceus (Schreb.) Dumort. (≡ Festuca
arundinacea; [56])–Epichloë coenophiala (≡ Neotyphodium coenophialum ≡ Acremonium coenophialum;
see [57] and references therein).

Despite the obvious interest in the effects of climatic change on grasses (see e.g., [58]) and on
the role that fungal endophytes, particularly epichloid endophytes, play in grasses and grasslands
(see e.g., [59]), surprisingly little research has focused on the intersection of these two topics. Given
the economic importance of this mutualism, it is important to ask how stable it is in the face of
climatic change, particularly rising atmospheric CO2, which is known to produce widespread impacts
on plant physiology and plant-herbivore relationships [60]. In cool-season grasses, only seven
studies have investigated this topic. In the perennial ryegrass system there have only been two
studies. Hunt et al. [25] investigated the impacts of a relatively small increase in CO2 concentration
(368 vs. 466 ppm) using only the common toxic strain and endophyte-free (E−) plants. They found
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interactions between CO2 and endophyte in the plants’ production of high molecular weight and
total carbohydrates as well as protein concentrations. In the E+ plants, peramine and ergovaline
concentrations tended to decrease under high N conditions but only in ambient CO2. Marks and
Clay [61] compared the performance of E− and E+ plants in 350 vs. 650 ppm CO2. They found that
endophyte infection had little impact on plant growth except for the root:shoot ratio and that there
was little indication of interactions involving endophyte and CO2. In the closely related Schedonorus
arundinaceus–Epichloë coenophiala system, Marks and Lincoln [62] investigated the anti-herbivore
properties of endophyte infection (ambient vs. 700 ppm CO2). The only plant-focused measure they
reported was leaf N concentration, which was not affected by CO2, endophyte presence, or their
interaction. Newman et al. [63] studied the problem in open topped chambers in the field (ambient
vs. 700 ppm) and found endophyte (presence vs. absence) by CO2 interactions in total crude protein,
soluble crude protein and acid detergent insoluble crude protein. Ryan et al. [64,65] studied higher
concentrations of elevated CO2 (ambient, 800 and 1000 ppm) and found that fungal derived alkaloid
concentrations were higher under elevated CO2, as were the endophyte concentrations themselves.
In a field experiment, Brosi et al. [66] studied the factorial effects of a +300 ppm increase in CO2,
a +3 °C increase in temperature, and a “dry” (2 mm H2O/week) or “wet” (25 mm H2O/week)
treatment. They found higher endophyte-infection frequencies but a 30% decrease in concentrations
of the alkaoilds ergovaline and loline in elevated CO2. While Brosi et al. Brosi et al. [66] did find
changes in the concentrations of some metabolites due to elevated CO2, these differences seemed to be
independent of endophyte presence.

In this study, we made use of untargeted metabolomic and quantitative proteomic techniques
to investigate how the interactions between host plants and their associated strains of E. festucae var.
lolli change with rising concentrations of CO2. These tools provide insights into the mechanisms of
the relationship between the genomes of the plant and endophyte and their resulting phenotypes.
These approaches are not new to the study of Epichloë endophytes, although they are not yet
common. Untargeted metabolomics has been used to study both the S. arundinaceus–E. coenophiala
system [67–69] and the L. perenne–E. festucae var. lolli system [70,71]; see Rasmussen et al. [72]
for review. Similarly, a variety of proteomic approaches have been used in both systems [73,74].
See Porras-Alfaro and Bayman [75] for a general review of the usefulness of these techniques to probe
plant–endophyte relationships.

In this paper we investigated several questions simultaneously:

1. Do different strains of E. festucae var. lolii produce similar fungal concentrations in a genetically
diverse host plant background?

2. Do different strains of the fungus differentially moderate the impacts of elevated CO2 on the
growth and seed production of perennial ryegrass?

3. Are the metabolomes of the host plant–fungal strain combinations different from each other and
how are they altered by elevated CO2?

4. Are the proteomes of the host plant–fungal strain combinations different from each other and
how are they altered by elevated CO2?

5. Does an integrated analysis of the proteome and metabolome data yield different insights than
those gained from considering the proteome and metabolome separately?

6. Is there any evidence of host plant–fungal strain genetic incompatibility?

2. Materials and Methods

2.1. Plant Material, Growth Conditions, and Maternal Family Establishment

Perennial ryegrass (L. perenne) cv. Alto seeds infected with one of four strains of E. festucae
var. lolii: AR1, AR37, NEA2, or E+ (sometimes referred to as the “wild type,” “common toxic
strain,” or Lp19) were obtained from Barenbrug Agriseeds Limited (Christchurch, New Zealand;
Table 1). Endophyte presence was confirmed for infected seeds by immunoblotting ten seeds



J. Fungi 2020, 6, 360 5 of 39

from each strain prior to planting (Phytoscreen seed endophyte detection kit, Agrinostics Ltd, Co.,
https://www.agrinostics.com). We did not reconfirm the strain identifications. Individual seeds
were grown in sterilized #4 Sunshine Mix Potting Soil (http://www.sungro.com) and watered with
deionized water every other day. Additionally, perennial ryegrass seeds of other diverse cultivars
(forage cultivars: Herby E− and Feeder E−, turf cultivars: Penguin E+ and Top Gun E+) were grown
for cross-pollination. All plants were grown in the Edmund C. Bovey Building Greenhouse Complex
at the University of Guelph (Guelph, ON, latitude 43°33′ N, longitude 80°15′ W) under approximately
40% relative humidity, 23 °C, and a light/dark 18/6 h photocycle. Flowering was induced by placing
the plants at 4 °C with no light for six weeks followed by greenhouse conditions (after acclimatization),
and seed heads were harvested 12 weeks later. Alto plants were fertilized by random pollen from all of
the plants from all of the cultivars. Because perennial ryegrass is self-incompatible, the seeds collected
from single plants represent families of half-siblings.

Table 1. Sample size of plants nested in family, nested in endophyte strain. There were 288 plants in
total, 144 in each of the two levels of CO2. Within a family there are 24 plants, 12 in each level of CO2.
The families are replicated in each level of CO2. For the proteome analysis we used 5 of the 12 plants in
each level of CO2 from a single family per endophyte strain; these are denoted with the red font.

Strain 400 ppm 800 ppm Measurements

AR1

Family a p1, . . . , p5 p13, . . . , p17 Biomass, qPCR, proteomics,

p6, . . . , p12 p18, . . . , p24 metabolomics, integrated OMICS

Family b p1, . . . , p12 p13, . . . , p24 Biomass, qPCR, metabolomics

Family c p1, . . . , p12 p13, . . . , p24 Biomass, qPCR, metabolomics

Family d p1, . . . , p12 p13, . . . , p24 Biomass, qPCR, metabolomics

AR37

Family e p1, . . . , p5 p13, . . . , p17 Biomass, qPCR, proteomics,

p6, . . . , p12 p18, . . . , p24 metabolomics, integrated OMICS

Family f p1, . . . , p12 p13, . . . , p24 Biomass, qPCR, metabolomics

Family g p1, . . . , p12 p13, . . . , p24 Biomass, qPCR, metabolomics

E+

Family h p1, . . . , p5 p13, . . . , p17 Biomass, qPCR, proteomics,

p6, . . . , p12 p18, . . . , p24 metabolomics, integrated OMICS

Family i p1, . . . , p12 p13, . . . , p24 Biomass, qPCR, metabolomics

Family j p1, . . . , p12 p13, . . . , p24 Biomass, qPCR, metabolomics

NEA2

Family k p1, . . . , p5 p13, . . . , p17 Biomass, qPCR, proteomics,

p6, . . . , p12 p18, . . . , p24 metabolomics, integrated OMICS

Family l p1, . . . , p12 p13, . . . , p24 Biomass, qPCR, metabolomics

Totals 144 plants 144 plants

2.2. Chamber Experiment and Harvested Plant Tissue

We picked maternal families of each endophyte strain such that there were at least 24 seeds
in the family. This selection yielded unequal numbers of families across the four endophyte
strains (see Table 1). Seeds were sown individually in sterilized #4 Sunshine Mix Potting Soil
(http://www.sungro.com) and watered and fertilized regularly with Nutricote 13-13-13 (N-P-K) with
micronutrients at an application rate of 400 g/m2. After approximately three weeks of growth, tillers

https://www.agrinostics.com
http://www.sungro.com
http://www.sungro.com


J. Fungi 2020, 6, 360 6 of 39

from each plant were immunoblotted to confirm endophyte infection prior to transferring the plants to
pots (Phytoscreen field tiller endophyte detection kit, Agrinostics Ltd, https://www.agrinostics.com).
Conviron growth chambers (Model PCG20, https://www.conviron.com) were set to long day 16/8 h,
light intensity 300 µmol m−2 s−1, a constant temperature of 20 °C, and a relative humidity of 60%,
with one set to 400 ppm CO2 (i.e., approximately the current ambient atmospheric concentration)
and the other to 800 ppm CO2 (i.e., approximately twice the ambient concentration). Twelve plants
from each family were placed in each growth chamber. Throughout the experiment, the plants and
treatments were alternated weekly between the two growth chambers to try to minimize possible
effects of the pseudoreplication [76]. The only exception to this procedure was for approximately two
weeks during which the chambers suffered an infestation of thrips. During this period we ceased
alternating the plants and treatments between chambers and treated the chambers with biocontrol
mites. Seed production was induced by cold exposure (eight weeks at 6 °C, 8 h day length). Seed heads
were harvested at approximately 34 weeks, air dried at room temperature for five days, and stored
at −20 °C. Finally, tissue samples from full leaf blade were harvested for metabolomic analysis and
pseudostem sheath harvested for endophyte quantification via qRT-PCR and for proteomics analyses.
Tissue specific gene expression has also been shown in cool-season grass, with fungal genes more
highly expressed in pseudostem [77]. These plant samples were flash frozen in liquid N, freeze-dried,
and weighed prior to storage at −80 °C. The remaining biomass was cut at soil level, oven dried at
60 °C, and weighed.

2.3. Metabolomic Sample Preparation

Plant tissue (50 mg) was resuspended in 300 µL 75% cold methanol in a siliconized microcentrifuge
tube and mixed on a Geno Grinder (https://www.spexsampleprep.com/2010genogrinder) for six min
at 1750 rpm with one small ball bearing. Samples were centrifuged for five min at max speed with
slow ramp speeds, the ball bearing was removed, and 180 µL was collected and stored as the “organic
extract”. Next, 150 µL cold dH2O and 400 µL cold chloroform was added to the remaining sample
and samples were mixed on the Gene Grinder for six min at 1750 rpm and centrifuged for 10 min at
max speed. The aqueous fraction was collected and filtered through a 0.45 µm filter into a glass vial,
deemed “aqueous extract”. Samples were stored at −80 °C until measured on the mass spectrometer.

2.4. Proteomic Sample Preparation

Plant tissue (30 mg) was processed as previously described with modifications [78]. Briefly,
samples were resuspended in 100 mM Tris-HCl (pH 8.5) containing a cOmplete™ protease inhibitor
cocktail tablet (https://www.sigmaaldrich.com). Using a probe sonicator (https://www.fishersci.ca),
samples were mixed in an ice bath for 3 cycles (30% power, 30 s on/30 s off), and 2% (final) sodium
dodecyl sulphate (SDS) and 10 mM dithiothreitol (DTT) was added, followed by incubation at 95 °C
for 10 min with shaking at 800 rpm. The samples were cooled, and 55 mM iodoacetamide (IAA) was
added, followed by incubation at room temperature for 20 min in the dark. Next, 100% ice cold acetone
(final concentration of 80%) was added prior to storage at −20 °C overnight. Samples were collected
by centrifugation at 13,500 rpm at 4 °C for 10 min, washed twice with 80% acetone, and air dried.
Pellets were resolubilized in 8M urea/40 mM HEPES, and a bovine serum albumin (BSA) tryptophan
assay determined protein concentrations [79]. Samples were diluted in 50 mM ammonium bicarbonate
and digested overnight with a mixture of LysC and trypsin proteases (https://www.promega.ca,
protein:enzyme ratio, 50:1). Digestion was stopped with 10% v/v trifluoroacetic acid (TFA), and 50 µg
of the acidified peptides was loaded onto STop And Go Extraction (STAGE) tips (consisting of three
layers of C18) to desalt and purify according to the standard protocol [80]. Samples were stored as
dried peptides at −20 °C until measurement on the mass spectrometer.

https://www.agrinostics.com
https://www.conviron.com
https://www.spexsampleprep.com/2010genogrinder
https://www.sigmaaldrich.com/catalog/product/roche/coro?lang=en&region=CA
https://www.fishersci.ca/ca/en/products/I9C8L3UA/sonicators.html
https://www.promega.ca
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2.5. Mass Spectrometry

For analysis of the metabolome, liquid chromatography–mass spectrometry analyses were
performed on an Agilent 1200 high performance liquid chromatography (HPLC) system interfaced
with an Agilent UHD 6540 Q-Tof mass spectrometer (https://www.agilent.com). The instrument was
run in both positive and negative modes. A C18 column (Agilent AdvanceBio Peptide Map, 50 mm
× 2.1 mm 2.7 um) was used for chromatographic separation with: A (water with 0.1% formic acid)
and B (acetonitrile with 0.1% formic acid). The mobile phase gradient was: initial conditions 2% B for
2 min increased to 15% B over 13 min, followed by 50% B for 10 min. Column wash was performed
at 98% B and 10 min re-equilibration. The first two and last five min of the gradient were sent to
waste and not the spectrometer. The flow rate was maintained at 0.2 mL/min. The mass spectrometer
electrospray capillary voltage was maintained at 4.0 kV and the drying gas temperature at 350 °C with
a flow rate of 13 L/min. Nebulizer pressure was 40 psi and the fragmentor was set to 150 V. Nitrogen
was used as both nebulizing and drying gas and collision-induced gas. The mass-to-charge (m/z) ratio
was scanned across the m/z range of 200–2000 in 4 GHz (extended dynamic range positive-ion auto
MS/MS mode). Three precursor ions per cycle were selected for fragmentation. The instrument was
externally calibrated with the ESI TuneMix (https://www.agilent.com). The sample injection volume
was 20 µL. Triplicate technical replicates were performed for all biological replicates.

For analysis of the proteome, samples were eluted from STAGE-tips with 50 µL buffer
B (80% acetonitrile (ACN) and 0.5% acetic acid), dried, and resuspended in 12 µL buffer A
(0.1% TFA). Six µL of each sample was analyzed by nanoflow liquid chromatography on an
Ultimate 3000 LC system (https://www.thermofisher.com) online coupled to a Fusion Lumos
Tribrid mass spectrometer (https://www.thermofisher.com) through a nanoelectrospray flex-ion
source (https://www.thermofisher.com). Samples were loaded onto a 5 mm µ-precolumn
(https://www.fishersci.ca) with 300 µm inner diameter filled with 5 µm C18 PepMap100 beads.
Peptides were separated on a 15 cm column with 75 µm inner diameter with 2 µm reverse-phase
silica beads and directly electrosprayed into the mass spectrometer using a linear gradient from 4% to
30% ACN in 0.1% formic acid over 45 min at a constant flow of 300 nL/min. The linear gradient was
followed by a washout with up to 95% ACN to clean the column followed by an equilibration stage
to prepare the column for the next run. The Fusion Lumos was operated in data-dependent mode,
switching automatically between one fill scan and subsequent MS/MS scans of the most abundant
peaks with a cycle time of 3 s. Full scan MS1s were acquired in the Orbitrap analyzer with a resolution
of 120,000, scan range of 400–1600 m/z. The maximum injection time was set to 50 ms with an automatic
gain control target of 4× 105. The fragment ion scan was done in the Orbitrap using a Quadrupole
isolation window of 1.6 m/z and HCD fragmentation energy of 30 eV. Orbitrap resolution was set to
30,000 with a maximum ion injection time of 50 ms and an automatic gain control target set to 5× 104.

2.6. Omics Data Analysis

For metabolome data analysis, spectra processing was performed using Batch Recursive Feature
Extraction in Mass-hunter Profinder version B.08.00 (https://www.agilent.com). Profinder recursive
feature extraction involves an initial naïve feature finding algorithm, Molecular Feature Extraction
(MFE), which combines coeluting related ions such as adducts or different charge states into one
compound. This list of compounds is then verified in a second round of feature finding with the Find
by Formula algorithm, which uses the ion m/z values and isotope ratios found by MFE to reinterrogate
the data. The initial m/z threshold set for feature detection was 300 counts and extraction window of
40 ppm using the Molecular Feature Extraction algorithm. After isotope grouping using the peptide
isotope model, the compound threshold was set to 3000 counts in at least two-thirds of samples in one
group. For the recursive portion of the feature detection, a list of consensus metabolites determined
from all samples was used to reassess the raw data using the Find by Ion algorithm using a 50-ppm
extracted ion chromatograph (EIC) extraction window. Defined masses were searched against Formula,
Metlin AM, Metlin Metabolites, and in-house KnapSack for compound identification. The data were

https://www.agilent.com
https://www.agilent.com
https://www.thermofisher.com/ca/en/home/industrial/chromatography/liquid-chromatography-lc/hplc-uhplc-systems/ultimate-3000-hplc-uhplc-systems.html
https://www.thermofisher.com/order/catalog/product/IQLAAEGAAPFADBMBHQ#/IQLAAEGAAPFADBMBHQ
https://www.thermofisher.com/order/catalog/product/ES071?ca&en#/ES071?ca&en
https://www.fishersci.ca/shop/products/acclaim-5-m-pepmap300-precolumns-cartridge-columns/p-4523183#?
https://www.agilent.com
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exported from Profinder to Perseus (version 1.6.2.2; [81]), and intensities were log2-transformed and
classified according to groups (endophyte strain, maternal family, CO2 levels). Values were filtered
based on valid values (metabolite identification required in two of three replicates in at least one
group), followed by imputation based on the normal distribution. Statistical processing included
a Student’s t-test for identification of metabolites with large changes in abundance among samples
(p ≤ 0.05, s ≥ 4.32), with multiple hypothesis testing correction using the Benjamini–Hochberg False
Discovery Rate (FDR) [82] cutoff at 0.05. The mass spectrometry metabolomics data are available upon
request from the corresponding authors.

For proteome data analysis, *.Raw files were analyzed using MaxQuant software
(version 1.6.0.26.) [83]. The derived peak list was searched with the built-in Andromeda
search engine against the reference L. perenne (21 February 2019; 11,123 sequences;
http://pgsb.helmholtz-muenchen.de/plant/index.jsp) and E. festucae var. lolii (21 February 2019;
9298 sequences; http://csbio-l.csr.uky.edu/endophyte/). The parameters were as follows: strict
trypsin specificity, allowing up to two missed cleavages, minimum peptide length of seven amino
acids, carbamidomethylation of cysteine as a fixed modification, N-acetylation of proteins and
oxidation of methionine set as variable modifications. A minimum of two peptides required for
protein identification and peptide spectral matches and protein identifications were filtered using
a target-decoy approach at a FDR of 1%. “Match between runs” was enabled with a match time
window of 0.7 min and an alignment time window of 20 min. Relative, label-free quantification (LFQ)
of proteins used the MaxLFQ algorithm integrated into MaxQuant using a minimum ratio count of
one [84]. The mass spectrometry proteomics data have been deposited in the PRIDE partner repository
for the ProteomeXchange Consortium with the data set identifier: PXD017961.

Further analysis of the MaxQuant-processed data (proteingroups.txt file) was performed using
Perseus (version 1.6.2.2, [81]). Hits to the reverse database, contaminants, and proteins only identified
with modified peptides were eliminated. LFQ intensities were converted to a log scale (log2), and only
those proteins present in triplicate within at least one sample set were used for further statistical
processing (valid-value filter of three in five replicates in at least one group). Missing values were
imputed from a normal distribution (downshift of 1.8 standard deviations and a width of 0.3 standard
deviations). A Student’s t-test identified proteins with important changes in abundance (p ≤ 0.05)
with multiple hypothesis testing correction using the Benjamini–Hochberg FDR [82] cutoff at 0.05.
A principal component analysis (PCA) was performed, as well as Pearson correlation with hierarchical
clustering by Euclidean distance to determine replicate reproducibility and clustering of samples.

2.7. Endophyte Quantification

Endophyte infection was measured using qRT-PCR to amplify the translation elongation factor
1−α ([85], GenBank Acc. # JX028264) following Ryan et al. [64]. Genomic DNA (gDNA) was
extracted from 20 mg of sheath tissue using the DNeasy Plant Mini Kit (https://www.qiagen.com),
and total gDNA (plant and fungal) was determined by spectroscopy using a NanoDrop
2000 (https://www.thermofisher.com). PCR reactions were performed and analyzed on a
LightCycler 480 Instrument II (https://lifescience.roche.com) using gene-specific primers (forward:
5′-cacgtactgactgaagcgtagc-3′; reverse: 5′-caatgcagcgagtgaacatc-3′). The concentration of
endophyte is expressed as the number of copies of the fungal-specific gene ng−1 total gDNA.
All reactions were performed in three biological replicates and three technical replicates.

3. Results

We follow Wasserstein et al. [86] in reporting exact p-values (where practical) and avoiding the
use of the terms “significant” and “non-significant.” Furthermore, we follow Greenland [87] by also
reporting the Shannon information transformation, s = −log2(P). As Greenland notes, larger values
of s correspond to more evidence against the null hypothesis. The Shannon information transformation
can be interpreted as:

http://pgsb.helmholtz-muenchen.de/plant/index.jsp
http://csbio-l.csr.uky.edu/endophyte/
https://www.qiagen.com/ca/shop/pcr/dneasy-plant-mini-kit/
https://www.thermofisher.com/order/catalog/product/ND-2000?ca&en#/ND-2000?ca&en
https://lifescience.roche.com/en_ca/products/lightcycler14301-480-instrument-ii.html
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“This measures the amount of information supplied by the test against the tested hypothesis
(or model): Rounded off, the s-value s shows the number of heads in a row one would
need to see when tossing a coin to get the same amount of information against the tosses
being “fair” (independent with “heads” probability of 1/2) instead of being loaded for heads.
For example, if p = 0.03, this represents −log2(0.03) = 5 bits of information against the
hypothesis (like getting 5 heads in a trial of “fairness” with 5 coin tosses); and if p = 0.25,
this represents only −log2(0.25) = 2 bits of information against the hypothesis (like getting
2 heads in a trial of “fairness” with only 2 coin tosses).” ( [86], p. 12)

3.1. Plant and Fungal Growth Responses

For this analysis, all 288 plants were used. We analyzed these data in a general linear model
with plants nested in family and endophyte strain, and endophyte strain and family cross-factored
with CO2 treatment (Plant(24)(Family(2–4)(Endophyte4)[CO2](2))). We treated Family as a random effect
and used restricted maximum likelihood (REML) estimation.

The results for the fixed effects are shown in Figure 1. The main results of interest are the c. 18%
increase in plant biomass under elevated CO2 and the differences among the endophyte strains in
terms of the endophyte concentrations within the plants. There was no strong evidence to reject the
null hypotheses for the number of seeds produced or the seed biomass.

Figure 1. Plant growth responses—fixed effects. Shown are the fixed effects (LS Means ± SEM) from
a REML analysis of the model Plant24(Family2–4(Strain4)[CO2]2). Below each graph are the results
from the corresponding ANOVA. We also report the Shannon information transformation, s. (A) shows
the mean plant biomass (g/plant). (B) shows the seed number per plant. (C) shows the seed biomass
(g DM/plant). (D) shows the endophyte concentration (gene copies [ng−1 gDNA]).
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The results for the random effects are shown in Figure 2. Briefly, there was no indication that
the between family variation was larger than the within family variation, suggesting that there is no
evidence that the recombination procedure we used created genetic incompatibility between the host
and the endophyte.

Figure 2. Plant growth responses—random effects. Shown are the variance estimates for the random
effects. “F[S]” denotes the variance between maternal families nested in endophyte strain. ‘w/i
F[S]’ denotes the variance within maternal families nested in strain. Variation between families is
considerably less than variation within families, indicating no evidence of genetic incompatibility
between host plants and endophyte strains. The units for the variances are: (A) (g DM/plant)2,
(B) (#/plant)2, (C) (g DM/plant)2, (D) (copies/ng gDNA)2.

3.2. Multi-OMICs Workflow

To assess the impact of the endophyte on L. perenne under altered CO2 conditions, we designed
our experiments to profile the metabolome and proteome of the samples, followed by integration
of the data set (Figure 3A). In total, 288 samples were prepared for metabolome profiling, of which,
189 were selected for analysis based on sample quality (Figure 3B). Of these, 40 samples were selected
for in-depth quantitative proteomics profiling based on consistency and reproducibility of metabolite
production in the metabolomics profiling.
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Figure 3. Overview of OMICs analysis. (A) Total plant biomass of L. perenne samples colonized with
an endophyte (AR1, AR37, E+, or NEA2) were collected and subjected to a metabolite extraction
protocol followed by mass spectrometry (LC-MS). In addition, pseudostem tissue of L. perenne samples
colonized with an endophyte (AR1, AR37, E+, or NEA2) was collected and subjected to a protein
extraction protocol followed by enzymatic digestion and tandem mass spectrometry (LC-MS/MS;
figure generated using https://biorender.com). (B) In total, 288 samples were collected and processed
for metabolomic profiling (grey). Of these, 189 samples were of substantial quality to proceed to
mass spectrometry for metabolite identification (black), and a subset of 40 samples was selected for
proteomic profiling (blue shading; 10 each from one family nested in each strain, of which 5 were from
400 ppm and and 5 were from 800 ppm CO2—see Table 1).

3.3. Metabolic Profiling Defines Endophyte-Specific Responses

To profile changes in metabolite production among the endophytes and altered CO2 levels,
we measured the metabolome using mass spectrometry in both positive and negative ion modes.
In positive ion mode, we identified 1531 metabolites, and in negative ion mode we identified
641 metabolites.

Based on changes in metabolite abundance by area under the curve (Student’s t-test, p < 0.05;
FDR = 0.05), we explored the relationship among 373 metabolites and the treatment effects. Of the
373 metabolites, 56 could be tentatively identified by mass and retention time based on compound
mapping through MetLin, Formula, and an in-house database (see Supplemental Tables S1 and S2
for complete details). Figure 4 shows the distribution of fold-change differences for those metabolites
that differed in abundance between strains. Metabolites of AR37 and AR1 are quite different from E+,
and from each other, although the latter difference is reduced at elevated CO2. The smallest differences
are between NEA2 and any of the three remaining strains. There were only two metabolites that
showed large changes within a strain between elevated and ambient CO2. We could not identify these
metabolites by name. A metabolite with an average mass of 369.1975 Da and an average retention time
of 0.92 min had approximately 3-fold greater abundance in elevated CO2 for AR37 and E+ infected
plants. A metabolite with an average mass of 238.1041 Da and an average retention time of 0.89 min
was approximately 2.5-fold greater in abundance under elevated CO2.

https://biorender.com
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Figure 4. Distribution of magnitude of metabolite abundance differences. Shown are the distributions
of the magnitudes of metabolite abundance differences between different endophyte strains at ambient
CO2 (blue bars) and elevated CO2 (pink bars). Areas where the two distributions overlap is shown
in purple. The numbers in the legends indicate the total number of metabolite differences for that
comparison. (A) denotes the fold change differences of AR1−AR37; (B) denotes the fold change
differences of AR1−E+; (C) denotes the fold change differences of AR1−NEA2; (D) denotes the fold
change differences of AR37−E+; (E) denotes the fold change differences of AR37−NEA2; and (F)
denotes the fold change differences of NEA2−E+.

Given this coverage of changes in the metabolome, we performed a principal component analysis
(PCA), which exhibited separation in samples based on Epichloë strain but not CO2 (Figure 5A).
The components are well defined; they do not overlap in “heavily loading” metabolites (defined here as
|x| ≥ 0.70). These metabolites are shown in Appendix A, Table A1. Hierarchical clustering by Euclidean
distance produced a heatmap demonstrating clustering of the metabolites by endophyte but not by CO2

levels (Figure 5B). Upon closer analysis, nine compounds showed distinct patterns of production across
the tested parameters. As expected, we observed consistent differences in the production of peramine,
driven largely by the multiple maternal host families of AR37, because AR37 does not produce
peramine [55] (Figure 5C). A compound, tentatively identified as Soyasaponin A2, a triterpenoid
glycoside traditionally identified in soybeans, was clustered with six other related but unidentifiable
compounds. These metabolites showed consistent differences across endophyte strain, being largely
absent from plants infected with the E+ strain. Overall, profiling of the metabolome highlights clear
distinctions among the endophytes but surprisingly few large differences with changing CO2 levels.
Future work using LC-MS/MS profiling will increase identification rates.
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Figure 5. Metabolomic profiling of interaction between L. perenne and epichloid strains. (A) Principal
component analysis of L. perenne colonized with epichloid strains (e.g., AR1, AR37, E+, NEA2); dark
bars denote 400 ppm CO2, light bars denote 800 ppm CO2. “PC 1” and “PC 2” denote the first and
second principal components. The ANOVA tables show the results of a REML analysis for the fixed
effects of strain, CO2 and their interaction; random effects not shown. We also report the Shannon
information transformation, s. Bars denote the means and standard errors. (B) Heat map of hierarchical
clustering by Euclidean distance of all metabolites identified from L. perenne colonized with epichloid
strains (e.g., AR1, AR37, E+, NEA2). (C) Regions of unique metabolite profiles highlighted and enlarged,
along with the available corresponding compound identifications.

3.4. Proteomic Profiling Reveals Fungal Strain by CO2 Interactions

We selected a single maternal family from each endophyte strain, based on consistency
and reproducibility of metabolite production, for proteomic profiling (see Table 1). Our mass
spectrometry-based proteomics workflow enables detection of protein-level changes from both the
host (L. perenne) and endophyte perspectives in a single experiment. In total, we identified 890 proteins,
713 proteins belonging to L. perenne and 177 proteins belonging to E. festucae var lolii. Biological replicate
reproducibility was >90% for all treatments (Figure S1). To better understand this multidimensional
response, we performed a PCA using all 890 proteins. The first three principal components were
retained for further analysis. The proteins that loaded heavily on each axis are presented in Appendix B,
Table A2. These 63 proteins (16 fungal and 47 plant) account for 36.5% (13.2%, 12.8%, and 10.5%)
of all the protein abundance variation. Figure 6A–C shows separation of the fungal strains by CO2

concentrations. For example, AR1 shows large separation by CO2 concentrations on PC2 but not PC3,
while NEA2 segregates by CO2 concentrations on PC1 but not PC2 or PC3. Next we examined the
univariate responses of individual proteins that differed between CO2 concentrations for at least one
endophyte strain. Hierarchical clustering by Euclidean distance produced a heatmap demonstrating
variability in protein abundance associated with CO2 conditions and endophyte for the plant-derived
proteins Figure 6D as well as the endophyte derived proteins Figure 6E.
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Figure 6. Quantitative proteomics profiling of endophyte-specific response to colonization of L. perenne
with epichloid strains. (A–C) Principal components analysis of L. perenne colonized with epichloid
strains (AR1, AR37, E+, NEA2); dark bars denote 400 ppm CO2, light bars denote 800 ppm CO2. Shown
are the means and standard errors. (D) Heat map of hierarchical clustering by Euclidean distance
for plant proteins that differed among the epichloid strains and at normal (400 ppm) and elevated
(800 ppm) CO2 levels. (E) Heat map of hierarchical clustering by Euclidean distance for fungal proteins
that differed among the epichloid strains and at normal (400 ppm) and elevated (800 ppm) CO2 levels.
(F,G) Venn diagrams of common and unique differences in plant and fungal proteins at 400 ppm CO2.
(H,I) Venn diagrams of the number of common and unique differences in plant and fungal proteins at
800 ppm CO2. The numbers in F–I indicate the number of proteins with large differences in abundance,
as evaluated by Student’s t-tests, p < 0.05, FDR = 0.05, S0 = 1. Below each graph are the results from
the corresponding ANOVA. We also report the Shannon information transformation, s.

We performed FDR-corrected Student’s t-test comparisons of the differences in protein
abundances for each fungal strain at 400 and 800 ppm CO2. We found a total of 133 different
unique proteins, including 98 plant proteins and 35 fungal proteins (Figure 6 and Appendix B:
Tables A3 and A4). Of the 35 fungal proteins that changed abundances between ambient and elevated
CO2, 27 changed only in a single endophyte strain, 14 of these in AR1. The remaining eight fungal
proteins changed in exactly two strains each. Of these, five were changed in both AR1 and NEA2, but
all five changed in opposite directions (increased abundance in elevated CO2 for AR1, and decreased
abundanace for NEA2). The remaining three were changed in both AR1 and AR37 (see Appendix B,
Table A3). For the 98 plant proteins, 77 were altered in only a single strain, 52 of these were only in
AR1. Of the remaining 21, 13 were changed in AR1 and NEA2, and like the fungal proteins, all 13



J. Fungi 2020, 6, 360 15 of 39

of these changes were in the opposite directions between the strains (increase protein abundances
in AR1, decreased in NEA2 under elevated CO2). Six more show changes in both AR1 and AR37,
five of which were in the same direction (increase abundances for both strains under elevated CO2).
There was one protein that changed in AR1, AR37, and NEA2. Consistent with the trends just
mentioned, these changes were again in the same direction (increased abundances) for AR1 and AR37
and opposite directions for AR1 and NEA2 (see Appendix B, Table A4).

More generally, we examined overlap by constructing Venn diagrams using only the differently
abundant proteins among all comparisons from both the plant and endophyte perspectives
(Figure 6F–I). Here, considering plant protein abundance at both CO2 levels, we consistently observed
the most common responses in the AR37 and NEA2 comparison, as well as several combinatory
categories showing unique responses with identification of only one protein (e.g., AR1 and NEA2
and AR37 and E+). Conversely, for endophyte proteins, we observed variation in the number of
proteins within a combinatory category. For example, at 400 ppm CO2, the combinatory category
of AR1 and NEA2 involved the most proteins, whereas at 800 ppm CO2, the largest number of
different proteins was found in the categories of AR1 and NEA2 combined with AR37 and NEA2.
Taken together, this data set distinguishes differences in protein abundance among the endophytes
and demonstrates differences in plant response in the presence of specific endophytes. Furthermore,
we identified proteins commonly produced during the interaction between endophyte and host, as
well as uncovered changes in protein abundance unique to specific interactions.

Next, we aimed to define the impact of CO2 levels on the interaction between endophyte and host
by comparing changes in protein abundance. Notably, we observed a decrease in abundance of seven
endophyte proteins associated with metabolism for AR1 at elevated CO2. For AR37, we observed
a change for 30 proteins, including one endophyte and 12 plant proteins with increased abundance
at 800 ppm (Figure 7C). Colonization with E+ altered abundance of two plant proteins, including
one protein with increased abundance; no endophyte proteins were different (Figure 7C). For NEA2,
39 proteins were different, including 23 plants proteins and 15 endophyte proteins with decreased
abundance at elevated CO2 levels (Figure 7C). For endophyte proteins of NEA2, we observed
increased production of a pathogenesis-associated vesicle transport protein at ambient CO2 levels
and greater than 30-fold increases in abundance for an isomerase involved in protein folding and an
uncharacterized methoxylase. The proteins that differed in each comparison (i.e., L. perenne colonized
with AR1, AR37, E+, or NEA2 at 400 and 800 ppm CO2) are provided for endophyte (Appendix B,
Table A3) and plant (Appendix B, Table A4) profiling. This approach enables us to identify proteins
from both perspectives (plant and endophyte) with altered production influenced by epichloid strain
under rising CO2 conditions.

To provide functional insight into the proteins with changes in abundance, we classified the
plant and endophyte proteins by Gene Ontology Biological processes. For plant proteins displaying
changes in abundance, the proteins fall into nine categories, with the majority of proteins associated
with translation and RNA processing, biosynthetic and catabolic processes, transport, and defense
response (Figure 7A). Profiling of endophyte proteins also identified nine categories with most proteins
associated with metabolism, biosynthetic and catabolic processes, and translation and transcription
(Figure 7B). Given our hypothesis that endophyte strains differentially influence plant responses and
our observation of opposite patterns of defense protein production upon rising CO2 levels, we profiled
changes in abundance of these proteins among the comparisons. We observed increases in plant
defense-associated proteins (N = 14) in the presence of AR1 at elevated CO2 levels, whereas each of
the other endophytes showed similar or slightly increased production of defense related proteins with
rising CO2 levels (Figure 7D). Overall, our approach promotes detection of specific plant and endophyte
proteins influenced by rising CO2 conditions, as well as provides functional insight into the impacts of
environmental change from both the plant and endophyte perspectives. Furthermore, we distinguish
differences in protective properties among the epichloid strains influenced by rising CO2 levels,
which suggests a connection among plant biomass production, protein abundance, and plant defense.
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Figure 7. Quantitative proteomics profiling of CO2-mediated responses. (A) Distribution of differences
in plant proteins based on Gene Ontology Biological processes displaying increased (dark green) or
decreased (light green) abundance at 800 ppm CO2 levels. (B) Distribution of differences in endophyte
proteins based on Gene Ontology Biological processes displaying increased (dark red) or decreased
(light red) abundance at 800 ppm CO2 levels. (C) Volcano plots of L. perenne colonized with each
epichloid strain at 800 vs. 400 ppm of CO2. Plant proteins that differed (Student’s t-test, p < 0.05,
FDR = 0.05, S0 = 1) between the CO2 conditions are denoted with solid green symbols and fungal
proteins that differed are denoted with solid brown symbols. Negative fold differences denote proteins
that declined in abundance under elevated CO2, positive fold differences denote proteins that increased
in abundance under elevated CO2. (D) LFQ intensity plot (mean ± standard error) of defense-related
differences in plant proteins for L. perenne colonized with each epichloid strain (N = 5). Quantification
of five biological replicates. Error bars represent standard error of the mean.

3.5. Integrated OMICS Reveals Important Additonal Metabolites and Proteins

For the subset of data for which we had proteomic data, we combined this with the corresponding
metabolomics data and the corresponding estimates of the Epichloë concentrations and conducted a
PCA. We retained the first four principal components for further analysis. We subjected these principal
components to a two-way ANOVA. The results are shown in Figure 8 and the heavily loading proteins
and metabolites are shown in Table A5. For the first three principal components, there was a CO2 ×
endophyte strain interaction. For the fourth principal component there was no interaction, but both
main effects were important. The three interactions have varied causes. For PC-1, the interaction
seems to be driven by a differential CO2 effect on E+ and NEA2 infected plants, while AR1 and AR37
infected plants did not respond to CO2 for these proteins and metabolites. For PC-2, the interaction
is driven by AR37, E+ and NEA2 infected plants increasing in PC-2 under elevated CO2 while AR1
plants were largely unresponsive. Finally, for PC-3, the interaction is driven largely by the responses
of AR1 and AR37 infected plants. The principal components are each derived from between 5 and
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20 metabolites and/or proteins that change in concert with each other (although not always in the
same direction; see loading signs in Appendix C, Table A5). The integrated analysis revealed four
metabolites, nine fungal derived proteins, and 21 plant derived proteins that were not identified in
the previous analyses, indicating the value of combining the metabolomic and proteomic data sets.
These results suggest that the effects of the Epichloë endophytes are widespread and that the influence
of CO2 on the plant-fungal interaction is complex.

Figure 8. Integrated OMICs responses to CO2 and endophyte strain. Throughout, the dark bars
represent 400 ppm CO2, while the light bars denote 800 ppm CO2. Error bars depict the standard
error of the mean. (A) principal component 1. (B) principal component 2. (C) principal component 3.
(D) principal component 4. Below each graph are the results from the corresponding ANOVA. We also
report the Shannon information transformation, s.
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4. Discussion

We begin by reexamining our original questions in light of the evidence we obtained from
this experiment.

4.1. Do Different Strains of Epichloë festucae var. lolii Produce Similar Fungal Concentrations in a Genetically
Diverse Host Plant Background?

We found that AR37 produced higher concentrations of the endophyte than any of the other three
strains (Figure 1). In a previous study using AR1, AR37, and E+ in different perennial ryegrass cultivars
(Fennema and AberDove) than used here (Alto), Rasmussen et al. [54] found that E+ produced higher
concentrations than AR1, and AR1 produced higher concentrations than AR37, which is opposite to
what we found. These opposing results suggest that some plant–fungal geneotype combinations may
be more compatible than others in terms of fungal growth—although it is difficult to say whether
endophyte concentrations are indicative of endophyte fitness. In any case, these conflicting results
suggest complex host–endophyte interactions that require more experimental work to understand.

4.2. Do Different Strains of the Fungus Differentially Moderate the Impacts of Elevated CO2 on the Growth and
Seed Production of Perennial Ryegrass?

We did not find evidence of differences in the effects of the fungal strains on the impacts of
elevated CO2 at the level of the whole-plant. There was no evidence of a CO2 × endophyte strain
interaction for total plant biomass, seed number, or seed biomass (Figure 1). Multiple endophyte
strains have not previously been studied in elevated CO2, but there are several studies comparing
endophyte presence or absence in elevated CO2, in both the perennial ryegrass and tall fescue systems.
In those studies, CO2 × endophyte presence/absence interactions were similarly not observed for
whole-plant responses [25,63–65]. While one cannot infer “no effect” from a failure to reject the null
hypothesis, taken together, this study and the previous work suggest that perhaps endophyte strain
and CO2 combine additively, at least in their effect on whole plant responses like biomass production.
Nevertheless, this study, and the previous work on endophytes and elevated CO2, all suffer from a
lack of statistical power due to the challenges of replication of the CO2 treatment. A lack of power
means that only interactions with large effect sizes are likely to be detected in such experiments.

4.3. Are the Metabolomes of the Host Plant–Fungal Strain Combinations Different From Each Other and How
Are They Altered by Elevated CO2?

From Figures 4 and 5, and Table A1, it is clear that infection by the different strains of the
endophyte resulted in many, sometimes quite large, differences in the host-fungus metabolome.
In ambient CO2 (Figure 4), all of the comparisons except those involving NEA2 resulted in more
than 100 metabolites for which the concentrations differed between strains. However, the differences
between the strains were more “muted” at elevated CO2 (Figure 4). For example, AR37 vs. E+ in
ambient CO2 resulted in 213 metabolite differences, whereas in elevated CO2 there were only 165
metabolite differences. Comparing within the same fungal strain in ambient CO2 vs. elevated CO2 we
found only three metabolites with large differences.

While we were able to identify many differences in our untargeted metabolomics analysis,
we were unfortunately not able to give names to many of these compounds. However, there were
some intriguingly large differences in a handful of metabolites that probably warrant more targeted
metabolomic analysis. In particular, there are three metabolites that, in ambient CO2, differ by >10-fold
between AR1 and E+ as well as between AR37 and E+. One of these metabolites we were able to
tentatively identify as Soyasaponin A2, a triterpenoid glycoside traditionally identified in soybeans.
Soyasaponin A2 was clustered with six other related but unidentifiable compounds. At ambient CO2,
all comparisons between fungal strains resulted in differences of 7 to 10-fold, with the exception of
AR1 vs. AR37 (1.6-fold difference). These differences remained consistent at elevated CO2, except that
there was no difference between AR1 and AR37.
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Several compounds tentatively identified as alkaloids also showed important differences between
fungal strains. Peramine (C12H17N5O) shows up often in the strain comparisons. Several of these
entries involve comparisons with AR37, which is not surprising since AR37 does not produce peramine.
However, peramine was also different in abundance between AR1 and E+, and between AR1 and
NEA2, both in ambient CO2. Other tentatively identified alkaloids that showed differences included:
2-hydroxymethyl-4-methylquinazoline (C10H10N2O), paraherquamide E (≡ VM 54159, C28H35N3O4),
the ergot alkaloid setoclavine (C16H18N2O), the tricyclic ergot alkaloid intermediate chanoclavine-I,
and the transmembrane channel-like protein (TMC) 2B (C28H34N4O8). None of these latter alkaloids
have previously been discussed in association with any of these endophyte strains. It is possible that
this is a novel result or that we were unable to appropriately distinguish the LC-MS response curves.
It is also possible that these metabolites are made by other, as yet uncharacterized, parts of the grass
microbiome. Several other tenetatively identified secondary metabolites associated with herbivore
defense also differed between strains. For example, the phenols 4-hydroxymellein (C10H10O4) and
terphenyllin (≡ NSC 299114, C20H18O5) both differed. Other putative defensive metabolites for
which differences were detected included benzyl benzoate (C6H5CH2O2CC6H5), MacFadienoside
(C15H22O11), cucurbitacin (C30H42O), as well as the triterpene soyasaponin A mentioned earlier. Again,
these putative defensive compounds are not known from the grass–Epichloë interaction and might
possibly be products of other organisms from the grass’s microbiome. Lastly, it is also interesting to
note that we detected differences in a compound tentatively identified as chlorogenic acid (C16H18O9),
which is an intermediate in lignin biosynthesis.

In the one previous study of the metabolic impacts of elevated CO2 on the perennial
ryegrass–E. festucae var. lolii interaction, Hunt et al. [25] found that endophyte-infected plants changed
less under elevated CO2 than endophyte-free plants in terms of high molecular weight carbohydrates,
soluble protein, and chlorophyll concentrations. While we did not include the endophyte-free plants
in this experiment, a similar trend for muted responses to elevated CO2 was seen in our results. It is
worth noting that the ambient CO2 treatment in the current study (400 ppm) was very similar to the
elevated CO2 treatment in the Hunt et al. study (466 ppm). There have been a few studies of metabolic
differences due to E. coenophiala endophyte in tall fescue (S. arundinaceus ≡ F. arundinacea) in response
to elevated CO2. Newman et al. [63] found that tall fescue plants infected with the endophyte had
smaller reductions in crude protein (%dry matter), smaller increases in soluble crude protein (%DM),
and smaller reductions in acid detergent insoluble crude protein than did endophyte-free plants.
Ryan et al. [64] found that low molecular weight carbohydrate concentrations increased more under
elevated CO2 in endophyte-infected plants compared to endophyte-free plants and that peramine,
ergovaline, and total lolines were all greater under elevated CO2. On the other hand, Brosi et al. [66]
found that elevated CO2 caused declines in the concentrations of both ergovaline and loline, by c.
30%, suggesting that there is still work to be done to understand the responses of alkaloid production
to rising CO2 concentrations. Ryan et al. [65] did not find any effects of the endophyte on phloem
amino acid chemistry. Brosi et al. [66] found declines in cellulose, hemicellulose, and lignin due to
CO2, but these differences were not related to the presence of the endophyte or the interaction between
endophyte and CO2.

4.4. Are the Proteomes of the Host Plant–Fungal Strain Combinations Different From Each Other and How Are
They Altered by Elevated CO2?

Between the PCA and the univariate analysis, we identified 192 proteins that indicate changes
in abundance between ambient and elevated CO2. In both fungal and plant derived proteins,
these changes in protein abundances occurred across a range of different functions, suggesting fairly
widespread changes in protein synthesis.

In plants, SNARE protein function is known to restrict the growth of different pathogens;
disruption of plant vesicle machinery may be indicative of microbial disturbance [88]. We observed
an increase in SNARE protein production in AR1 and AR37 in elevated compared to ambient CO2
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conditions, suggesting a plant response to endophyte growth under rising CO2 levels. In addition,
we observed increased production of several vesicle-associated and transport proteins in the presence
of AR1, which may correspond to the increased plant defense responses reported above. Plant defense
responses may also be activated during fluctuations in transport. For example, engagement of plant
ubiquitination-dependent proteasome machinery may result from pathogen attack [89] and therefore,
we also investigated occurrences of proteolysis, protein ubiquitination, and protein folding, and we
identified several proteins in AR1 and AR37 with increased production at 800 ppm CO2. For example,
two ubiquitin-associated proteins showed increased abundance with AR1. These results suggest
either increased protein degradation at elevated CO2 levels associated with stress response of the
plant or increased degradation of plant proteins as a result of endophyte presence at elevated CO2

levels. Notably, AR37 also shows a reduction in proteasome production at elevated CO2 (suggesting a
possible balance mechanism in effect).

Aside from differences in plant defense response proteins, we also observed unique production
profiles of endophyte proteins. For example, AR1 and NEA2 showed the greatest number of
proteins with changed abundances under elevated CO2 conditions with the majority of AR1 proteins
demonstrating an increase in abundance, which may correspond with the increased bioprotective
properties. Conversely, all different proteins identified with NEA2 were lower in abundance at 800 ppm
CO2, including a pathogenesis-related protein (vesicle-associated membrane protein), which may
support a decrease in fungal virulence at elevated CO2 and suggests a reduced stress response by
the endophyte. For example, in the fungal pathogen Candida albicans, elevated CO2 levels enhance
virulence during infection through regulation of signaling cascades, which suggests an opportunity
for the fungus to flourish when the host’s immune system is suppressed [90].

4.5. Does an Integrated Analysis of the Proteome and Metabolome Data Yield Different Insights Than Those
Gained From Considering the Proteome and Metabolome Separately?

By using the power of a multivariate analysis we are able to glean more information than
is available from univariate analyses alone—because we use the information about relationships
among the dependent variables not just between the independent and dependent variables. Similarly,
by combining the Epichloë concentrations (abundances) with the metabolite and protein abundances,
we are able to take advantage of information that is shared between the dependent variables.
This analysis highlighted 34 metabolites and proteins that were not seemingly important in the
separate PCAs or univariate analyses.

Taken together, the separate metabolome and proteome analyses, combined with the integrated
OMICs analysis, allowed us to identify a large range of metabolites and proteins that seem to depend on
the particular strain of the endophyte, the CO2 concentration, and often an interaction between the two.
These results lay the groundwork for much follow-up research that will be necessary to elucidate the
causal pathways and regulatory mechanisms that govern the host grass–fungal endophyte relationship
(see “Conclusions and future directions” below). Doing so will not be easy. Although there are a large
number of metabolites and proteins that vary among the treatments, there is no simple, consistent
pattern of variation among the epichloid strains or across the CO2 treatments. To better illustrate this
point, consider Figure 9. Shown are the correlation coefficients between the endophyte concentration
and the various metabolites and proteins (for the subset of data for which we had metabolomic and
proteomic measures). The coefficients at 400 ppm CO2 are plotted against the corresponding coefficient
at 800 ppm. We can see that every possible relationship exists. Even for metabolites and proteins that
show a very high correlation (r > 0.99) for at least one of the strain–CO2 conditions (see Figure 9) the
other strain–CO2 combinations show different patterns.
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Figure 9. Correlations with Epichloë concentration. Show are the correlation coefficients (r) and the
individual proteins (A,B) and metabolites (C) separated by epichoid strain (note that the points for
the fungal proteins are larger for ease of viewing). Furthermore, (D) examples of the relationships
between epichloid strain and four compounds (M1 ≡ “metabolite 1”, P91 ≡ “plant protein 91”, F159 ≡
“fungal protein 159”, P503 ≡ “plant protein 503” are shown; see Supplementary Tables S1 and S2) that
are highly correlated (r > 0.99) with at least one of the epichloid strain by CO2 combinations. Black
lines represent 400 ppm CO2, red lines denote 800 ppm CO2; the different line types denote different
ephichloid strains, but their identities are not important here. Here it suffices to note that the pattern of
responses tends to be “strain specific” rather than general across all strains.

These differences in host-endophyte response between protein and metabolite production
highlight the dynamic and complex regulatory processes underscoring the host and endophyte
responses to infection and rising CO2 conditions. Similar differential profiles between proteomic and
metabolomic data sets have been observed in diverse biological systems and may be explained by
the different tissues used for the analysis or protein turnover rates [91]. For example, we performed
metabolome profiling on blade tissue, whereas we performed the proteome profiling on pseudostem
tissue, where fungal genes are more highly expressed [77] and where concentrations of the endophyte
are greatest [85,92–94]. Such differences could be associated with the sample type, location,
and possible diffusion of metabolites throughout the plant. To gain a better understanding of
the relationship between protein and metabolite production, future studies should profile the
metabolome of the pseudostem and use tandem mass spectrometry to identify compounds with
greater accuracy. Another approach would be to use apoplast wash fluid, a technique used successfully
by Green et al. [71] who noted that this approach greatly simplified the complex metabolomic response
by limiting the metabolites to those likely produced by the endophyte.

Discrepancies between endophyte concentrations and protein abundance is a well-studied area
and a lack of correlation is linked to several factors, including the intracellular stability of a protein
(e.g., protein turnover rates), transcript stability, and post-translational regulation [95,96]. In addition,
timing of sample collection and processing (e.g., early or late harvest), storage conditions (e.g., flash
frozen vs. lyophilized), and tissue type (e.g., sheath tissue vs. pseudostem) can account for differences
in molecular regulation. Moreover, changing patterns in protein translation and transcription can
provide insight into differences in gene regulation.
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4.6. Is There Any Evidence of Host Plant–Fungal Strain Genetic Incompatibility?

We found no evidence of genetic incompatibility. The between family variance was considerably
smaller than the within family variance in the three plant growth metrics as well as the endophyte
concentration measure. It is unclear how the genetic variation in our plants would compare to the
genetic variation in other, nonagronomic grass–Epichloë combinations. Recall that we purposefully
created additional genetic variation in the host plants by outcrossing the mothers with a variety of
other forage and turf cultivars. Nevertheless, it remains an open question whether our procedure
could have created sufficient variation to detect genetic incompatibility in this plant–fungal interaction.
The relationship between cool season grasses and Epichloë endophytes is an ancient one, arising some
30–40 million years ago. It seems to us unlikely that genetic incompatibility between host grass and
Epichloë endophyte still persists, but our test is by no means definitive.

5. Conclusions and Future Directions

In brief, we asked and tentatively answered the following questions:

1. Do different strains of E. festucae var. lolii produce similar fungal concentrations in a genetically diverse
host plant background?
No, in our experiment AR37 produced greater concentrations of the endophyte than did any of
the other strains (Figure 1).

2. Do different strains of the fungus differentially moderate the impacts of elevated CO2 on the growth and
seed production of perennial ryegrass?
No, we did not find evidence that endophyte strains interact with CO2 to influence plant growth
or seed production (Figure 1).

3. Are the metabolomes of the host plant–fungal strain combinations different from each other and how are
they altered by elevated CO2?
Yes, metabolomes differed between endophyte strains and these differences were generally more
muted in elevated CO2 compare to ambient CO2 (Table A1, Figures 4 and 5).

4. Are the proteomes of the host plant–fungal strain combinations different from each other and how are they
altered by elevated CO2?
Yes, proteomes differed between endophyte strains and there was evidence of substantial
interaction between endophyte strains and CO2 levels (Tables A2–A4, Figures 6 and 7).

5. Does an integrated analysis of the proteome and metabolome data yield different insights than those gained
from considering the proteome and metabolome separately?
Yes, the integrated analysis highlighted roles for 34 metabolites and proteins that were not
identified as important in the previous analyses (Table A5, Figure 8).

6. Is there any evidence of host plant–fungal strain genetic incompatibility?
No, we found no evidence of genetic incompatibility for the degree of genetic diversity we were
able to create in this experiment (Figure 2).

The OMICs techniques we employed in this paper are, in some sense, like opening the “black box”
that is not visible in studies of the Epichloë–grass relationship studied only at the level of gross plant
growth and reproduction metrics. In many ways, the work generates more questions than answers.
It might be productive to build upon this work in the following ways. To get a better sense of the
impacts of climatic change on this mutualism, a future experiment ought to incorporate warming and
the interaction between warming and elevated CO2. The metabolomic impacts of endophyte strain and
climatic change ought to be assessed using tandem mass spectrometry (LC-MS/MS) to gain sensitivity
and structural information to better identify metabolites. A more targeted metabolomics approach,
using internal standards, would also be warranted to explore in more depth some of the changes we
observed in the present experiment. A useful extension of our proteomics analysis would be to examine
in more depth some of the protein abundance changes we observed, perhaps coupled with a targeted
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transcriptomic assay [97]. Finally, although we recognize that this would be a major undertaking,
work should be done to identify the entire plant microbiome, how it changes with different epichloid
strains, and its functional role in altering the plant growth, metabolomic, and proteomic responses to
climatic change. In terms of the genetic incompatibility question, a similar experiment using families
of half-sibs needs to be completed on nonagricultural populations of grass-endophyte combinations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2309-608X/6/4/360/s1,
Figure S1: Biological replicate reproducibility, Table S1: Metabolite univariate differences, Table S2: Summary of
metabolite differences.
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Appendix A. Detailed Metabolomics Results

Table A1. Metabolites defining the first two principal components. Shown are the metabolites that
“load heavily” (in this case |x| ≥ 0.7) on each axis. In the case of PC1, these metabolites load positively.
In the case of PC2, the metabolites load negatively. Mass denotes the average mass, and RT denotes the
average retention time. Metabolites that also loaded heavily in the integrated OMICs PCA are denoted
with a X, see Table A5. See also Supplemental Tables S1 and S2.

1st Principal Component

Mass RT Compound Name Loading

404.20 1.26 unidentified #121 0.92
1049.53 5.09 unidentified #278 0.89
893.44 4.45 unidentified #269 0.89
236.13 4.71 unidentified #34 0.88
477.26 4.56 X VM 54159 0.87
480.89 5.15 unidentified #153 0.87
481.55 5.15 unidentified #155 0.86

1078.52 4.98 unidentified #280 0.86
1148.60 5.15 unidentified #289 0.84
121.05 5.15 X unidentified #3 0.83
514.28 5.16 Cucurbitacin I 0.82
992.47 5.15 unidentified #275 0.82
891.46 5.12 unidentified #268 0.82

1106.56 5.16 X Soyasaponin A2 0.81
368.85 5.17 X unidentified #91 0.80

1122.55 4.45 X unidentified #283 0.80
374.18 4.45 unidentified #96 0.80
860.42 5.17 unidentified #263 0.79

1120.57 5.16 unidentified #282 0.79
373.85 5.17 unidentified #95 0.79

http://www.mdpi.com/2309-608X/6/4/360/s1
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Table A1. Cont.

2nd Principal Component

Mass RT Compound Name Loading

212.08 5.14 Benzyl benzoate 0.79
374.85 4.44 unidentified #98 0.78
256.16 4.75 Chanoclavine-I 0.77

1498.71 5.15 unidentified #301 0.77
645.33 5.15 unidentified #214 0.74
480.56 5.15 unidentified #152 0.74
514.31 1.22 unidentified #164 0.74

1458.69 5.15 unidentified #300 0.73
878.37 5.16 unidentified #266 0.70

2nd Principal Component

Mass RT Compound Name

364.14 7.51 unidentified #86 −0.70
348.11 5.75 unidentified #75 −0.71
332.12 5.32 unidentified #69 −0.72
316.08 5.31 unidentified #61 −0.73
362.09 4.70 unidentified #84 −0.73
396.13 6.05 unidentified #115 −0.73
378.12 6.04 Macfadienoside −0.75

346.13 7.50 3-Methoxyxanthocillin X
dimethyl ether −0.75

558.18 5.02 unidentified #182 −0.78
315.21 5.29 unidentified #310 −0.81
396.13 6.05 unidentified #115 −0.81
142.06 6.02 unidentified #6 −0.82
558.18 5.08 unidentified #181 −0.85
334.13 8.61 unidentified #71 −0.86
302.07 5.30 unidentified #55 −0.86

Appendix B. Detailed Proteomics Results

Table A2. Proteome Principal Components Analysis. Shown are the proteins that “load heavily” onto
the first three principal component axes. “Heavy” loadings are defined here as |x| ≥ 0.70. Fungal
derived proteins are highlighted in pale brown; the plant derived proteins are highlighted in pale green.
Proteins that were individually different between 400 ppm and 800 ppm CO2 for at least one strain of
the endophyte are denoted with a †, see Tables A3 and A4. Proteins that load heavily in the integrated
OMICs PCA are denoted with X, see Table A5.

PCA Loadings

Protein PC1 PC2 PC3
X probable methionine synthase 0.85
6-phosphogluconate
dehydrogenase, decarboxylating 0.84

FAD dependent oxidoreductase 0.80
X γ-actin 0.78
hypothetical protein 0.78
heat shock protein 0.75
probable nucleoside-diphosphate
kinase 0.75

X related to sporulation-specific
gene SPS2 0.75

† 7α-cephem-methoxylase P8 chain
related protein 0.75

Iso_dh domain-containing protein 0.74
60S ribosomal protein L13 0.73
† Saccharopine dehydrogenase 0.72
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Table A2. Cont.

PCA Loadings

Protein PC1 PC2 PC3
unnamed protein product −0.71
peptidyl-prolyl cis-trans isomerase
CYP20-1 isoform X2 −0.71

GTP-binding protein −0.72
dipeptidase −0.72
proteasome subunit α type-7-B −0.72
citrate synthase −0.73
protein TPR2 −0.74
† transmembrane 9 superfamily
member −0.75

glucose-6-phosphate isomerase −0.75
predicted protein −0.76
zinc protease −0.77
guanosine nucleotide diphosphate
dissociation inhibitor −0.80

X unnamed protein product / MPN
domain-containing protein 0.86

X† plant SNARE 13 0.86
X pyruvate kinase, cytosolic
isozyme 0.86

X† endoglucanase 0.86
chromatin assembly factor 1 subunit
A isoform X1 0.84

unnamed protein product /
Importin N-terminal
domain-containing protein

0.83

vesicle-associated protein 0.81
† N-acetyl-D-glucosamine kinase 0.80
X GTP-binding protein SAR1A 0.80
uncharacterized protein 0.80
predicted protein 0.79
ATP-dependent Clp protease
proteolytic subunit 0.78

X β-adaptin-like protein 0.75
elongation factor 1-β 0.75
† cytosolic acetyl-CoA carboxylase 2 0.75
unnamed protein product / SRP54
domain-containing protein 0.75

uncharacterized protein 0.74
X† histidine–tRNA ligase 0.73
peroxisomal acyl-coenzyme A
oxidase 0.73

putative
6-phosphogluconolactonase 4 0.73

† chloroplast protoporphyrinogen
IX oxidase 0.72

40S ribosomal protein S20 0.72
† 60S ribosomal protein L10a 0.71
hypothetical protein 0.71
X† ubiquitin carboxyl-terminal
hydrolase 0.70
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Table A2. Cont.

PCA Loadings

Protein PC1 PC2 PC3
X Ras family protein 0.79
X probable glutathione peroxidase 0.77
X 14-3-3E 0.77
putative glycerophosphoryl diester
phosphodiesterase 0.75

fructose-bisphosphate aldolase 0.75
ran-binding protein 0.74
X vacuolar proton-inorganic
pyrophosphatase 0.74

hypothetical protein 0.73
protein CROWDED NUCLEI 0.71
probable ribosomal protein 0.71
polyketide synthase −0.73
† 60S ribosomal protein L32-1 −0.73
oxygen-dependent
coproporphyrinogen-III oxidase −0.81

uncharacterized protein −0.81
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Table A3. Differences in fungal proteins identified by quantitative proteomics profiling influenced by rising CO2 levels. Proteins that load heavily in the proteome
PCA are denoted with a †, see Table A2. Proteins that load heavily in the integrated OMICs PCA are denoted with a X.

LFQ (log2; 800 vs. 400 ppm)

Gene Identifier Protein Name AR1 AR37 E+ NEA2

GOBP: Metabolism

E2368|EfP3.074780.mRNA-1 dihydrolipoamide acetyltransferase 1.91
E2368|EfP3.082070.mRNA-1 probable β-glucosidase 1 precursor 1.73
E2368|EfP3.025570.mRNA-1 † saccharopine dehydrogenase −2.16
E2368|EfP3.029340.mRNA-1 LysM domain-containing protein −1.61
E2368|EfP3.034550.mRNA-1 probable H+-transporting ATPase 1.94
E2368|EfP3.040190.mRNA-1 glycoside hydrolase family 10 protein 2.57 −2.24
E2368|EfP3.046900.mRNA-1 glyceraldehyde-3-phosphate dehydrogenase −1.60
E2368|EfP3.005420.mRNA-1 glycoside hydrolase family 3 protein −2.46
E2368|EfP3.059150.mRNA-1 inorganic pyrophosphatase −2.25
E2368|EfP3.015680.mRNA-1 α-mannosidase −1.68
E2368|EfP3.019300.mRNA-1 adenosylhomocysteinase −2.39
E2368|EfP3.019390.mRNA-1 probable trehalase precursor −2.86
E2368|EfP3.027680.mRNA-1 Acyl-CoA-binding protein −2.97 −2.08
E2368|EfP3.043990.mRNA-2 probable pyruvate decarboxylase −1.66

GOBP: Biosynthetic & Catabolic processes

E2368|EfP3.011820.mRNA-1 cobalamin-independent methionine synthase −2.15
E2368|EfP3.002240.mRNA-1 argininosuccinate lyase 1.53
E2368|EfP3.032860.mRNA-1 3-isopropylmalate dehydrogenase 1.91 −1.97
E2368|EfP3.064110.mRNA-2 probable phosphogluconate dehydrogenase −1.90

GOBP: Translation & Transcription

E2368|EfP3.056000.mRNA-1 40S ribosomal protein S15 −2.15
E2368|EfP3.066450.mRNA-1 probable ribosomal protein L12 6.22 3.71
E2368|EfP3.011650.mRNA-1 40S ribosomal protein S0 −2.04
E2368|EfP3.046770.mRNA-1 40S ribosomal protein S7 −2.60
E2368|EfP3.020500.mRNA-1 ribonuclease HI large subunit −2.89 −4.47
E2368|EfP3.026100.mRNA-1 Histone H2B −2.20
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Table A3. Cont.

GOBP: Uncharacterized

E2368|EfP3.004630.mRNA-1 † 7α-cephem-methoxylase P8 chain related protein 3.81 -4.95
E2368|EfP3.014290.mRNA-1 endosomal peripheral membrane protein 1.83
E2368|EfP3.053290.mRNA-1 uncharacterized protein −2.29
E2368|EfP3.057600.mRNA-1 hypothetical protein −2.44
E2368|EfP3.080080.mRNA-1 WD repeat protein −3.04

GOBP: Protein folding

E2368|EfP3.079510.mRNA-1 40 kDa peptidyl-prolyl cis-trans isomerase −5.12
E2368|EfP3.059210.mRNA-1 calreticulin −1.86

GOBP: Pathogenesis

E2368|EfP3.079280.mRNA-1 Vesicle-associated membrane protein −1.80

GOBP:: Aerobic respiration

E2368|EfP3.007970.mRNA-1 cytochrome b-c1 complex subunit 2 2.14 −1.79

GOBP: Genome maintenance

E2368|EfP3.031010.mRNA-1 ATP citrate lyase 2.05 −1.90

GOBP: DNA binding

E2368|EfP3.059770.mRNA-1 cold-shock DNA-binding domain-containing protein −3.00
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Table A4. Differences in plant proteins identified by quantitative proteomics profiling influenced by rising CO2 levels. Proteins that load heavily in the proteome PCA
are denoted with a †, see Table A2. Proteins that load heavily in the integrated OMICs PCA are denoted with a X, see Table A5.

LFQ (log2; 800 vs. 400 ppm)

Gene Identifier Protein Name AR1 AR37 E+ NEA2

GOBP: Translation & RNA processing

ref0006279-exonerate_est2genome-gene-0.0-mRNA-1 sm-like protein 2.69
ref0046235-exonerate_est2genome-gene-0.1-mRNA-1 30S ribosomal protein 3 −1.95
ref0003115-exonerate_est2genome-gene-0.3-mRNA-1 X† histidine–tRNA ligase 1.38
ref0012853-exonerate_est2genome-gene-1.5-mRNA-1 RGG repeats nuclear RNA binding protein A-like 2.12
ref0029525-exonerate_est2genome-gene-0.5-mRNA-1 50S ribosomal protein L31 3.30
ref0002751-exonerate_est2genome-gene-0.0-mRNA-1 eukaryotic translation initiation factor 4G 1.90
ref0037446-exonerate_est2genome-gene-0.1-mRNA-1 † 60S ribosomal protein L10a 4.72
ref0039514-exonerate_est2genome-gene-0.1-mRNA-1 valine–tRNA ligase 1.26 −1.76
ref0005003-exonerate_est2genome-gene-0.0-mRNA-3 serine/arginine-rich-splicing factor SR34 isoform 2.33
ref0004691-exonerate_est2genome-gene-0.6-mRNA-1 DEAD-box ATP-dependent RNA helicase 3 1.58
ref0026558-exonerate_est2genome-gene-0.0-mRNA-2 eukaryotic translation initiation factor 6-2 −2.04
ref0005830-exonerate_est2genome-gene-0.0-mRNA-1 small nuclear ribonucleoprotein SmD1a 1.63 −1.98
ref0031460-exonerate_est2genome-gene-0.1-mRNA-1 splicing factor 3B subunit 1 1.71 −1.73
ref0002750-exonerate_est2genome-gene-0.0-mRNA-1 50S ribosomal protein L29 −2.82 −2.59
ref0027372-exonerate_est2genome-gene-0.0-mRNA-1 † 60S ribosomal protein L32-1 −2.37
ref0024485-exonerate_est2genome-gene-0.5-mRNA-1 DEAD-box ATP-dependent RNA helicase 20 −1.71
ref0020192-exonerate_est2genome-gene-0.1-mRNA-1 nardilysin-like −1.85
ref0047393-exonerate_est2genome-gene-0.0-mRNA-1 translation initiation factor IF3-4 1.92
ref0005329-exonerate_est2genome-gene-0.0-mRNA-2 X glycine–tRNA ligase 1.54

GOBP: Biosynthetic & catabolic processes

ref0029850-exonerate_est2genome-gene-0.0-mRNA-1 † chloroplast protoporphyrinogen IX oxidase 1 1.56
ref0045266-exonerate_est2genome-gene-0.0-mRNA-1 Cytochrome P450 3.02 2.73 −2.45
ref0014716-exonerate_est2genome-gene-0.1-mRNA-1 glutamyl-tRNA(Gln) amidotransferase subunit C 2.04
ref0040294-exonerate_est2genome-gene-0.0-mRNA-2 lipoamide acyltransferase 2.40 −2.67
ref0010297-exonerate_est2genome-gene-0.2-mRNA-1 glutamate–glyoxylate aminotransferase 2 isoform 1.60
ref0029399-exonerate_est2genome-gene-0.0-mRNA-1 trehalose-6-phosphate synthase 2.32
ref0008372-exonerate_est2genome-gene-0.1-mRNA-1 phospholipase A1-II 7 2.15
ref0020040-exonerate_est2genome-gene-0.1-mRNA-1 δ-aminolevulinic acid dehydratase 2.62 −2.22
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Table A4. Cont.

LFQ (log2; 800 vs. 400 ppm)

Gene Identifier Protein Name AR1 AR37 E+ NEA2

ref0041371-exonerate_est2genome-gene-0.0-mRNA-1 12-oxophytodienoate reductase 11 2.25
ref0026877-exonerate_est2genome-gene-0.0-mRNA-1 linoleate 9S-lipoxygenase 3 3.43
ref0042665-exonerate_est2genome-gene-0.2-mRNA-1 endoglucanase 24 3.13 1.98
ref0023177-exonerate_est2genome-gene-1.6-mRNA-1 pyruvate dehydrogenase E1 component subunit α-3 1.71
ref0046445-exonerate_est2genome-gene-0.3-mRNA-1 chloroplast stem-loop binding protein of 41 kDa b 1.69 −1.61
ref0025738-exonerate_est2genome-gene-0.0-mRNA-1 putative monogalactosyldiacylglycerol synthase 1 2.03 2.12
ref0013554-exonerate_est2genome-gene-0.5-mRNA-1 aldehyde oxidase 2 −1.42
ref0032452-exonerate_est2genome-gene-0.2-mRNA-1 protein ECERIFERUM 26-like −2.13
ref0000037-exonerate_est2genome-gene-0.2-mRNA-1 alcohol dehydrogenase 4 −1.34
ref0043257-exonerate_est2genome-gene-0.0-mRNA-1 cinnamyl alcohol dehydrogenase 2.02

GOBP: Transport

ref0016004-exonerate_est2genome-gene-0.3-mRNA-1 X† Plant SNARE 13 2.87 1.62
ref0007462-exonerate_est2genome-gene-0.1-mRNA-2 cation-chloride cotransporter 1-like isoform X2 −1.84
ref0029020-exonerate_est2genome-gene-0.0-mRNA-1 γ-soluble NSF attachment protein 1.73
ref0006742-exonerate_est2genome-gene-0.0-mRNA-2 plasma membrane ATPase 1 −1.73
ref0036493-exonerate_est2genome-gene-0.3-mRNA-1 exportin-2 2.70
ref0009047-exonerate_est2genome-gene-0.0-mRNA-2 X† vesicle-associated protein 1-3-like 2.47 2.09
ref0017192-exonerate_est2genome-gene-0.0-mRNA-1 vacuolar targeting receptor bp-80 1.64
ref0004589-exonerate_est2genome-gene-0.0-mRNA-1 ABC transporter F family member 1-like 1.87
ref0032029-exonerate_est2genome-gene-0.1-mRNA-3 † transmembrane 9 superfamily member 12-like 2.36
ref0006339-exonerate_est2genome-gene-0.4-mRNA-1 importin subunit β-1-like 1.43

GOBP: Defense response

ref0030923-exonerate_est2genome-gene-0.2-mRNA-1 aspartyl protease family protein 1 2.16
ref0035348-exonerate_est2genome-gene-0.1-mRNA-1 primary amine oxidase 1 1.77
ref0043342-exonerate_est2genome-gene-1.4-mRNA-1 AIG2-like protein D 1.63
ref0014914-exonerate_est2genome-gene-0.0-mRNA-1 tryptophan synthase β chain 2 2.35
ref0036720-exonerate_est2genome-gene-0.2-mRNA-2 endo-1,3(4)-β-glucanase 2 1.61
ref0029599-exonerate_est2genome-gene-0.3-mRNA-1 peroxidase 1-like 1.85
ref0009434-exonerate_est2genome-gene-0.0-mRNA-1 peroxidase 43-like 1.57
ref0032529-exonerate_est2genome-gene-0.0-mRNA-1 peroxidase 47-like 1.97
ref0038358-exonerate_est2genome-gene-0.3-mRNA-1 pathogen-related protein 10-3 2.63
ref0000436-exonerate_est2genome-gene-0.1-mRNA-1 protein DJ-1 homolog A 1.92
ref0042726-exonerate_est2genome-gene-0.0-mRNA-1 ferritin-1 −3.07
ref0046713-exonerate_est2genome-gene-0.1-mRNA-1 Glucan endo-1,3-β-glucosidase 4 −1.76
ref0041974-exonerate_est2genome-gene-0.0-mRNA-1 nonspecific lipid transfer protein-like 1 −3.04
ref0022536-exonerate_est2genome-gene-0.1-mRNA-1 metacaspase 3 −1.73
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Table A4. Cont.

LFQ (log2; 800 vs. 400 ppm)

Gene Identifier Protein Name AR1 AR37 E+ NEA2

GOBP: Uncharacterized

ref0011040-exonerate_est2genome-gene-0.0-mRNA-1 uncharacterized protein 2.05
ref0007943-exonerate_est2genome-gene-0.4-mRNA-3 hypothetical protein −2.04
ref0026121-exonerate_est2genome-gene-0.3-mRNA-1 hypothetical protein 1.99 −3.23
ref0036333-exonerate_est2genome-gene-0.0-mRNA-1 unnamed protein product 2.65 −2.53
ref0025567-exonerate_est2genome-gene-0.1-mRNA-1 X hypothetical protein 1.54
ref0034929-exonerate_est2genome-gene-0.0-mRNA-1 uncharacterized protein 2.05
ref0040401-processedgene-0.3-mRNA-1 hypothetical protein 1.96
ref0038111-exonerate_est2genome-gene-0.0-mRNA-1 unnamed protein product −1.77
ref0018438-exonerate_est2genome-gene-0.0-mRNA-2 large proline-rich protein bag6-B isoform −2.03
ref0044732-processed-gene-0.3-mRNA-1 predicted protein −2.01

GOBP: Metabolism

ref0036350-exonerate_est2genome-gene-0.2-mRNA-1 aldo-keto reductase family 4 member C10 1.81 −1.98
ref0046846-exonerate_est2genome-gene-0.2-mRNA-1 putative aldo-keto reductase 2 2.74
ref0036721-exonerate_est2genome-gene-0.0-mRNA-2 sphingosine-1-phosphate lyase 2.98
ref0037951-exonerate_est2genome-gene-0.0-mRNA-1 Glu1 protein −2.67
ref0021220-exonerate_est2genome-gene-0.2-mRNA-1 methylcrotonoyl-CoA carboxylase subunit α 1.59
ref0015207-exonerate_est2genome-gene-0.0-mRNA-1 α-L-arabinofuranosidase 1-like 1.56 −2.84
ref0042878-exonerate_est2genome-gene-0.0-mRNA-2 † acyl-coenzyme A oxidase 2 2.34
ref0040981-exonerate_est2genome-gene-0.1-mRNA-1 UDP-N-acetylglucosamine diphosphorylase 1 −2.71

GOBP: Cell cycle & development

ref0006993-exonerate_est2genome-gene-0.0-mRNA-1 dynamin-related protein 1E 1.94
ref0040384-exonerate_est2genome-gene-0.2-mRNA-1 myosin-17-like 1.92
ref0013885-snap-gene-0.15-mRNA-1 early nodulin-like protein 1 2.01 2.83
ref0032994-exonerate_est2genome-gene-0.0-mRNA-2 † chromatin assembly factor 1 subunit A isoform 2.50
ref0042157-exonerate_est2genome-gene-0.4-mRNA-1 probable cellulose synthase A catalytic subunit 8 3.07
ref0033306-exonerate_est2genome-gene-0.0-mRNA-1 NADH dehydrogenase [ubiquinone] 1 α

subcomplex subunit
2.03

ref0034289-exonerate_est2genome-gene-0.1-mRNA-1 † cytosolic acetyl-CoA carboxylase 2 2.04
ref0003264-exonerate_est2genome-gene-0.0-mRNA-2 protein RCC2 −1.75
ref0025755-exonerate_est2genome-gene-0.0-mRNA-1 Protein phosphatase 1 regulatory subunit −2.03
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Table A4. Cont.

LFQ (log2; 800 vs. 400 ppm)

Gene Identifier Protein Name AR1 AR37 E+ NEA2

GOBP: Proteolysis, protein ubiquitination & protein folding

ref0044837-exonerate_est2genome-gene-0.2-mRNA-1 ATP-dependent zinc metalloprotease 1.40 1.68
ref0019120-exonerate_est2genome-gene-0.0-mRNA-3 X ubiquitin carboxyl-terminal hydrolase 13 2.33 −1.72
ref0026335-exonerate_est2genome-gene-0.1-mRNA-1 ubiquitin conjugation factor 2.57 −2.66
ref0025653-exonerate_est2genome-gene-1.2-mRNA-1 proteasome subunit α type-5 −1.54
ref0043339-exonerate_est2genome-gene-1.2-mRNA-1 dnaJ protein P58IPK homolog B isoform X1 2.05
ref0035568-exonerate_est2genome-gene-0.2-mRNA-1 proteasome subunit β type-3 −1.56

GOBP: Signal transduction

ref0037043-exonerate_est2genome-gene-0.0-mRNA-1 † N-acetyl-D-glucosamine kinase 3.38 2.48 −1.68
ref0012852-exonerate_est2genome-gene-0.1-mRNA-1 nicalin 1.20
ref0030401-exonerate_est2genome-gene-0.0-mRNA-1 signal recognition particle 54 kDa protein 1.86
ref0013500-exonerate_est2genome-gene-0.0-mRNA-1 signal recognition particle subunit SRP72 2.53
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Appendix C. Detailed Integrated OMICs Results

Table A5. Integrated OMICs Principal Components Analysis. Shown are the metabolites and proteins
that “load heavily” onto the first four principal component axes. “Heavy” loadings are defined here as
|x| ≥ 0.75 for the proteins and |x| ≥ 0.65 for the metabolites. Fungal derived proteins are highlighted
in pale brown, plant derived proteins are highlighted in pale green, metabolites are highlighted in pale
yellow, and the concentration of the Epichloë endophyte is highlighted in pale blue. Where metabolites
or proteins are important in other analyses they are cross referenced to the relevant table.

PCA Loadings

Identity PC1 PC2 PC3 PC4
related to sporulation-specific gene SPS2 (Table A2) −0.85
Superoxide dismutase [Cu-Zn] −0.84
probable methionine synthase (Table A2) −0.79
unidentified protein −0.79
γ-actin (Table A2) −0.78
related to gluconate 5-dehydrogenase −0.77
unidentified protein −0.76
uncharacterized proetin −0.75
Mass = 189.04; RT = 3.81 ; unidentified #19 −0.70
Epichloë fesctucae var. lolii concentration (Figure 1) −0.62
Mass = 1106.56; RT = 3.13; Soyasaponin A2 (Table A1) 0.68
Mass = 1122.55; RT = 4.45; unidentified #283 (Table A1) 0.69
Mass = 368.85; RT = 5.17; unidentified #91 (Table A1) 0.75
phospho-2-dehydro-3-deoxyheptonate aldolase 2,
chloroplastic 0.75

40S ribosomal protein S5-1 0.76
26S proteasome non-ATPase regulatory subunit 1
homolog 0.76

uncharacterized proetin 0.77
uncharacterized proetin 0.79
26S protease regulatory subunit 8 homolog A-like 0.80
GDP-mannose 3,5-epimerase 2 0.86
Mass = 328.20; RT = 1.21; unidentified #65 −0.72
Mass = 477.26; RT = 4.56; VM54159 (Table A1) −0.69
Mass = 121.05; RT = 5.15; unidentified #3 (Table A1) −0.65
DNAJ-like protein 0.76
RanBD1 domain-containing protein 0.77
probable glutathione peroxidase 4 (Table A2) 0.77
vacuolar proton-inorganic pyrophosphatase (Table A2) 0.78
cytosolic copper zinc superoxide dismutase 0.79
putative ADP-ribosylation factor 0.81
14-3-3E (Table A2) 0.81
Ras family protein (Table A2) 0.87
U-box domain-containing protein 0.75
uncharacterized protein 0.77
glycine–tRNA ligase, chloroplastic/mitochondrial 2-like
(Table A4) 0.78

aldo_ket_red domain-containing protein 0.79
histidine–tRNA ligase, cytoplasmic (Tables A2 and A4) 0.79
protoporphyrinogen oxidase 0.79
uncharacterized protein 0.80
uncharacterized protein (Tables A2 and A4) 0.80
acetyltransferase component of pyruvate dehydrogenase
complex 0.80
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Table A5. Cont.

PCA Loadings

Identity PC1 PC2 PC3 PC4
importin N-terminal domain-containing protein 0.81
β-adaptin-like protein (Table A2) 0.82
MI domain-containing protein 0.82
ubiquitin carboxyl-terminal hydrolase 13 (Tables A2
and A4) 0.82

pyruvate kinase, cytosolic isozyme (Table A2) 0.83
MPN domain-containing protein (Table A2) 0.84
GTP-binding protein SAR1A (Table A2) 0.86
vesicle-associated protein 1-3-like (Table A4) 0.86
predicted protein 0.87
uncharacterized protein 0.89
UBA domain-containing protein 0.91
endoglucanase (Table A2) 0.92
plant SNARE 13 (Tables A2 and A4) 0.93
hypothetical protein IFM46972_10396 −0.81
β expansin B2 −0.77
Mass = 820.45; RT = 6.72; unidentified #249 −0.74
Mass = 834.47; RT = 7.04; unidentified #254 −0.70
uncharacterized protein 0.77
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