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Abstract

We have performed fully atomistic molecular dynamics simulations of the intracellu-

lar domain of a model of the GABAA receptor with and without the GABA receptor

associated protein (GABARAP) bound. We have also calculated the electrostatic

potential due to the receptor, in the absence and presence of GABARAP. We find

that GABARAP binding changes the electrostatic properties around the GABAA

receptor and could lead to increased conductivity of chloride ions through the recep-

tor. We also find that ion motions that would result in conducting currents are

observed nearly twice as often when GABARAP binds. These results are consistent

with data from electrophysiological experiments.
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1 | INTRODUCTION

The family of GABAA receptors is responsible for the majority of fast

neuronal inhibition in the mammalian central nervous system, and is a

target of general anesthetics, benzodiazepines, barbiturates and neu-

rosteroids. These pentameric proteins belong to the cys-loop family of

ligand-gated ion channels that includes the nicotinic acetylcholine, gly-

cine, and 5HT3 receptors. The GABAA receptors are composed of five

subunits arranged pseudosymmetrically around the central ion chan-

nel.1 The subunits, of which 19 have thus far been identified, are sep-

arated into classes based on their sequence similarity: there are six

α-subunits, three β, three γ, three ρ, and single representatives of δ, ϵ,

θ, and π.2 The precise subunit isoform composition of the pentamer

defines the recognition and biophysical characteristics of the particu-

lar receptor subtype. The most ubiquitous subtype, which accounts

for approximately 30% of GABAA receptors in the mammalian brain,3

contains two α1-, two β2-, and a single γ2-subunit.
4 The GABAA recep-

tors can be divided into three structural domains, the extracellular

(EC) domain, the transmembrane (TM) domain, and the intracellular

(IC) domain. When GABA binds to the GABAA receptor, the central

ion channel opens to let chloride ions through.5 This opening is

quickly followed by a period of desensitization of the receptor.6

GABAA receptors with a γ-subunit are often associated with the

GABAA-receptor associated protein, GABARAP. This protein, first

described by Wang et al.,7 consists of 117 amino acids and has a rela-

tive molecular mass of 13 900. Experimental work7,8 shows that it binds

to the intracellular domain of the γ2-subunit of the GABAA receptor. Its

function is most probably twofold: anchoring the GABAA receptor to

the cytoskeleton, and modulating the function of the receptor. Amino

acids near the N-terminal of GABARAP could bind to tubulin,9 whilst

the amino acids nearer the C-terminal bind to the GABAA receptor.8

Moreover, Chen et al.10 showed that GABARAP caused GABAA recep-

tor clustering, and clustered receptors exhibited lower affinity for GABA

(EC50 increased from 5.74 ± 1.4 μM to 20.27 ± 3.8 μM), and theyBenedict W. J. Irwin and Clara C. Wanjura have contributed equally to this study.
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desensitized less quickly (the desensitisation time constant τ increased

from 1 to 2 s). Luu et al.11 show that GABARAP binding increases the

conductance of the GABAA receptor from below 40 pS to above 50 pS,

and the mean opening times from about 2 ms to about 6 ms.

Nevertheless, we still do not know how GABARAP binding

changes the conductance of the GABAA receptor. Previous study by

Irwin et al.12 used experimental structures of the GABARAP and a

modeled structure of the intracellular domain of the GABAA receptor

and performed docking, molecular dynamics simulations and inhomo-

geneous fluid solvation theory calculations to predict the interaction

between GABARAP and the GABAA receptor. We build on this study

and use molecular dynamics simulations and electrostatic calculations

to elucidate how GABARAP binding could increase the conductance

of the GABAA receptor.

2 | METHODS

2.1 | Molecular coordinates

In this research, we used the coordinates of a GABAA receptor model

from the study of Mokrab et al..13 This model used, as template, the

nicotinic acetylcholine receptor (nAChR) structure from the study of

Unwin,14 where five intracellular helices were resolved (Protein Data

Bank code: 2BG9). This is the only structure of the GABAA receptor,

experimental or modeled, that includes part of the intracellular

domain. The subunit composition of this receptor is (α1)2(β2)2γ2. The

intracellular helices are defined to be the following amino acids: α1

-subunit Lys 391–Asp 420, β2-subunit His 421–Asp 450, γ2-subunit

Asp 413–Asp 442.

For the GABARAP structure, we use dock 54a of structure 15 of

the NMR solution structure (PDB code: 1KOT15) from previous

study.12 Figure 1 shows the interaction between GABARAP and the

GABAA receptor intracellular pentahelix viewed from the extracellular

space towards the cytoplasm. Figure 2 shows the interaction between

GABARAP and the GABAA receptor intracellular pentahelix from the

side, with two amino acids from GABARAP and two amino acids from

the pentahelix labeled.

2.2 | Molecular dynamics simulation of GABARAP
and intracellular helices

The systems were prepared using the CHARMM-GUI freely available

on the web.16 The molecular dynamics package NAMD 217 was used

in this study.

We took the pentahelix and immersed it in a solution consisting

of 38658 water molecules, 110 K+ ions and 123 Cl� ions in a periodic

rhombohedral box measuring 108.9 Å by 109.0 Å by 108.8 Å which

gives an ionic solution of concentration of about 0.15 M. We also

took the pentahelix/GABARAP complex and immersed it in a solution

consisting of 38024 water molecules, 108 K+ ions and 123 Cl� ions in

a periodic rhombohedral box of the same dimensions which gives an

ionic solution of concentration of about 0.15 M. These protein mole-

cules are charged, so unequal numbers of cations and anions are

included to render the final systems electrically neutral. In both cases,

the protein is at least 10 Å from any part of its image in the next

periodic box.

We used the CHARMM potential for all our simulations.18 Each

system was minimized for 10 000 steps with all the protein atoms fro-

zen. Molecular dynamics at 310 K was initialized for 10 000 time-

steps of 0.1 fs each, with all main-chain nitrogen atoms frozen.

Langevin dynamics was applied; the thermostat was set with a time

constant of 1 ps�1, and the barostat set with a piston decay time of

10 ps and a piston period of 20 ps. The van der Waals cut-off was

12 Å, and Ewald summation was used for the electrostatic interac-

tions arising from the cell's periodic images. The time-step was

F IGURE 1 Model of the GABAA receptor and a proposed docking
pose of the GABARAP (1KOT model 15 dock 54a). The viewing
direction is from the extracellular space towards the intracellular
space. Only the intracellular helices of the GABAA receptor are shown
in this diagram. GABARAP is shown in cyan, the intracellular helix of
the γ2-subunit in red, that of the α1-subunit in yellow and the helix of
the β2-subunit is shown in green

F IGURE 2 Side-view of a model of the GABAA receptor and a
proposed docking pose of the GABARAP (1KOT model 15 dock 54a).
Only the intracellular helices of the GABAA receptor is shown in this
diagram. GABARAP is shown in cyan, the intracellular helix of the γ2
-subunit in red, that of the α1-subunit in yellow and the helix of the β2
-subunit is shown in green
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lengthened to 2 fs over 30 000 time-steps, during which period all

main-chain nitrogen atoms of the three helices were tethered with a

force constant of 2 kJ/mol/Å2. These helices are part of a large pro-

tein and the helical structures are stabilized by neighboring struc-

tures, some of unknown configuration. In this study, we included

only the helices and so to stabilize them, we imposed the tethers. A

50-ns equilibration was carried out on the initialized system,

followed by a data collection period of 100 ns. Equilibration was

confirmed by a stable r.m.s. deviation from the starting structure

and, in the case of the pentahelix/GABARAP complex, a stable inter-

molecular distance. Configurations were output every 20 ps. A con-

vex hull was created using the following 10 amino acids as vertices

(they are at the end points of the five intracellular helices) using a

previously developed method19: chain A (β2-subunit) His 421 and

Asp 450, chain B (γ2-subunit) Asp 413 and Asp 442, chain C (α1-sub-

unit) Lys 391 and Asp 420, chain D (β2-subunit) His 421 and Asp

450 and chain E (α1-subunit) Lys 391 and Asp 420. These 10 amino

acids are shown in Figure 3; the vertices on the membrane side lie

(upper side of the diagram) in the plane where z � 20 Å and those

on the intracellular side (lower side of the diagram) lie in the plane

where z ��20 Å. The number of Cl� ions inside this convex hull was

determined using a previously developed method20 and counted for

every configuration.

We tracked the trajectories of the ions to locate movements

which are similar to Cl� ion movements when the GABAA receptor

is conducting naturally. We define a “natural” ion movement

where the Cl� ion moves into the convex hull from the membrane

side across the plane where z � 20 Å and where it exits from one

of the five side portals at positions where z < 15 Å (see Figure 3);

previous experiments show that these side portals are the exit

routes for ions.21

2.3 | Evaluation of electrostatic potential

We calculated the electrostatic potential around the GABAA receptor

intracellular pentahelix, in the absence and presence of GABARAP.

From the 100-ns data production run of the molecular dynamics simu-

lation, we took a configuration at every 10 ns to obtain 10 configura-

tions. The water molecules and ions were removed from these

configuration and, for each configuration, we calculated the electro-

static potential due to the CHARMM partial charges18 on the protein

atoms using simple Coulombic interactions; the dielectric constant

was taken as one and nonperiodic boundary conditions were applied.

We then averaged the potential over the 10 configurations and com-

pared them in the absence and presence of GABARAP.

3 | RESULTS

3.1 | Molecular dynamics simulations

The GABAA receptor intracellular pentahelix atoms moved little

during the course of the 100 ns data collection simulation, as they

were tethered. GABARAP was not tethered, but it stayed in close

proximity of the pentahelix. The volume enclosed by the amino

acids at the end points of the intracellular helices were calculated

using a previously developed method22 and it remained stable at a

value of about 27 nm3 during the course of the simulation (data

not shown). We measured the distances between, respectively,

GABARAP Lys 46 Nζ and the GABAA receptor γ-subunit Asp

423 main-chain O, and GABARAP Gln 59 Cγ and the GABAA recep-

tor γ-subunit Ile 438 Cδ and used these distances as indicators of

the distance between these two proteins. The results are shown in

Figure 4. It can be seen that the distances are relatively constant,

which shows that the complex was stable throughout the data col-

lection period.

Figure 5 shows the number of ions inside the convex hull

enclosed by the pentahelix. There is an average of 2.8 Cl� ions inside

the convex hull in the absence of GABARAP, but on GABARAP bind-

ing this increases to 4.0 Cl� ions. The number of ions in the pentahelix

changes over time as the ions move in and out of the pentahelix,

which is a pre-requisite for conduction. Moreover, in the presence of

GABARAP, the average number of ions in the pentahelix is about 40%

higher than in the absence of GABARAP, suggesting that more ions

may be moving through the channel. In the absence of GABARAP,

there are configurations when the channel has no ions, at which point

it cannot be conducting ions.

We observed ions moving from the membrane side of the convex

hull, through the hull of the pentahelix, then exiting from one of the

five portals on the side, at positions where z < 15 Å. Figure 6 shows

examples of such movements. Note that these ion passage trajecto-

ries usually last <1 ns, and they are short events on the timescale of

the simulation. We observed 32 such events when GABARAP was

absent but 60 such events when GABARAP was present during the

100 ns molecular dynamics simulations.

F IGURE 3 Side-view of a model of the GABAA receptor
intracellular domain; the amino acids which form the vertices of the
convex hull are shown in CPK models. The intracellular helix of the γ2
-subunit is shown in red, that of the α1-subunit in yellow and that of
the β2-subunit is shown in green. The top dashed line is where z = 20
Å and the bottom dashed line is where z = 15 Å
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3.2 | Electrostatic potential

We visualize the electrostatic potentials due to the protein(s) by dis-

playing the values on different planes using a color-coded scheme. In

Figure 7, the electrostatic potential is displayed on a plane perpendic-

ular to the central axis of the receptor. In the absence of GABARAP,

the electrostatic potential is more positive in the region around the β2

-subunits. In the presence of GABARAP, there is a finger-like “exten-
sion” of more positive electrostatic potential through the slit made by

the β2- and γ2-subunits next to the bound GABARAP. The region over

which the electrostatic potential increases is largely outside the

pentahelix.

In Figures 8 and 9, the electrostatic potential is displayed on five

planes through each of the five slits formed by the GABAA receptor

intracellular helices. In Figure 8, the electrostatic potential due to the

intracellular helices alone is displayed. In Figure 9, the electrostatic

potential due to the intracellular helices and GABARAP is shown. It

can be seen that the effect of GABARAP on the electrostatic potential

in planes (B) and (C) is small. However, in planes (A), (D) and (E), the

electrostatic potential is more positive in the region outside the intra-

cellular helices (Figure 9). To make it easier to visualize these changes

in electrostatic potential, we plot the difference potential in

Figure 10; this is the difference in electrostatic potential between the

case where GABARAP is absent and the case where GABARAP is pre-

sent. A positive difference means that the electrostatic potential in

the presence of GABARAP is more positive than in its absence. It can

be seen from Figure 10 that most regions outside the pentahelix

become electrostatically more positive due to the presence of

GABARAP, but some regions towards the cytoplasmic end inside the

pentahelix become more negative. We suggest that this increase in

electrostatic potential outside the receptor with a concomitant

decrease in potential inside the receptor leads to the increase in Cl�

ion conductance.

4 | DISCUSSION

Cys-loop ligand-gated ion channels often interact with cytoplasmic

proteins, and this interaction serves many purposes, amongst them

the clustering of ion channels and the modulation of channel

function.
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F IGURE 4 The upper panel shows the distance between the
GABARAP Lys 46 Nζ atom and the GABAA receptor γ-subunit Asp
423 main-chain oxygen atom and the lower panel shows the distance
between the GABARAP Gln 59 Cγ atom and the GABAA receptor
γ-subunit Ile 438 Cδ atom
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of GABARAP (upper panel) and in the presence of GABARAP
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For example, the muscle nicotinic acetylcholine receptor (nAChR)

interacts with the cytoplasmic protein rapsyn. Rapsyn has a molecular

weight of about 43 000,23 and electron microscopy showed that the

nAChR are interconnected by rapsyn dimers. Up to three rapsyn

dimers can contact each nAChR in specific regions in the nAChR intra-

cellular domain.24 This tight network probably anchors the nAChR in

the plane of the cell membrane and allows nAChR to be concentrated

at the neuromuscular junction motor end-plate.24

Another example is gephyrin. This protein was first identified as a

bridge between the glycine receptor and tubulin.25 Sola et al.26 co-

crystallized a segment of the glycine receptor β-subunit and a partial

dimer of the cytoplasmic protein gephyrin (Protein Data Bank code:

1T3E). They resolved the structure of a pentapeptide portion of the

glycine receptor β-subunit and the gephyrin domain E dimer. These

scientists proposed a network of gephyrin molecules linking the gly-

cine receptors.

Gephyrin also interacts with the GABAA receptor through the

receptor α2-subunit
27 and α3-subunit.

28 It is unclear if gephyrin binds

the α1-subunit of the GABAA receptor; some experiments failed to

show any interaction,29 but others showed a weak interaction.30

Maric et al.31 co-crystallized segments of the α3-subunit of the

GABAA receptor with segments of gephyrin, and identified the

undecapeptide T367FNIVGTTYPIN381 from the GABAA receptor as

important for interaction with gephyrin. They showed that there were

similarities between the binding of the GABAA receptor and of the

glycine receptor to gephyrin: in particular, T367FNIVGTT374 from the

GABAA receptor, and F398SIVGSL404 from the glycine receptor

β-subunit adopted similar conformations.

In addition to gephyrin, the GABAA receptor also interacts with

collybistin; there are two types of collybistin, which consist of

413 and 493 amino acids, respectively.32 Saiepour et al.29 showed

that collybistin interacted with the intracellular domain of the α2

-subunit of the GABAA receptor, and its binding site for the α2-subunit

overlapped that for gephyrin. Collybistin was later shown to be impor-

tant for clustering gephyrin and the GABAA receptor.33

The GABAA receptor also interacts with GABARAP. GABARAP

binds specifically to the γ2-subunit of the GABAA receptor. Binding of

F IGURE 6 The top diagram shows a Cl� ion entering the convex
hull from the membrane side and exiting it from one of the five
portals on the side at a level where z = �4.4 Å. The protein is shown
in grey, the Cl� ions in green except for the starting position (in cyan)
and the finishing position (in magenta). Each position of the Cl� ion is
20 ps apart. The bottom diagram shows a similar event but in the
presence of GABARAP. Both trajectories are under 1 ns

F IGURE 7 Electrostatic potential around GABAA receptor
intracellular helices. The top panel shows, respectively from left to
right, the electrostatic potential scale, the axes of the system and a
diagram showing the transverse plane. The second panel shows the
electrostatic potential on the plane in the absence of GABARAP, and
the third panel shows the potential in the presence of GABARAP. The
bottom panel shows the difference in electrostatic potential between
the two cases. The α1-subunit is shown in yellow, the β2-subunit is
shown in green and the γ2-subunit is shown in red
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GABARAP to the GABAA receptor causes receptor clustering,10,34 so

some of its functions are similar to gephyrin and collybistin. However,

GABARAP is unique in that its binding also causes the conductance of

the GABAA receptor to increase from about 30 pS to 40 pS–60 pS,

and the mean channel opening times from about 2 ms to about

6 ms.11 It thus appears that gephyrin has more general actions on

both the GABAA receptor and the glycine receptor, and that the

action of gephyrin and collybistin appear to be confined to receptor

clustering. The action of GABARAP is more specific to the GABAA

receptor, and, in addition to receptor positioning, it also modulates

the electrophysiology of this ion channel.

The GABAA receptors in neurons have different ion channel prop-

erties from recombinant receptors.35 Luu et al.11 show that GABAA

receptor conductances in neurons is similar to that obtained from

recombinant receptors associated with GABARAP. GABARAP is thus

of importance in physiological functioning of the GABAA receptor in

the central nervous system, and this underlies the importance of

understanding the physiological role of the intracellular domain of this

receptor.

In this study, we used a simplified system of a modeled GABAA

receptor consisting only of its intracellular domain and studied its

electrostatic properties in the absence and presence of GABARAP.

Our results show that GABARAP increases the electrostatic potential

of the region around and outside the intracellular domain; this is con-

sistent with increased Cl� conductance. Our results also show that

the number of ions in the pentahelix varies significantly in time as

they move in and out of the pentahelix, which is a pre-requisite for

conduction. Moreover, in the presence of GABARAP, the average

number of ions in the pentahelix is more than 40% higher, suggesting

that more ions may be moving through the channel. In the absence of

GABARAP, there are configurations when the channel has no ions, at

which point it cannot be conducting ions. Further analysis shows that

ion movements through the convex hull of the pentahelix similar to

“natural” conducting currents are almost twice as frequently observed

in the presence of GABARAP. In both cases the number of these con-

duction events observed during a 100-ns period was over 10 times

higher than the average number of ions in the convex hull, and there

was no evidence of a long-term increase or reduction in the number

of ions inside the hull.

Previous experimental results11,35 and our findings in this article

show that GABARAP binding to the GABAA receptor increases the

receptor channel conductance. However, the exact role of GABARAP

is thrown into doubt by recent experiments. Everitt et al.34 suggest

that GABARAP is not involved in altering GABAA receptor

F IGURE 8 Electrostatic potential around
GABAA receptor intracellular helices. The α1
-subunit is shown in yellow, the β2-subunit is
shown in green and the γ2-subunit is shown in
red. The top left panel shows five planes, each
cutting through one of the five slits formed by the
helices. The electrostatic potential due to the
protein alone is calculated and displayed in a
color-coded scheme. Panels (A–E) show the

electrostatic potential on the five planes
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F IGURE 9 Electrostatic potential around
GABAA receptor intracellular helices and
GABARAP. The α1-subunit is shown in yellow, the
β2-subunit is shown in green, the γ2-subunit is
shown in red and GABARAP shown in cyan. The
top left panel shows five planes, each cutting
through one of the five slits formed by the
helices. The electrostatic potential due to the
proteins is calculated and displayed in a color-

coded scheme. Panels (A–E) show the
electrostatic potential on the same five planes as
in Figure 8

F IGURE 10 Difference electrostatic potential
(the difference in electrostatic potential between
the case where GABARAP is absent and the case
where GABARAP is present) around GABAA

receptor intracellular helices. The α1-subunit is
shown in yellow, the β2-subunit is shown in green,
the γ2-subunit is shown in red and GABARAP
shown in cyan. The top left panel shows five
planes, each cutting through one of the five slits
formed by the helices. The difference
electrostatic potential due to the protein alone is
calculated and displayed in a color-coded scheme;
a positive difference means that the electrostatic
potential in the presence of GABARAP is more
positive than in its absence. Panels (A–E) show
the difference electrostatic potential on the same
five planes as in Figure 8
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conductance. Tierney36 suggests that adjacent GABAA receptors

interact via their solitary γ2-subunit MA helices; the ionic conductance

is thus increased by this interaction. However, in the suggested mech-

anism, the γ2-subunit of one GABAA receptor swings out to interact

with the γ2-subunit of another receptor, which involves a large struc-

tural change. These results seem to contradict previous experimental

findings.11,35

To define the interaction between GABARAP and the GABAA

receptor in greater detail and to understand how GABARAP changes

the receptor structure and function would require high-resolution

structures of the GABAA receptor with an intact intracellular domain,

in the absence and presence of GABARAP. This should then be

accompanied by electrophysiology experiments where, ideally, the

behavior of three membrane patches are compared: the first patch

contains one single active GABAA receptor and no GABARAP, the

second patch contains one single active GABAA receptor with

GABARAP, and the third patch contains two or more active GABAA

receptors. In the third patch, the interaction between the individual

GABAA receptors can be disrupted using different peptides to define

the interaction between the different molecules. This kind of system

would allow us to examine in detail the apparent contradiction in pre-

vious experimental results11,34–36 and arrive at a better understanding

of the function of GABARAP.
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