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Abstract

Ageing is a natural phenomenon that is inherently complex and remains a mystery. Concep-

tual model of cellular ageing landscape was proposed for computational studies of ageing.

However, there is a lack of quantitative model of cellular ageing landscape. This study aims

to investigate the mechanism of cellular ageing in a theoretical model using the framework

of Waddington’s epigenetic landscape. We construct an ageing gene regulatory network

(GRN) consisting of the core cell cycle regulatory genes (including p53). A model parameter

(activation rate) is used as a measure of the accumulation of DNA damage. Using the bifur-

cation diagrams to estimate the parameter values that lead to multi-stability, we obtained a

conceptual model for capturing three distinct stable steady states (or attractors) correspond-

ing to homeostasis, cell cycle arrest, and senescence or apoptosis. In addition, we applied a

Monte Carlo computational method to quantify the potential landscape, which displays: I)

one homeostasis attractor for low accumulation of DNA damage; II) two attractors for cell

cycle arrest and senescence (or apoptosis) in response to high accumulation of DNA dam-

age. Using the Waddington’s epigenetic landscape framework, the process of ageing can

be characterized by state transitions from landscape I to II. By in silico perturbations, we

identified the potential landscape of a perturbed network (inactivation of p53), and thereby

demonstrated the emergence of a cancer attractor. The simulated dynamics of the per-

turbed network displays a landscape with four basins of attraction: homeostasis, cell cycle

arrest, senescence (or apoptosis) and cancer. Our analysis also showed that for the same

perturbed network with low DNA damage, the landscape displays only the homeostasis

attractor. The mechanistic model offers theoretical insights that can facilitate discovery of

potential strategies for network medicine of ageing-related diseases such as cancer.

Introduction

Ageing is a complex process that has recently drawn much attention in the field of systems

biology to elucidate the secret of longevity [1]. In a review paper [2], López-Otı́n et al. provided
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a definition of ageing: “Aging is characterized by a progressive loss of physiological integrity,

leading to impaired function and increased vulnerability to death.” Moreover, López-Otı́n

et al. highlighted 9 hallmarks of ageing and reviewed fundamental concepts about ageing [2].

These 9 hallmarks indicate the enormous complexity of the ageing process. For simplicity, this

paper focuses on two of the hallmarks: genomic instability and cellular senescence. Genomic

instability refers to the accumulation of DNA damage and cellular senescence is defined as per-

manent arrest of the cell cycle leading to an inability to proliferate [2]. These two hallmarks are

chosen because they are the common and related hallmarks of ageing. However, the molecular

mechanisms of cellular senescence and genomic instability have not been fully understood in a

holistic and systematic way. Thus, this research aims to investigate how the regulation of senes-

cence and genomic instability contributes to ageing using computational modeling of a gene

regulatory network (GRN) in ordinary differential equations (ODEs).

Quantitative models have long been used to study the phenomenon of ageing and play

important roles in understanding ageing (e.g. see the review by Edelstein-Keshet et al. [3] and

the perspectives by Kirkwood et al. [4]). A complete gene network for cellular senescence is

not yet available in the literature. The p53 gene network has been recognized to play important

roles in senescence and ageing [5]. Therefore, we combined the core regulatory networks of

p53 and cell cycle regulation to investigate the mechanism of ageing. Based on the network, we

proposed a mathematical model to simulate the mechanism of ageing using dynamical systems

theory. Our model can quantify the emergence of ageing in the form of potential landscape

(adapted from the classic Waddington’s epigenetic landscape [6]), particularly with the notion

that a cell progresses from one stable state to another stable state in the form of attractor [7]. A

high level of concentration of p53 protein is a marker of cellular senescence and apoptosis [8–

10], and hence we use a high level of concentration of p53 protein as an indicator of ageing.

Here, the use of senescence as a marker for ageing is a simplification of the actual processes of

ageing because other than senescence, stem cell exhaustion and epigenetic alteration should be

markers of ageing also [2].

In this paper, we propose a mathematical model that can capture the key components of

the molecular mechanisms of ageing at cellular and molecular levels and thereby shed light on

the overall process of ageing. The proposed model offers a theoretical explanation of ageing by

mapping the dynamics of a GRN to Waddington’s epigenetic landscape which can illustrate

cell fates as attractors. The Waddington’s epigenetic landscape was originally proposed as a

metaphor to describe the process of cellular differentiation as a ball rolling from the top of the

hill downward towards valleys corresponding to distinct differentiated cell types [6]. A few

recent papers have proposed computational methods for quantifying the Waddington’s epige-

netic landscapes of development, stem cell differentiation and cancer [11–14].

Here, we propose that the Waddington’s epigenetic landscape can also be used to explain

the process of ageing. To this end, we constructed a model of GRN underlying ageing which

comprises 13 genes and 32 interactions. To quantify the potential landscape of the ageing net-

work, we used a Monte Carlo computational method to calculate the potential of the landscape

based on the probability distribution of state occurrences estimated by dynamical simulations

from a large number (say, 100,000) of random initial conditions in the multi-dimensional state

space [15]. The generated potential landscape enables us to capture the attractors as distinct

cell fates or phenotypes. This method can characterize a path connecting two attractors that

are formed by two unstable manifolds [15]. Two potential landscapes demonstrated three bio-

logically interesting attractors: I) one homeostasis attractor when the accumulation of DNA

damage is low; II) one attractor for the cell cycle arrest and one attractor for senescence (or

apoptosis) when the accumulation of DNA damage is high. Particularly, the senescence

attractor has a bigger and deeper basin of attraction than the other two attractors and it is the
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dominant attractor as a biological marker of ageing. These results suggest that the process of

ageing can be quantified by the changes of the landscape from I to II as cells age.

Through a series of in silico perturbations to the network (e.g. simulating p53 inactivation),

we found that the deletion of two specific interactions can lead to a change in the landscape

morphology such that four attractors appear. In addition to the aforementioned three attrac-

tors, we obtained an additional attractor which corresponds to cancer, because it has low p53

protein level and high ATM level. The emergence of the cancer attractor indicates that the per-

turbation might enable the cells to acquire the ability to evade senescence or apoptosis. Our

model analyses also suggest a link between ageing and cancer which could provide an explana-

tion for an increase in cancer risk as cells age. Through the analyses of the potential landscapes,

we make a prediction about how a cancer attractor may be eliminated from the p53 inactivated

network. The model of the ageing GRN along with the proposed potential landscape method

provides a framework for studying the ageing process at cellular level and uncovering the

mechanisms of cellular senescence and cancer occurrence.

Results

A gene regulatory network model of ageing

To investigate the process of cellular ageing, we first propose an ageing GRN (Fig 1). The net-

work integrates a DNA damage response network reported by Batchelor et al. [16] and a cell

cycle regulation network proposed by Yao et al. [17]. We also added 4 components (ARF,

PTEN, AKT, and P21) and a few interactions between the two networks (details of the model

construction are given in the next subsection). The ageing GRN contains 13 genes (or pro-

teins) as nodes and 32 directed interactions (activation or inhibition). As DNA damage

response is a sophisticated network, we focus on the modeling of the core regulation of DNA

damage response that contributes to ageing by selecting 13 core genes regulating DNA damage

response and cell cycle: p53, Mdm2, Wip1, ATM, p21, PTEN, AKT, Myc, E2F, RB, CycE,

CycD and ARF. Although, ATR is also involved in the DNA damage response, for simplicity

and because DNA double-strand breaks, the most lethal form of DNA damage, are mainly

detected by ATM, ATR is omitted as in other models [18–20]. There is no checkpoint protein

such as 53BP1 in the GRN, because we only model the core cell cycle regulation as proposed in

Yao et al (2008) [17]. There are two inputs to the model, namely the stress and the growth sig-

nals. The stress signal represents oxidative stress or DNA damaging stress signal. A mathemat-

ical model is formulated in the form of 13 Ordinary Differential Equations (ODEs), mainly

with Hill functions for activation and inhibition kinetics, which are given in Methods section.

The goal is to construct an ageing GRN and quantify a potential landscape with basins of

attraction representing distinct cell fates (e.g. cellular senescence). High levels of p53 and p21

are used as the markers for cellular senescence [5]. A flowchart of the steps used in this study is

given in Supplementary Information (S1 Fig).

Schematic diagram of the ageing network

We constructed a mathematical model in the form of ordinary differential equations (ODEs)

based on a schematic diagram (Fig 1) made by combining the p53-centered regulatory net-

work for DNA damage response [16] and the network of cell cycle regulation from Yao et al.

[17]. We integrated the two networks by adding 4 components of ARF, PTEN, AKT, and P21

in the DNA damage response, and a few interactions between DNA damage response and cell

cycle regulation as follows. In the p53 regulatory network, the input is stress signal. In our

model, the stress signal is denoted by Stress in Eq (4) and assumed to have a constant value of

0.3. The stress signal activates ataxia telangiectasia mutated (ATM), and it is amplified by self-
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activating ATM autophosphorylation [21]. We added ATM self-activation as it is important in

DNA damage response. The activated ATM then activates p53, triggering responses to the

stress [22]. Moreover, active ATM inhibits Mdm2 [22]. Then, p53 activates PTEN [23], Mdm2

[24], Wip1 [25], p21 [26] and itself through autoregulation [27, 28]. We also added the p53

self-activation as a positive feedback loop. Mdm2 is a key feedback regulator that inhibits p53

by promoting p53 degradation [24, 29]. As a phosphatase, Wip1 dephosphorylates ATM [30],

p53 [31] and Mdm2 [32]. As a result, Wip1 inhibits ATM and p53, but activates Mdm2.

In the model, PTEN (a phosphatase) is assumed to inhibit AKT by dephosphorylating phos-

phatidylinositol 3,4,5-trisphosphate (PIP3) [33]. AKT activates Mdm2 [34], and inhibits p21

[35]. Meanwhile ARF inhibits Mdm2 by enhancing Mdm2 degradation [36].

In the cell cycle module from Yao et al. [17], growth signals activate Myc and Cyclin D. The

strength of growth signals (denoted by GS in Eq (12)) is assumed to have a constant value of

0.2. Myc activates E2F and Cyclin D. E2F activates Cyclin E and itself through a self-activating

positive feedback loop. Cyclin D and Cyclin E both inhibit RB, which inhibits E2F.

In the following we describe the interactions that are linking the 2 networks. The connec-

tion between the p53 core regulatory module and the cell cycle module lies in ARF and p21. In

the cell cycle module, Myc activates ARF [37], while ARF activates p53 and inhibits Mdm2

[36]. In the p53 core regulatory module, p21 inhibits E2F [38], Cyclin D and Cyclin E [39], but

p21 activates RB [40].

Bifurcation analysis

After having formulated the model equations, our next step is to estimate the model parame-

ters. The model contains 5 parameters: S, n, k, a and b. According to Li and Wang [13] S
denotes the threshold of the sigmoidal Hill function or strength of the regulation, and n is the

Hill coefficient which controls the steepness of the sigmoidal function. The Hill coefficient is

Fig 1. The ageing network model. The core GRN for ageing (arrows represent activations and bar arrows represent inhibitions).

https://doi.org/10.1371/journal.pone.0197838.g001
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used to represent the cooperativity in the binding process. Parameter k represents the sponta-

neous degradation rates of proteins. Based on the analyses conducted by Li and Wang [13]

and some previous works [11, 41, 42], the ranges of parameter values to produce bistability are

S 2 [0.5,1.5] and Hill coefficient n = 4,5,. . .,or,8. Li and Wang chose S = 0.5 for the strength

value, and n = 4 for tetramer binding [13]. Previous studies [11, 13, 41, 42] all used the self deg-

radation rate k = 1. We adopted the same parameter values of S = 0.5, n = 4, and k = 1 as in Li

and Wang [13]. By varying the value of the inhibition rate constant b, we attempted to find a

GRN that displays three attractors corresponding to the three aforementioned distinct cell

fates. Bifurcation analysis was performed (using the activation rate a as the bifurcation param-

eter) to investigate values in the parameter space for b that can produce multi-stability. We

identified a parameter value b = 0.05 which corresponds to a dynamical system displaying

three stable steady states (i.e. attractors).

A bifurcation diagram of p53 against the parameter a, i.e. activation rate, was generated as

in Fig 2. Conceptually, the activation rate represents the accumulation of DNA damage [43,

44]: a low value of a denotes a low accumulation of DNA damage and vice versa. The bifurca-

tion diagram shows the existence of three stable steady states (i.e. three attractors) which could

represent homeostasis (low level of p53) for low activation rate, cell cycle arrest (intermediate

level of p53) for intermediate activation rate and permanent cell cycle arrest (senescence) or

apoptosis (high level of p53) for high activation rate. This explanation is qualitatively consis-

tent with the current understanding of p53 from experimental studies [5, 45, 46].

The bifurcation diagram (Fig 2) shows a tri-stability (three stable steady states) and hystere-

sis behavior which indicates two thresholds for activation (1.15, 1.45) to turn ‘ON’ p53 from

low level (homeostasis) to intermediate level (cell cycle arrest) and then to high level of p53

(senescence or apoptosis), and one threshold (0.747) to turn ‘OFF’ p53. The bifurcation dia-

gram also shows two ‘Going up’ jumps and one ‘Coming down’. This is a slightly different

bifurcation diagram from the standard saddle-node bifurcation diagram, which typically

shows only one ‘Going up’ and one ‘Coming down’. The hysteresis behavior is a special char-

acteristic of biological switches for capturing the irreversible commitment of cell fate decision

in an “all-or-none” manner, which provides a reliable mechanism for retaining the current

state in the system’s memory.

To illustrate the novel tri-stability behavior we simulated the changes of p53 with the value

of a at three different time points as indicated by the vertical dashed lines (corresponding to

a = 1.16, a = 1.5 and a = 0.7) in Fig 3. This time-course simulation illustrates the two ‘Going

up’ jumps and one ‘Coming down’ as in Fig 2. The result demonstrates a molecular switch

with three tipping points for controlling the three cell phenotypes of homeostasis, cell cycle

arrest and senescence, represented as three distinct stable steady states. It suggests that the

same GRN can produce three different phenotypes depending on the activation rate.

A two-parameter bifurcation diagram is shown in Fig 4. It depicts the regions of the three

distinct cell fates, i.e. homeostasis, cell cycle arrest and senescence (or apoptosis). For one spe-

cific case, the blue horizontal line indicates b = 0.05 and the region (a between 0.747 and 1.45)

in the middle represents tri-stability. For a less than 0.747, the blue horizontal line falling from

0 to 0.747 represents the homeostasis state, whereas for the blue horizontal line with a greater

than 1.45 represents the cellular senescence (or apoptosis) state. The two-parameter bifurca-

tion diagram shows the possible cellular states in the state space of the parameters a and b.

Recapitulation of a bistable cell cycle activation

In the work of Yao et al. (2008), it has been shown that the activation of cell cycle division is

bistable with a restriction point controlled by growth signals. Next we ask if our model can
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capture the same property of bistability in the cell cycle activation. E2F is a key protein that

plays critical role in cell cycle progression by activating a group of genes [47]. We generated a

saddle-node bifurcation diagram for E2F with respect to the growth signals (shown in Fig 5). It

shows that the growth signals can indeed induce E2F bistability with the hysteresis behavior.

Notably, there are two threshold values of growth signals: for the upper one (SN4 with growth

signals bigger than SN5) acts as the growth signal for activating cell cycle division and the

lower threshold (SN5) acts to ensure an irreversible decision once the cell is committed to

divide, which is consistent with the result of Yao et al. (2008).

In addition, Yao et al. (2008) have also shown that there is a monotonous increase in the

steady state protein level of Cyclin D in response to increasing growth signals. Our analysis of

the bifurcation diagram in S2 Fig shows that Cyclin D indeed increases monotonically with

respect to growth signals. This result shows that our model can recapitulate the bistability

underlying the restriction point for cell division, as observed in the experiment by Yao et al.

(2008).

Quantification of Waddington’s epigenetic landscape for ageing

The theory that ageing is a process of transition from one stable steady state representing the

normal cell to another stable steady state representing the senescence (or apoptosis) has been

proposed to explain the phenomena of ageing [7]. In order to demonstrate this concept, we

used a novel computational method developed by ourselves (details in [15]) to quantify the

Waddington’s epigenetic landscape. Similar to the self-consistent mean field method proposed

by Li and Wang [13], our method defines the elevation of a state in the landscape as potential

U = −lnP(x), where P(x) is the probability distribution of the states estimated using Monte

Carlo simulations [15].

Fig 2. p53 bifurcation diagram. Red curves represent stable steady states and the black curves represent unstable

steady states. The bifurcation diagram shows a tri-stability with hysteresis behavior. The ‘Going up’ means to turn ‘ON’

p53 and the ‘Coming down’ means to turn ‘OFF’ p53.

https://doi.org/10.1371/journal.pone.0197838.g002
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To display the 3D view of the potential landscape, we selected p53 and ATM as the two

dimensions of the state space, because high p53 protein level can activate senescence and apo-

ptosis [8–10] and ATM is a key component for detecting stress signals [48]. The third dimen-

sion is defined as the potential U. The potential landscapes (Fig 6(A) and 6(B)) illustrate the

cell fate attractors (with local minimum potential or local maximum probability) for different

values of activation rate. For cells with low activation rate corresponding to low DNA damage,

the landscape displays one attractor with low levels of p53 and ATM, which correspond to cell

homeostasis (Fig 6(A)) and it is named landscape I. For ageing cells with a high activation rate

which corresponds to high accumulation of DNA damage causes the morphology of the land-

scape to change. The landscape displays two attractors which represent cell cycle arrest (with

intermediate p53 level) and senescence (or apoptosis) indicated by high levels of p53 and

ATM. Ageing cells tend toward the dominant attractor (i.e. bigger basin of attraction) of senes-

cence or apoptosis (Fig 6(B)) in the new landscape and let us name it landscape II. Similar

results of the potential landscape were quantified when p21 and ATM were used as coordinates

of the state space (see S3 Fig), where high p21 is used as a marker of cellular senescence [5].

The process of ageing can be described by the change from landscape I to landscape II. This

shift from homeostasis to senescence (or apoptosis) could explain why ageing occurs as a

result of accumulated DNA damage represented by the increased value of a. The resulting

Fig 3. Time-course simulation of p53. The three vertical dashed lines mark two thresholds for the activation of p53 (a = 1.16 and

a = 1.5) and a lower threshold to turn ‘OFF’ p53 (a = 0.7). The timing for the value of a changes is for illustration only (i.e. three

different levels of p53 for three cell fates).

https://doi.org/10.1371/journal.pone.0197838.g003
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accumulation of senescent cells are often observed in aged human tissues such as skin, liver

and lung [49].

Parameter sensitivity analyses of a and bwere performed. The results of the potential land-

scape show that the landscape shape is robust to changes in the value of b, as all the potential

landscapes display qualitatively consistent morphologies for different values of b (see S1 Table).

Fig 4. Two-parameter bifurcation diagram. Blue horizontal line indicates b = 0.05. Red curves represent stable steady

states. This two-parameter bifurcation diagram shows that there are different combinations of values of a and b which

can result in tri-stability.

https://doi.org/10.1371/journal.pone.0197838.g004

Fig 5. Bistable activation of E2F. Bifurcation diagram of E2F (y-axis) with respect to growth signals (x-axis).

https://doi.org/10.1371/journal.pone.0197838.g005
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For a low value of a = 0.5 (first row in S1 Table) and b in the range from 0.05 to 0.8, the land-

scape displays one basin of attraction (with a low p53 level which indicates homeostasis and an

intermediate p53 level which indicates cell cycle arrest). However, for a high value of a (a from

1 to 1.4, rows 3-4 in S1 Table), a potential landscape shows two basins of attraction, which cor-

respond to cell cycle arrest (intermediate level of p53) and senescence or apoptosis (with a high

p53 level).

Looking at Fig 7 which is a top view of the landscape in Fig 6(B), we can observe a path (or

valley) between the cell cycle arrest attractor and the senescence (or apoptosis) attractor. Simi-

lar to an example of a well-studied synthetic toggle switch (as in [15]), the path connecting the

two attractors is formed by two unstable manifolds of a saddle point. The saddle point marks a

barrier height for separating the two attractors [15]. Note that Li and Wang have proposed the

potential differences between a saddle point and the two attractors as the barrier heights in the

potential landscape [11–13]. Figs 6(B) and 7 suggest an interpretation that there is a path (rep-

resented by the unstable manifolds) connecting the two attractors corresponding to cell cycle

arrest and senescence (or apoptosis) respectively.

Link between ageing and cancer attractors

The aforementioned landscapes for cell fate decisions in Fig 6 demonstrate three types of

attractors: 1) the homeostasis attractor when both p53 and ATM are low; 2) the cell cycle arrest

attractor when p53 is intermediate and ATM is low; 3) the senescence or apoptosis attractor

when both p53 and ATM are high. There are other combinations of the protein levels with

potential biological significance, such as low level of p53 which indicates cancer.

Next we perform in silico perturbations to the network to study the link between ageing and

cancer through p53. Inactivation of p53 has been reported in about half of known cancers

[50]. To mimic the p53 inactivation, we deleted a few combinations of interactions with p53

and obtained the potential landscapes (see S2 Table). One interesting perturbation is the

Fig 6. Potential landscapes for cell fate attractors (measured by p53 and ATM). (A) Landscape I: For low activation rate (a = 0.5, b = 0.05), the landscape displays

one attractor (blue color) with low p53 protein corresponding to homeostasis. (B) Landscape II: For high activation rate (a = 1.5, b = 0.05), the landscape displays two

attractors, one for cell cycle arrest and the other with high level of p53 protein corresponding to senescence or apoptosis. The senescence (or apoptosis) attractor is a

dominant attractor of landscape II and thus a potential biomarker of ageing.

https://doi.org/10.1371/journal.pone.0197838.g006
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deletion of two interactions with p53 (i.e. the activation of p53 by ATM and by ARF respec-

tively), which produces four attractors in the potential landscape. The effects of the perturba-

tions to the network were captured by the emergence of a new attractor in addition to the

three aforementioned attractors (in the landscape region with low p53 and high ATM) (Figs 8

and 9). We named this attractor as “cancer attractor” because of low p53 protein level and high

ATM. Low p53 protein level represents the absence of p53 tumor suppression function. The

global view of the four basins of attraction cannot be obtained if we only look at the bifurcation

diagram, e.g. S4 Fig. only shows two stable steady states for p53. More information about the

cancer attractor with different values of the parameters a and b can be found in S3 Table.

This in silico prediction suggests that the p53 inactivation through the deletion of two

interactions with p53, namely the activation by ATM and the activation by ARF, may cause an

irreversible cell fate probably corresponding to cancer. This prediction is consistent with the

experimental observation reported in the literature that the inactivation of p53 causes cancer [46,

50]. The landscape also suggests that the ageing network with high activation rate (a = 1.5) along

with p53 inactivation (low p53 protein level) can model the emergence of cancer. The analysis of

the landscape with p53 inactivated reveals a potential link between ageing and cancer.

To study the link between the two attractors, we examine the shape of landscape region

nearby. From Fig 9, the top view of Fig 8, we identified two lines connecting the two pairs of

attractors. As mentioned earlier, these lines indicate unstable manifolds composed of saddle

points. The first path (pointed by the arrow at the top in Fig 9) indicates the link between cell

cycle arrest and senescence (or apoptosis) basins of attraction as discussed earlier. The second

path at the bottom is between the homeostasis attractor and the cancer attractor, which

Fig 7. Top view of landscape II in Fig 6(B). There is a line connecting the two attractors. The line is formed by two

unstable manifolds representing a kinetic path between the cell cycle arrest and senescence (or apoptosis) basins of

attraction.

https://doi.org/10.1371/journal.pone.0197838.g007
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suggests the possibility of a normal cell being transformed into a cancer cell. The depth of an

attractor is represented by dark blue in the color bar corresponds to the probability of state

occurrence. The cancer attractor looks deeper (with darker blue color) than the homeostasis

attractor in Fig 9, of which the biological meaning is still unclear and needs further analysis

and interpretation.

An important question in Biomedicine is why the risk of cancer tends to increase with age-

ing. Here we use our model to provide a theoretical answer to this question. For the same per-

turbation deleting two interactions (activation of p53 by ATM and by ARF), we performed

sensitivity analyses for the parameters a and b. Based on the results of the landscape analyses

(S3 Table), we found that cancer risk increases for ageing cell when the potential landscape

shows a cancer attractor. Ageing cell with high accumulated DNA damage corresponds to a

higher value of a in our model. For example, when a = 1 (S3 Table) and a = 1.5 (Figs 8 and 9)

we found the emergence of cancer attractor. By contrast, when a = 0.5 which corresponds to

young cells with low level of DNA damage, we found no cancer attractor. Rather, the landscape

shows only one attractor of homeostasis (Fig 10). This result suggests that cells with low accu-

mulation of DNA damage are less likely to become cancer cells.

Next we investigate how, by perturbing the network interactions, the existence of the cancer

attractor may be eliminated. In Fig 8, we observed the emergence of the cancer attractor when

p53 is inactivated by deleting two interactions. Based on the parameter sensitivity analyses (S3

Table), we found that by increasing the inhibition rate b the cancer attractor may be elimi-

nated. The landscapes in Fig 11 illustrate that the cancer attractor can be eliminated when the

inhibition rate b is increased to 1.2 (Fig 11(B)). This theoretical observation could be an

Fig 8. Emergence of cancer attractor. For the inactivation of p53 with the deletion of two interactions with p53 (the

activation of p53 by ATM and by ARF respectively), the landscape displays an additional attractor with low p53 level

and high ATM (a = 1.5, b = 0.05). This attractor represents cancer because low p53 level leads to p53 inactivation that

enables cells to acquire the ability to evade cellular senescence or apoptosis.

https://doi.org/10.1371/journal.pone.0197838.g008
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interesting hint for cancer medicine. However, we also observe that the increase of b leads to a

deeper attractor of senescence or apoptosis relative to other attractors. More detailed analysis

would be needed to interpret the biological meaning of this change of landscape when the val-

ues of both parameters a and b are high.

Discussion

The Waddington’s epigenetic landscape is a classic metaphor proposed by Waddington in

1957 for explaining the processes of embryonic development and cell differentiation [6]. The

main idea is that valleys (or attractors) in a landscape correspond to the stable differentiated

cells and the process of cell differentiation is like the rolling of a ball from the top of the moun-

tain to one of the valleys. Although one conceptual landscape model for ageing with senes-

cence and apoptosis attractors has been proposed by Kriete and Cloutier [7], a quantitative

model has not yet been constructed to model the ageing process. Ageing is known to be highly

complex [1]. It is reasonable to model ageing GRN using the framework of Waddington’s epi-

genetic landscape and study the mechanism of cellular ageing by mapping from genotype to

phenotype with the landscape model.

Mathematical and computational methods that quantify quasi-potential energy for model-

ing the Waddington’s epigenetic landscape based on GRN models have been developed over

the years [51]. The quantitative landscape models can provide important information of

multi-stability in the form of basins of attraction, which is not possible with the local stability

analysis of bifurcation diagram in conventional dynamical systems studies [52]. Thus, the

Fig 9. Connection between ageing and cancer attractors. Top view of Fig 8 shows: 1) there is a line (represents two

unstable manifolds) connecting cell cycle arrest and senescence (or apoptosis) attractors; 2) another line connecting

homeostasis and cancer attractors.

https://doi.org/10.1371/journal.pone.0197838.g009
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potential landscape method which quantifies the basins of attraction is crucial for understand-

ing the cellular dynamics driven by GRNs. Besides differentiation and ageing, cancer is

another cellular phenotype modeled by the attractor landscape. The hypothesis of cancer

attractor has been proposed since the 1970s [53–57]. According to Huang et al. (2009), attrac-

tors represent stable states of gene expression patterns corresponding to cell types, and some

of the abnormal attractors (or cell types) are called cancer attractors [54]. Recently, the cancer

attractors in the Waddington’s epigenetic landscape have been quantified in two theoretical

models proposed by Li and Wang [12, 13]. They constructed a 32-gene cancer network [12]

and a 6-gene core cancer stem cell GRN [13], and then used their self-consistent mean field

approximation method to quantify the global potential of the GRNs [12, 13].

In this study, we proposed a 13-gene ageing GRN and uncovered the global potential land-

scapes for cellular ageing by using our Monte Carlo method to quantify the probability distri-

bution of non-equilibrium and equilibrium states [15]. To the best of our knowledge this is the

first quantitative study that uses the metaphor of Waddington’s epigenetic landscape to model

cellular ageing. For different levels of activation rate representing different levels of accumu-

lated DNA damage, there are changes in the number of attractors in the landscape. In our

model of ageing landscape, we demonstrated that the landscape of the young cells with low

accumulation of DNA damage shows one homeostasis attractor, whereas high accumulation of

Fig 10. No cancer attractor for low accumulation of DNA damage. In response to the inactivation of p53 with the deletion of

two interactions to p53 (the activation of p53 by ATM and by ARF respectively), the landscape displays only one attractor for

homeostasis and no cancer attractor for a = 0.5 and b = 0.05, which might correspond to young cells with low accumulation of

DNA damage.

https://doi.org/10.1371/journal.pone.0197838.g010
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DNA damage causes the landscape to display an ageing attractor (i.e. cellular senescence and

apoptosis attractor). In the ageing state (i.e. the senescence attractor), cells lose the ability to

proliferate and as such cannot replenish enough new cells to sustain the functions of a tissue.

The attractors were quantified using our Monte Carlo method [15]. We have performed a

few case studies on GRNs and the results show that our Monte Carlo method can quantify

Waddington’s epigenetic landscape with more details comparable to the self-consistent mean

field approximation method [13]. In addition, the Monte Carlo method can capture kinetic

paths between two attractors, saddle point and the intermediate details of the Waddington’s

epigenetic landscape [15]. To investigate the dynamics of cellular ageing more quantitatively,

we have also conducted the time-course simulations with random initial conditions. By assum-

ing the self degradation rate as k = 1 hour−1 and other rate constants time unit in hour, our

simulation predicted that when the protein levels converge to a stable steady state of high p53

protein, cells can change to the senescent state within 20 hours (S5 Fig).

Our in silico experiments mimicked the perturbations to the GRN by deleting two interac-

tions with p53 in the network. The notion of mutation in terms of the network rewiring (i.e.

deletion or addition of edges or nodes in the GRN) was proposed by Huang et al. (2009) who

reported that the mutations can lead to “a change in the landscape topography” [54]. Our in sil-
ico perturbation experiments demonstrated this notion by showing that the inactivation of p53

by deleting two edges leads to the emergence of a cancer attractor. Driven by the perturbed

network, the simulated cells acquire the capability to evade the cellular senescence or apopto-

sis, which reveals the link between ageing and cancer. In addition, we made a prediction that

increasing the parameter value b, the inhibition rate constant, could eliminate the cancer

attractor from the potential landscape. This prediction proposed a possible strategy for cancer

treatment. Perturbation to the network interactions for drug discovery is a strategy of network

medicine proposed by Barabási et al. [58] and Creixell et al. [56].

One of the benefits of cellular senescence is the ability to prevent the effects of DNA damage

and mutations in a cell from propagating to daughter cells. Cellular senescence contributes to

Fig 11. Disappearance of cancer attractor. (A) The landscape with the cancer attractor (a = 1.5, b = 0.05). (B) For a = 1.5, the cancer attractor disappears when the

inhibition rate b is increased to 1.2.

https://doi.org/10.1371/journal.pone.0197838.g011
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the suppression of tumorigenesis, and a high p53 protein level can be used as a marker for cel-

lular senescence as reported in recent experiments [9]. However, a side effect of tumor sup-

pression by cellular senescence is contribution to ageing. It is suggested that the GRNs are

highly optimized through evolution to strike a balance for cellular fitness. Nelson and Masel

(2017) recently constructed a mathematical model of intercellular competition in genetic evo-

lution, which also suggests that one either chooses the accumulation of senescent cells or faces

the cancer risk, and therefore cellular ageing is unavoidable [59].

One limitation of our model is the use of a common degradation rate, k = 1, for all the pro-

teins. As an attempt to overcome this limitation, we have tried using more realistic and indi-

vidual protein degradation rates estimated from experiments as reported in the literature.

From the half-lives of proteins we can use the formula k ¼ lnð2Þ
half � life to obtain a list of different

degradation rates (Table A in S1 Text). Using such protein degradation rates, we quantified

and plotted the Waddington’s epigenetic landscapes. Unfortunately, the landscapes each dis-

play only a single stable attractor for both a = 0.5 and a = 1.5 (Fig A and Fig B in S1 Text).

Bifurcation analyses were performed to find possible parameter values of a or b that corre-

spond to multi-stability. However, the bifurcation analyses (Fig C and Fig D in S1 Text) have

also shown that using the new set of protein degradation rates it is not possible to produce

multi-stability. Although the degradation rate k = 1 used in our model is of the same order of

magnitude as the range of parameters between 0.06 and 1.40 determined using experimental

data, the dynamic behaviors of the model are different when using these experimentally esti-

mated parameter values. One possible reason is that the estimated values may not be accurate

enough. Another reason could be that the computational model of the ageing GRN is focused

on the core regulatory circuit of DNA damage response and cell cycle control and therefore is

not comprehensive enough. In the future some crucial molecular interactions should be iden-

tified and added to the model. Moreover, an important future direction is to utilize statistical

learning methods to infer network structure and estimate parameter values from real data.

In conclusion, we demonstrated that the molecular interactions in a GRN can control the

cellular dynamics of ageing. The accumulated DNA damage may affect the phenotypes of age-

ing in the form of emergence or disappearance of attractors in the potential landscape [52].

Our in silico perturbations to the network predicted that p53 inactivation could lead to the

emergence of a cancer attractor. This cancer attractor suggests how cells can evade the cell fate

of senescence or apoptosis. Although the proposed model is based on a core ageing GRN, it

gives insights into the mechanisms of ageing and cancer, and thereby offers a theoretical

framework for further analysis of ageing. However, besides the above-mentioned use of com-

mon parameters, the conceptual model proposed here has a few limitations. First, the process

of ageing characterized by the genomic instability might have been oversimplified in the form

of accumulated DNA damage. Here, we assumed that the GRN is the same for different cells,

i.e. “hard-wired” in the genome [52], although the genome instability due to accumulation of

DNA damage can cause changes in the gene expression. Secondly, the ageing GRN contains

only the core networks of p53 and cell cycle regulation. In the future work, the ageing network

model should be expanded to a more comprehensive and detailed system of DNA damage

response and cell cycle regulation. It is also desirable to incorporate other hallmarks of ageing

such as epigenetic modifications.

Materials and methods

Model equations

The molecular interactions in the network described in the previous subsection can be written

into ODEs. The Hill function with coefficient (n) set to 4 is used to model the activation and
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inhibition kinetics, and the kinetics of degradation is modeled with a linear component in the

ODEs as in [13, 41]. For example, the ODE for the rate of change of variable X that is subject

to one activation and one inhibition is formulated as

dX
dt
¼ a

Xna
Sn þ Xna

þ b
Sn

Sn þ Xnb
� k � X;

where the first term on the right hand side denotes the activation of X by Xa, the second term

denotes the inhibition of X by Xb) and the third term represents the linear degradation of X.

Our ODEs (modeling dynamics of 13 molecular species representing proteins) are as follows:

dP53

dt
¼ a

ARFn

Sn þ ARFn
þ a

P53n

Sn þ P53n
þ a

ATMn

Sn þ ATMn

þ b
Sn

Sn þMdm2n
þ b

Sn

Sn þWip1n
� k � P53

ð1Þ

dMdm2

dt
¼ a

P53n

Sn þ P53n
þ a

AKTn

Sn þ AKTn
þ a

Wip1n

Sn þWip1n

þ b
Sn

Sn þ ATMn
þ b

Sn

Sn þ ARFn
� k �Mdm2

ð2Þ

dWip1
dt

¼ a
P53n

Sn þ P53n
� k �Wip1 ð3Þ

dATM
dt

¼ a
ATMn

Sn þ ATMn
þ a

Stressn

Sn þ Stressn
þ b

Sn

Sn þWip1n
� k � ATM ð4Þ

dP21

dt
¼ a

P53n

Sn þ P53n
þ b

Sn

Sn þ AKTn
� k � P21 ð5Þ

dPTEN
dt

¼ a
P53n

Sn þ P53n
� k � PTEN ð6Þ

dAKT
dt

¼ b
Sn

Sn þ PTENn
� k � AKT ð7Þ

dMyc
dt

¼ a
GSn

Sn þ GSn
� k �Myc ð8Þ

dE2F
dt
¼ b

Sn

Sn þ P21n
þ a

E2Fn

Sn þ E2Fn
þ a

Mycn

Sn þMycn

þ b
Sn

Sn þ RBn
� k � E2F

ð9Þ

dRB
dt
¼ a

P21n

Sn þ P21n
þ b

Sn

Sn þ CycDn
þ b

Sn

Sn þ CycEn
� k � RB ð10Þ

dCycE
dt

¼ a
E2Fn

Sn þ E2Fn
þ b

Sn

Sn þ P21n
� k � CycE ð11Þ
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dCycD
dt

¼ a
Mycn

Sn þMycn
þ a

GSn

Sn þ GSn
þ b

Sn

Sn þ P21n
� k � CycD ð12Þ

dARF
dt

¼ a
Mycn

Sn þMycn
� k � ARF ð13Þ

The default parameter values that we chose here are: S = 0.5, n = 4, k = 1, a = 1 and b = 0.05.

Parameters a and b can have different values for individual figures plotted by simulating differ-

ent conditions of cells.

Dynamic simulations

Time-course simulations were carried out using XPPAUT and bifurcation analyses were done

using XPP-AUTO [60] and Osclli8 [61]. The XPPAUT code is given in S1 Code. Potential

landscape quantifications were performed using a Monte Carlo computational method in

MATLAB [15]. The MATLAB code for drawing Waddington’s epigenetic landscape is given

in S2 Code.

Computational method for quantifying potential landscape

We used a Monte Carlo computational method for quantifying potential landscape of a GRN

formulated in the form of ODEs. This computational method is described in another manu-

script we have submitted earlier [15]. The Monte Carlo method is based on a large number of

time-course simulations with random initial conditions. Each of the time-course trajectories is

projected to a 2-dimensional plane that is divided into grid boxes to estimate the probability

distribution P(x), which represents the probability distribution of non-equilibrium and equi-

librium states. Then a quasi-potential U = −lnP(x) can be calculated. Based on the quasi-poten-

tial U, a potential landscape can be plotted.

Supporting information

S1 Fig. Flowchart of the study. A flowchart of this study from the ageing GRN construction

to model analysis and interpretation.

(PDF)

S2 Fig. Monotonously increasing steady state for Cyclin D. Bifurcation diagram of Cyclin D

(y-axis) with respect to growth signal (x-axis).

(PDF)

S3 Fig. Potential landscape for cell fate attractors (p21 and ATM). (A) Landscape I: For a

low activation rate (a = 0.5), the landscape displays one attractor with low p21 protein concen-

tration corresponding to homeostasis. (B) Landscape II: For a high activation rate (a = 1.5),

the landscape displays two attractors, one for cell cycle arrest and the other with high p21 pro-

tein concentration corresponding to senescence or apoptosis.

(PDF)

S4 Fig. Bifurcation diagram of p53 (after deleting two interactions with p53). Red lines rep-

resent stable steady states.

(PDF)
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S5 Fig. Time-course simulations to determine how quickly cells can change their state to

senescent state. Time-course simulations for a = 1.5, b = 0.05, k = 1, S = 0.5 and n = 4 with

random initial conditions which represent different cell states show that proteins converge to

the stable steady state with a high p53 protein level indicating senescent state within about 20

hours.

(PDF)

S1 Table. Potential landscapes for parameter sensitivity analysis. Parameter sensitivity anal-

yses were performed. For different combination of parameter values of a and b, the landscapes

in 3-dimensional views are shown in the table.

(PDF)

S2 Table. In silico perturbations of p53 inactivation and the corresponding potential land-

scape (top view and 3D view). In silico network perturbations were performed with a = 1.5

and b = 0.05.

(PDF)

S3 Table. Potential landscapes from parameter sensitivity analysis for mimicking p53 inac-

tivation (3D view). Parameter sensitivity analyses were performed for the perturbed network.

Potential landscapes in 3-dimensional views are shown in the table.

(PDF)

S1 Text. Supplementary information about the attempt to use more realistic individual

protein degradation rates.

(PDF)

S1 Code. The XPPAUT source code to draw bifurcation diagram.

(ODE)

S2 Code. The MATLAB source code to draw Waddington’s epigenetic landscapes.

(ZIP)
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