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Abstract: Diabetes and hypertension are the leading causes of chronic kidney disease and their incidence is increasing at 

an alarming rate. Both are associated with impairments in the autoregulation of renal blood flow (RBF) and greater trans-

mission of fluctuations in arterial pressure to the glomerular capillaries. The ability of the kidney to maintain relatively 

constant blood flow, glomerular filtration rate (GFR) and glomerular capillary pressure is mediated by the myogenic re-

sponse of afferent arterioles working in concert with tubuloglomerular feedback that adjusts the tone of the afferent arteri-

ole in response to changes in the delivery of sodium chloride to the macula densa. Despite intensive investigation, the fac-

tors initiating the myogenic response and the signaling pathways involved in the myogenic response and tubuloglomerular 

feedback remain uncertain. This review focuses on current thought regarding the molecular mechanisms underlying myo-

genic control of renal vascular tone, the interrelationships between the myogenic response and tubuloglomerular feedback, 

the evidence that alterations in autoregulation of RBF contributes to hypertension and diabetes-induced nephropathy and 

the identification of vascular therapeutic targets for improved renoprotection in hypertensive and diabetic patients.  
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INTRODUCTION 

 Renal blood flow (RBF) autoregulation is a vital homeo-
static mechanism that protects the kidney from elevations in 
arterial pressure that would be transmitted to the glomerular 
capillaries and cause injury. It also allows the kidney to 
maintain a relatively constant blood flow and glomerular 
filtration rate (GFR) necessary for the clearance of metabolic 
wastes while maintaining efficient recovery of filtered elec-
trolytes and nutrients by the renal tubules. Two mechanisms 
contribute to autoregulation of RBF. The first is the myo-
genic response of preglomerular arterioles. Elevations in 
transmural pressure induce contraction of preglomerular ar-
terioles, predominantly at the level of afferent arterioles. The 
other mechanism is tubuloglomerular feedback which acts in 
concert with the myogenic response. It senses changes in the 
concentration of sodium chloride in the tubular fluid reach-
ing the macula densa cells in the distal tubule and adjusts the 
diameter of the afferent arteriole accordingly [1, 2]. Tubulo-
glomerular feedback serves as an effective autoregulatory 
mechanism because the sodium chloride concentration of the 
fluid reaching the macula densa is dependent on flow rate, 
which in turn, is related to the GFR and glomerular capillary 
pressure. 

 As is presented in (Fig. 1), RBF remains relatively con-
stant in normal rats over a range of mean arterial pressures 
between 90 and 150 mmHg and from 70 to 130 mmHg in 
humans. The myogenic response of the afferent arterioles 
accounts for most of the rapid compensation to changes in 
arterial pressure in the range of 0.1 to 0.3Hz (3-10 secs).  
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Tubuloglomerular feedback acts more slowly, and contrib-
utes more to the compensation to slow changes in arterial 
pressure in the range of 0.05Hz (>20 seconds) [3-8]. In gen-
eral, the available evidence indicates that the myogenic re-
sponse is most important in protecting the glomerular capil-
laries against rapid elevations in arterial pressure, while tu-
buloglomerular feedback is more involved in maintaining 
RBF and GFR in response to sustained reductions in arterial 
pressure [9-13].  

 Elevations in vascular resistance, especially in the renal 
circulation, are characteristic of hypertension. There is also 
generalized endothelial dysfunction associated with dimin-
ished vasodilatory responses to shear stress and other stimuli. 
In the spontaneously hypertensive rat (SHR) and angiotensin 
II dependent models of hypertension and in patients with 
mild or moderate hypertension, there is an elevation in renal 
vascular resistance that is in general appropriate for the de-
gree of hypertension, so baseline RBF and GFR remain in 
the normal range and renal damage is minimal [14, 15]. 
However, the range of autoregulation of RBF is shifted to 
higher pressures and the magnitude of the shift is dependent 
on the severity and duration of the hypertension [16, 17] (Fig. 
1), which is largely due to hypertrophy and thickening of the 
wall of the preglomerular arterioles [18], and potentiation of 
myogenic responsiveness [19-22]. In patients with moderate 
hypertension, the shift in the autoregulatory relationship is 
not severe and arterial pressure can still be lowered into the 
normotensive range with antihypertensive therapy without 
compromising renal function. In more malignant forms of 
hypertension, however, the hypertrophy of the vascular wall 
narrows the lumen of preglomerular arterioles sufficiently to 
lower baseline RBF and GFR and it is often not possible to 
lower blood pressure into the normotensive range without a 
decline in renal function [23]. Under these conditions, a 
gradual reduction in blood pressure is recommended.  
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 In contrast to the increase in renal vascular resistance and 
augmented myogenic autoregulatory responses observed in 
SHR and in patients with essential hypertension, autoregula-
tion of RBF is impaired in Fawn Hooded Hypertensive 
(FHH) rats [24, 25], Dahl salt-sensitive rats [26-28], rats 
with mineralocorticoid induced hypertension [29, 30] and in 
animals with reduced renal mass [31] (Fig. 1). The impair-
ment of RBF autoregulation leads to increased glomerular 
capillary pressure and glomerular injury with the develop-
ment of proteinuria, glomerulosclerosis and renal fibrosis in 
Dahl salt sensitive [32], FHH [25, 33-35] and in hypertensive 
rats treated with deoxycorticosterone acetate (DOCA) and a 
high salt diet. A similar abnormality in glomerular capillary 
hemodynamics is thought to contribute to the rapid devel-
opment of glomerulosclerosis in hypertensive African 
American patients [36] who are four times more likely to 
develop chronic kidney disease than caucasian patients [37-
41]. Alterations in renal hemodynamics is also thought to 
play a critical role in the initiation and progression of dia-
betic nephropathy [42]. Hypertension and diabetes now ac-
counts for 67% of new cases of end-stage renal disease with 
total estimated cost in 2007 of $35.3 billion ($23.9 billion in 
Medicare costs alone) for the treatment of an estimated 
500,000 patients in the US [43]. Thus, new therapies for 
slowing the development and progression of glomeruloscle-
rosis in diabetic and hypertensive patients is of utmost im-
portance. A better understanding of the molecular mechan-
sims underlying renal autoregulation is key to someday 
achieving this goal.  

MYOGENIC RESPONSE 

 The myogenic response is an intrinsic property of vascular 
smooth muscle (VSM) that allows arterioles to constrict in 
response to elevations in transmural pressure. The myogenic 
response can be readily demonstrated in de-endothelialized 

arterioles in vitro devoid of endothelial or parenchymal in-
fluences [44-46]. Despite intensive investigation, identifica-
tion of the mechanosensors responsible for initiating the my-
ogenic response and many aspects of the signaling pathways 
remain uncertain. The myogenic response involves stretch 
activation of mechanosensitive ion channels resulting in de-
polarization of VSM cells and calcium influx through L-type 
voltage-gated calcium channels (VGCC), Ca

2+
/calmodulin-

dependent phosphorylation of myosin light chain kinase and 
sensitization of actinomyosin-based contractile mechanisms 
[47, 48]. There is evidence that the initial mechanotransduc-
tion event involves an interaction of cell surface integrins 
with extracellular matrix proteins such as fibronectin and 
actin filaments in the cytoskeleton, since blockade of in-
tegrins with integrin binding peptide inhibits Ca

2+
 currents 

and myogenic tone of skeletal muscle arterioles [47-49]. 
There is also evidence that  and  subunits of epithelial 
sodium channels (ENaC) are expressed in vascular smooth 
muscle cells and that they play some role in the mecha-
notransduction event since administration of blockers of 
ENaC; benzamil and amiloride, impair the myogenic re-
sponse of isolated vessels [50-53]. Several investigators have 
identified non-selective cation channels in vascular smooth 
muscle cells that are activated by membrane stretch [54-56]. 
These channels were initially thought to be directly activated 
by membrane stretch to promote Na

+
 or Ca

2+
 entry which 

depolarizes VSM cells and facilitates Ca
2+

 entry through 
VGCC to initiate the myogenic response. However, more 
recent evidence indicates that the stretch-activated cation 
channels are likely transient receptor potential melastatin 4 
(TRPM4) and transient receptor potential canonical 6 
(TRPC6) channels that respond to stretch through activation 
of second messenger signaling pathways rather than direct 
mechanical activation [57-59]. In support of this view, Early 
and Brayden have shown that both TRPM4 and TRPC6 
channels are expressed in VSM cells and knockdown of the 

 

Fig. (1). Autoregulation of renal blood flow in normal and hypertensive individuals. Blood flow in normal subjects is maintained nearly 

constant over a range of arterial pressures from 70 to 120 mm Hg. The autoregulatory range is shifted to higher pressures in mild to moderate 

hypertensive patients and animal models of hypertension such as SHR and angiotensin II infused hypertensive rodents due to elevations in 

preglomerular vascular tone and structural changes in the microcirculation. Renal vascular resistance is reduced in diabetes and the efficiency 

of autoregulation is impaired. The fawn hooded hypertensive (FHH) rat exhibits a lack of a myogenic response in the preglomerular vascula-

ture and impaired autoregulation of RBF and they develop severe glomerulosclerosis. Autoregulation is also impaired in salt sensitive forms 

of hypertension (Dahl salt sensitive rats, mineralocorticoid hypertension and reduced renal mass) and all are susceptible to glomerulosclero-

sis.  
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expression of these channels impairs the myogenic response 
in cerebral arteries [58, 59]. Similar studies in renal afferent 
arterioles have yet to be performed.  

 More recent data have indicated that the stretch activation 
of the TRP channels in cell systems requires co-expression 
of the channels with Gq dependent receptors, such as the 
angiotensin type 1, endothelin, vasopressin or histamine re-
ceptors [57]. An emerging view summarized in (Fig. 2) is 
that membrane stretch causes this class of receptors to inter-
act with Gq proteins in the membrane to activate phospholi-
pase C (PLC) and increase the production of diacylglycerol 
(DAG) and inositol trisphosphate (IP3) [60]. IP3 then pro-
motes the release of Ca

2+
 from the sarcoplasmic reticulum 

near the membrane such that local Ca
2+

 concentration can 
reach levels sufficient to activate TRPM4 channels to allow 
Na

+
 entry and depolarize the membrane [58]. DAG can also 

directly activate TRPC6 channels [57] and protein kinase C 
(PKC) which phosphorylates and sensitizes TRPM4 chan-
nels to increases in intracellular Ca

2+
 and enhances the de-

gree of depolarization sufficiently to allow Ca
2+

 entry 
through VGCC. The activation of PKC also has additional 

actions to enhance the depolarization and activation of vas-
cular smooth muscle. In this regard, PKC is known to phos-
phorylate the VGCC to enhance the voltage sensitivity of 
this channel to facilitate Ca

2+
 entry [61]. Indeed, there are 

studies indicating that inhibitors of PLC [62] and PKC [63, 
64] block the myogenic response of renal and cerebral arter-
ies. 

 Activation of non-selective cation channels (NSCC) such 
as TRPM4 or TRPC6 and subsequent local increases in in-
tracellular Ca

2+
 also activate large conductance potassium 

channels, (BK) [65-67] (Fig. 2). BK channels are also acti-
vated by the transient calcium release (Ca

2+ 
sparks) through 

ryanodine receptors located in the sarcoplasmic reticulum 
and in close proximity to these channels. In VSM cells, Ca

2+ 

sparks give rise to spontaneous transient outward K
+
 currents 

(STOCs) that hyperpolarize the cells [68]. The magnitude 
and frequency of STOCs can be increased by membrane 
depolarization, sarcoplasmic reticulum Ca

2+ 
release, and Ca

2+
 

influx through VGCC [69]. The interplay between the activa-
tion of NSCC, Ca

2+ 
sparks and activation of BK channels 

oppose depolarization of VSM cells and inhibit myogenic 

 

Fig. (2). Mechanisms involved in myogenic response of preglomerular renal arterioles. Stretch activation of Gq dependent receptors 

activates phospholipase C (PLC) and increases the production of diacylglycerol (DAG) and inositol trisphosphate (IP3). IP3 promotes the 

release of Ca
2+

 from the sarcoplasmic reticulum (SR) to increase local Ca
2+

 concentration sufficiently to activate transient receptor potential 

melastatin 4 (TRPM4) channels. DAG activates transient receptor potential canonical 6 (TRPC6) channels and protein kinase C (PKC) which 

phosphorylates and sensitizes TRPM4 channels to depolarize the membrane sufficiently to allow Ca
2+

 entry through voltage gated calcium 

channels (VGCC). The activation of PKC also blocks calcium activated large conductance potassium (BK) channel activity to enhance the 

degree of depolarization and phosphorylates the VGCC to enhance the voltage sensitivity and facilitate Ca
2+

 entry. The rise in intracellular 

Ca
2+

 initiates the contraction and is followed by activation of additional mechanisms that enhance the sensitivity of the contractile mecha-

nism to Ca
2+

.  

BK TRP VGCC

GPCR

Gq
Plasma 
membrane P P

Ca++ Ca++

Ca++ Ca++K+

q

PLC

PIP2
DAG

membrane

PKC

20 HETE
cPLA2

AA
P

Ca++

Ca++

Ca++
K+

Na+

DAG

IP3
PKC

SAR

Depolarization

Ca++

Ca++

C ++

p-MLCMLC

MLCK
ATP

calmodulin

ContractionRelaxation

Ca++

Ca++

MLCP

Rho K
MLCP (inactive)

Actin-Myosin filament

P ( )



848    Current Vascular Pharmacology, 2014, Vol. 12, No. 6 Burke et al. 

responsiveness [65, 66]. Thus, there must be mechanisms in 
place to blunt the opening of BK channels. In this regard, 
there is evidence that PKC phosphorylates and inhibits acti-
vation of BK channels [65, 66]. There is also considerable 
evidence that a cytochrome P450 metabolite of arachidonic 
acid, namely 20-hydroxyeicosatetraenoic acid (20-HETE), 
plays a key role in augmenting the myogenic response by 
blocking BK channels [63, 64, 70, 71]. In this regard, the rise 
in intracellular Ca

2+
 following stretch of VSM cells activates 

phospholipase A2 which stimulates the release of arachi-
donic acid (AA). AA has been shown to be avidly converted 
to 20-HETE by cytochrome P450 enzymes of the 4A family 
expressed in renal afferent arterioles [72]. 20-HETE is a po-
tent constrictor of renal arterioles [73, 74] that activates PKC 
[63, 64, 75], mitogen activated protein kinase [76, 77], src-
type tyrosine kinase [78] and rho kinase [79]. 20-HETE po-
tentiates the myogenic response by activating PKC which 
has been shown to phosphorylate and inhibit BK channels 
thereby allowing for sustained depolarization of VSM cells 
[64, 70, 71, 80]. 20-HETE also augments activation of 
TRPC6 channels enhancing depolarization and increasing 
activity of L-type calcium channels [81]. Indeed, elevations 
of transmural pressure increase 20-HETE levels in isolated 
arterioles [82] and inhibitors of the synthesis of 20-HETE 
block the myogenic response in isolated renal [83] and cere-
bral arteries [82] in vitro and impair autoregulation of renal 
[84] and cerebral blood flow [82] in vivo. 

 The initial rise in intracellular calcium concentration fol-
lowing activation of the myogenic response is transient, gen-
erally falling to levels near or slightly elevated from base-
line, whereas the vasoconstrictor response is sustained. This 
indicates that there must be an increase in the Ca

2+
 sensitivity 

of contractile apparatus that plays a key role in the response. 
As seen in (Fig. 2), the rise in intracellular Ca

2+
 is thought to 

activate myosin light chain kinase via a Ca
2+

-calmodulin 
dependent process and phosphorylate the 20 kD regulatory 
subunit of myosin light chain. This permits the myosin light 
chain to more effectively bind to actin and hydrolyze ATP to 
enhance cross bridge formation and cycling. Myosin light 
chain phosphatase normally dephosphorylates the light chain 
to limit cross bridge formation and allow for diminished tone 
[85]. Recent studies indicate that the sustained activation of 
vascular smooth muscle cells is related not only to increased 
myosin light chain kinase activity but also to inhibition of 
myosin light chain phosphatase activity. This is due to the 
increase in PKC activity induced by DAG, [86, 87] and 20-
HETE that activate a rho-A sensitive kinase that phosphory-
lates and inhibits the activity of myosin light chain phospha-
tase [79]. In summary, the myogenic response involves 
stretch activation of ion channels, depolarization and Ca

2+
 

influx through VGCC that initiates contraction that is fol-
lowed by other mechanisms that enhance the Ca

2+
 sensitivity 

of the contractile mechanism that are essential for the sus-
tained contractile response.  

TUBULOGLOMERULAR FEEDBACK 

 The other mechanism contributing to autoregulation of 

RBF is tubuloglomerular feedback [1, 2, 88]. This mecha-
nism senses increases in the concentration of sodium chlo-
ride (NaCl) in tubular fluid reaching the macula densa cells 
of the distal nephron which then acts to decrease the diame-

ter of the juxtaposed afferent arteriole. Tubuloglomerular 

feedback serves as a negative feedback loop to stabilize GFR 
to enable excretion of metabolic waste and to prevent trans-
mission of elevations in arterial pressure from being trans-
mitted to the glomerular capillaries and damaging the glome-

rulus. A summary of the proposed mechanism of tubulo-
glomerular feedback is presented in (Fig. 3). Increases in 
arterial pressure, that are not fully compensated via the myo-
genic response, increase glomerular capillary pressure and 

GFR and inhibit Na
+
 reabsorption in the proximal tubule via 

the mechanism of pressure natriuresis [89, 90]. This leads to 
an increase in the concentration of NaCl delivered to the 
distal nephron which increases Na

+
 uptake by the Na-K-2Cl 

co-transporter in the apical membrane of the macula densa. 
The essential role of Na

+
 transport via the Na-K-2Cl cotrans-

porter in triggering tubuloglomerular feedback is based on 
the observations that inclusion of loop diuretics in the tubular 

perfusate nearly completely blocks the tubuloglomerular 
feedback response [91-93] and the observation that targeted 
knockout of the Na-K-2Cl, A or B genes, impairs the tubulo-
glomerular feedback response in mice [94, 95]. The uptake 

of Na
+
 via the Na-K-2Cl transporter is thought to increase 

intracellular Na
+
 concentration and the activity of Na K-

ATPase and increase intracellular Ca
2+

 levels in the macula 
densa [96]. This is associated with increased release of ATP 

from the basolateral membrane of macula densa cells 
through a maxi anion channel [97, 98].  

 There still remains some controversy regarding whether 

the ATP that is released from the macula densa then acts 
directly on the afferent arteriole to elicit vasoconstriction 

through stimulation of the ATP P2X receptors or whether it 

is degraded by ecto-ATPases and nucleotidases to adenosine 
that constricts the afferent arteriole through activation of the 

adenosine A1A receptor [99-104]. The evidence supporting 

the role for ATP in mediating tubuloglomerular feedback is 
that administration of the P2X1 receptor antagonist, NF-279, 

impairs the response of afferent arterioles to elevations in 

perfusion pressure in the isolated perfused juxtamedullary 
nephron preparation [105]. Similarly, knockout of the P2X1 

receptor in mice impairs the response of afferent arterioles to 

elevations in perfusion pressure in the isolated perfused jux-
tamedullary nephron preparation [105, 106] and autoregula-

tion of RBF in vivo [107] but tubuloglomerular feedback 

responses to increases in tubular flow to the macula densa in 
vivo are not significantly altered [108]. 

 Two independent laboratories have reported that tubulo-
glomerular feedback responses are completely absent in 

adenosine A1A receptor knockout mice and this is associated 

with impaired autoregulation of RBF and GFR especially in 
response to reductions in renal perfusion pressure [109-111]. 

Similarly, tubuloglomerular feedback responses are impaired 

in mice with deletion of the NTPDase1 gene, an extracellular 
ATPase that dephosphorylates ATP to ADP or ADP to AMP 

by deletion of ecto-5’-nucleotidase cd73 [99, 102]. Adeno-

sine has a direct effect to constrict isolated perfused afferent 
arterioles and this effect is blocked by an adenosine A1A re-

ceptor antagonist and in vessels obtained from A1R knockout 

mice [104, 112]. As presented in (Fig. 3), previous studies 
have indicated that the vasoconstrictor response to adenosine 

in the afferent arteriole is mediated by Gi-dependent activa-



Renal Blood Flow Autoregulation Current Vascular Pharmacology, 2014, Vol. 12, No. 6    849 

tion of PLC via the  subunit [113, 114] followed by release 

of DAG and IP3, the release of Ca
2+ 

from intracellular 

stores, activation of PKC, depolarization of the membrane 
and Ca

2+
 influx in a manner analogous to the activation of 

the myogenic response by stretch or the vasoconstrictor 

response to angiotensin II via the angiotensin II receptor 
type I (AT1R) and Gq dependent pathways. Similarly, there 

is evidence that ATP, and possibly adenosine as well, 

stimulate the formation of 20-HETE in the afferent arteri-
ole [115] and that 20-HETE may contribute to the vasocon-

strictor response to these agonists by inhibiting BK chan-

nels and enhancing calcium influx [70]. In this regard, in-
hibitors of the formation of 20-HETE have been reported to 

impair autoregulation of tubuloglomerular feedback re-

sponses in the rat in vivo [116].  

 

INTERACTIONS BETWEEN G-PROTEIN COUPLED 

VASOCONSTRICTORS, MYOGENIC RESPONSE AND 

TUBULOGLOMERULAR FEEDBACK MECHANISMS 

IN THE AUTOREGULATION OF RBF AND GLOME- 

RULAR CAPILLARY PRESSURE  

 An examination of the pathways summarized in (Figs. 2 

and 3) illustrates that elevations in transmural pressure (Fig. 

2) and tubuloglomerular feedback (Fig. 3) activate the same 
second messenger signal transduction cascade characterized 
by activation of PLC, increases in DAG and IP3, cellular 
depolarization and influx of intracellular calcium. Moreover, 

this same pathway is involved in the response of the afferent 
arteriole to vasoconstrictor agonists acting via the AT1, P2X 
and endothelin ETA receptors [1, 117-119]. Given the con-
vergence of these second messenger pathways, it is not sur-

 

Fig. (3). Mechanisms involved in tubuloglomerular feedback control of renal vascular tone. Tubuloglomerular feedback is initiated 

when the filtered load of sodium chloride is increased to the macula densa resulting in increases of; sodium reabsorption via the sodium po-

tassium 2 chloride exchanger (NaK2Cl), intracellular Na
+
, sodium potassium ATPase (NaK-ATPase) activity and intracellular Ca

2+
. These 

events trigger the release of ATP from the macula densa cells. ATP is converted to adenosine extracellularly and then acts on adenosine 1A 

receptors (A1AR) in the adjacent afferent arteriole to promote vasoconstriction. A1AR activates phospholipase C (PLC) via a GTP binding 

protein (Gi), the release of inositol trisphosphate (IP3) and diacylglycerol (DAG). The subsequent activation of cytosolic phospholipase A2, 

formation of arachidonic acid (AA) and 20-HETE, as well as activation of protein kinase C (PKC), alters transient receptor potential channel 

(TRPC) and large conductance calcium activated potassium channel (BK) activities resulting in depolarization and activation of voltage 

gated calcium channels (VGCC) and Ca
2+

 influx. The increase in intracellular Ca
2+

 initiates contraction of the afferent arteriole, reduction in 

glomerular capillary pressure and filtered sodium chloride load. Activation of the angiotensin II receptor type I (AT1R) stimulates a similar 

transduction pathway to that shown in (Fig. 2) for the myogenic response. In addition, ATP and angiotensin II have been shown to be posi-

tive modulators of tubuloglomerular feedback through activation of G-protein coupled receptors, specifically purinergic receptor 2X (P2X) 

and angiotensin 1 receptor (AT1) via Gq to modulate PLC activity. 
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prising that the myogenic response, tubuloglomerular feed-

back and G protein coupled vasoconstrictor pathways inter-
act synergistically to regulate the tone of the afferent arteri-
ole. For example, Inoue et al. [81] recently demonstrated that 
membrane stress/pressure induced responses were synergis-

tically augmented in A7r5 cells and mesenteric arteries that 
normally respond poorly to membrane stress/stretch after 
low level Gq-receptor activation. They further demonstrated 
that the synergism was linked to increased production of 20-

HETE. Other studies have indicated that activation of the 
angiotenin II AT1 or adenosine A1A receptor augments the 
myogenic response [104, 110, 114, 120, 121]. Similarly, 
blockade of the renin angiotensin system with angiotensin 

converting enzyme (ACE) inhibitors or AT1 receptor block-
ers (ARBs) attenuate tubuloglomerular feedback responses 
and shift the relationships between flow to the macula densa 
and stop flow pressure, and index of glomerular capillary 

pressure to the right [122, 123]. Although there is little direct 
data to support this hypothesis, one would also expect that 
increases in arterial pressure and myogenic tone would in-
crease tubuloglomerular feedback responsiveness. Moreover, 

elevations in perfusion pressure should potentiate the dose 
response relationship to vasoconstrictor agonists, and sub-
pressor levels of angiotensin, adenosine and endothelin 
should potentiate myogenic and tubuloglomerular feedback 

responsiveness. These types of interactions have been postu-
lated to play a role in the enhanced myogenic responsiveness 
and elevated renal vascular resistance seen in angiotensin II 
models of hypertension and in the SHR, in which the kidney 

is generally protected from the development of glomerular 
injury until late in the disease process when arterial pressure 
rises beyond the reset autoregulatory range.  

MODULATORS OF MYOGENIC RESPONSE AND 

TUBULOGLOMERULAR FEEDBACK REPONSIVE- 

NESS 

 Shear stress is directly dependent on the velocity of flow 
in a vessel and is inversely proportional to vascular diameter. 
Shear stress stimulates the release of endothelial-derived 
relaxing factors that act as negative modulators of autoregula- 
tory responses. Following activation of myogenic or tubulo- 
glomerular feedback, the decrease in the diameter of the 
afferent arteriole increases shear stress which stimulates the 
release of vasodilator mediators from the endothelium that 
oppose further vasoconstriction. The mediators that are 
released include, nitric oxide, prostaglandin E2, prostacyclin, 
epoxyeicosatrienoic acids (EETs) which dilate vessels by 
opening potassium channels which hyperpolarize vascular 
smooth muscle cells and oppose calcium influx [88, 124-126]. 
Each uses a different signal transduction pathway. Nitric oxide 
stimulates the formation of cGMP [127] and binds heme in 
CYP450 enzymes to inhibit the formation of 20-HETE in 
vascular smooth muscle cells [71, 128]. Both of these effects 
open potassium channels to hyperpolarize the cell and diminish 
calcium entry through voltage sensitive channels [129]. 
Prostacyclin and prostaglandin E2 act on receptors to promote 
vasodilation via cAMP-dependent pathway [125]. EETs are 
metabolites of arachidonic acid formed by cytochrome P450 
enzymes of the 2C family that are produced by the endothe- 
lium. They are potent vasodilators that open BK channels in 
renal vascular smooth muscle cells by stimulating the formation 

of cAMP [130, 131] and/or c-AMP ribose [126, 132, 133]. In 
many vascular beds EETs have been identified as an endothelial 
derived hyperpolarizing factor that mediates the response to 
endothelial dependent vasodilators following blockade of nitric 
oxide sythase (eNOS) and cyclooxygenase [134].  

 Nitric oxide (NO) and arachidonic acid metabolites also 
play very important roles in modulating the activity of tubu-
loglomerular feedback [135]. Neuronal nitric oxide synthase 
(nNOS) is expressed in macula densa cells and NO is re-
leased following activation of tubuloglomerular feedback 
[96, 136-138]. Blockade of the formation of NO in the mac-
ula densa by administration L-NAME or more selective in-
hibitors of nNOS to the tubular perfusate markedly enhances 
the tubuloglomerular feedback response.  

 More recently, Ren et al. and Wang et al. [139, 140], 
have identified another important pathway that decreases the 
sensitivity of the tubuloglomerular feedback mechanism. 
They reported that increased flow in the connecting tubule of 
the distal nephron stimulates the production and release of 
both prostaglandin E2 and EETs and that both of these com-
pounds diffuse to the juxtaposed afferent arteriole to promote 
vasodilation and oppose vasoconstriction Again, the physiol-
ogic significance of this modulatory pathway remains to be 
determined but it is likely a compensatory mechanism that 
allows the kidney to rapidly increase sodium excretion with-
out reducing GFR following elevations in sodium intake. 
Moreover, upregulation of the formation of NO by the mac-
ula densa or the connecting tubule in diabetes and various 
forms of hypertension may oppose both myogenic and tubu-
loglomerular feedback responsiveness, leading to elevations 
in glomerular capillary pressure, which promotes the devel-
opment of proteinuria and glomerular injury.  

ROLE OF IMPAIRED AUTOREGULATORY MECHA- 

NISMS IN THE PATHOGENESIS OF GLOMERULO-

SCLEROSIS AND CHRONIC KIDNEY DISEASE 

 Although the range of autoregulation may be shifted to-
ward higher pressures, autoregulatory mechanisms are intact 
in most patients with essential hypertension and they do not 
develop proteinuria or significant renal injury [141, 142]. 
Similar renoprotection is seen in the SHR model of hyper-
tension [15] in which the myogenic response of the pre-
glomerular vasculature is enhanced [14, 143] perhaps due to 
elevated production of 20-HETE [73]. Recent studies have 
indicated that renal vascular resistance is also markedly ele-
vated in the angiotensin II infused mouse model of hyperten-
sion which develops ischemic renal injury to the glomerulus 
rather than proteinuria, mesangial matrix expansion and fo-
cal glomerular sclerosis [144].  

 In contrast, renal autoregulation is impaired in patients 
with diabetes, other forms of proteinuric chronic kidney dis-
ease (CKD) and in African Americans with low renin forms 
of hypertension. These patients exhibit increased susceptibil-
ity to the development of progressive glomerulosclerosis in 
response to even modest elevations in pressure [9]. Indeed, 
this is the reason for the recommendation for strict control of 
blood pressure in patients with diabetes and CKD and it un-
derlies the rationale for the use of angiotensin converting 
enzyme (ACE) inhibitors and angiotensin receptor blockers 
(ARBs) that lower systemic pressure and reduce glomerular 
capillary pressure.  
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 The increased susceptibility to renal injury observed in 
patients with diabetes and chronic kidney disease, as well as 
work done in wide variety of animal models of hypertension 
and diabetes, suggest that impairments in renal autoregula-
tory mechanisms leading to elevation in glomerular capillary 
pressure trigger the development of proteinuria and glomeru-
losclerosis. Work done in the 5/6 nephrectomy model of 
chronic kidney disease indicates that the remaining glomeruli 
hypertrophy and autoregulatory mechanisms are impaired. 
These animals exhibit hyperfiltration and elevated glomeru-
lar capillary pressure [9, 31, 145, 146]. With time these ani-
mals develop progressive proteinuria and glomerular sclero-
sis. Further support for a key role of alterations in renal 
hemodynamics in the development of renal injury are the 
findings that administration of calcium channel blockers, that 
further impair renal autoregulation, markedly accelerate the 
progression of renal disease in the 5/6 remnant kidney model 
[147-149]. 

 Increased susceptibility to the development of proteinuria 
and focal segmental glomerulosclerosis has been observed in 
other rat models of hypertension that exhibit impaired 
autoregulation of RBF. These include the DOCA salt model 
of hypertension [29, 150] the unclipped kidney of 2 kidney 1 
clip Goldblatt hypertensive rats [151, 152] and in the FHH 
rat [35, 153]. The FHH rat in particular develops proteinuria 
and focal segmental glomerulosclerosis at a relative young 
age that progresses to end state renal disease. These rats have 
little or no myogenic response in preglomerular renal arteries 
but tubuloglomerular feedback responses are intact [28, 35, 
154, 155]. Autoregulation of RBF is markedly impaired in 
these rats and glomerular capillary pressure increases follow-
ing elevations in renal perfusion pressure [25, 34, 35]. Simi-
larly, Dahl S rats and Brown Norway rats exhibit impaired 
dynamic autoregulation of RBF related to a defect in the 
myogenic control of the renal vasculature [26, 156]. Both of 
these strains rapidly develop proteinuria and progressive 
glomerular disease following the development of hyperten-
sion [32, 157-159]. Glomerular capillary pressure is also 
thought to be elevated in African Americans [36, 160] with 
salt-sensitive forms of hypertension and this is thought to 
underlie the increased susceptibility to the development of 
proteinuria and chronic kidney disease. 

 The mechanisms by which impaired autoregulation of 
RBF in diabetes, salt-sensitive forms of hypertension and 
chronic kidney disease promote the development of renal dis-
ease remain to be determined. A proposed mechanism is pre-
sented in (Fig. 4). The available data suggest that impaired 
autoregulation of RBF leads to an elevation in glomerular cap-
illary pressure, which increases glomerular expression of 
transforming growth factor beta (TGF- ) through increases in 
stretch of the glomerular capillaries and adherent mesangial 
cells and podocytes [161-164] TGF-  is known to increase the 
production of collagen and fibronectin in cultured mesangial 
cells and podocytes [165]. There is also an increase in the re-
nal expression of matrix metalloproteinase 2 (MMP2) which 
has been shown to increase the release of bound forms of 
TGF-  [166-168], activate the epidermal growth factor path-
way and promote epithelial to mesenchymal transformation 
[169] which is critical to the development of renal fibrosis 
[170]. TGF-  has been shown to directly increase the perme-
ability of isolated glomeruli to albumin [171, 172]. Damage to 

the glomerular filtration barrier and increased filtration of 
macromolecules and/or growth factors may trigger a positive 
feedback loop that further stimulates podocytes, mesangial 
cells and renal tubular epithelial cells to upregulate the expres-
sion of TGF- , increasing the production of extracellular ma-
trix. This may be one of the pathways for the development of 
focal glomerulosclerosis, renal interstitial fibrosis and tubular 
necrosis in hypertensive and diabetic patients. Ultimately, the 
sustained overexpression of TGF-  stimulates the production 
of extracellular matrix and leads to the collapse of glomerular 
capillaries (glomerulosclerosis), renal interstitial fibrosis, loss 
of nephrons and chronic renal failure. 

 The mechanism by which TGF-  increases the glomeru-

lar permeability to albumin is still unknown. We have re-
ported that TGF-  inhibits the synthesis of 20-HETE in iso-

lated glomeruli and that pretreatment of glomeruli with 20-

HETE mimetics opposes the effects of TGF-  to increase the 
glomerular permeability of albumin [173]. Moreover, inhibi-

tors of the synthesis of 20-HETE mimic the action of TGF-  

to increase the albumin permeability of the glomerulus and 
development of proteinuria [174]. These findings suggest 

that 20-HETE may also play a role in maintaining glomeru-

lar barrier function and that TGF-  may initiate the de-
velopment of proteinuria and renal disease in part by inhibit-

ing the formation of 20-HETE.  

 There is also overwhelming evidence that over expres-

sion of TGF-  plays a key role in the pathogenesis of renal 

fibrosis associated with exposure to nephrotoxins, renal 

ischemia and immune injury, as well as hypertension and 

diabetic nephropathy. Increased circulating and/or renal con-

centrations of TGF-  mRNA or protein have been reported 

in patients with diabetic nephropathy [175-178], following 

transplant rejection [179] and cyclosporine-induced neph-

ropathy [180] and in various forms of glomerulosclerosis 

[181, 182]. Increases in renal expression of TGF-  have been 

reported in every animal model of renal injury examined to 

date [165]. This includes use of anti-thymocyte or anti-

glomerular basement membrane serum and Heyman nephri-

tis
 
[183], cyclosporine and puromycin nephropathies [184, 

185], remnant kidney [186, 187], ureteral obstruction
 
[188], 

chronic allograph rejection [180] and radiation injury [189], 

as well as animal models of diabetes-induced renal injury 

including streptozotocin induced rodent models [178, 190], 

the biobreeding (BB) rat and the non obese diabetic (NOD) 

mouse model [191]. Hypertension models linked to elevated 

levels of TGF-  include: L-NAME [192, 193] and angio-

tensin II treated animals [165, 194], deoxycorticosterone 

acetate-salt hypertensive rats [150] and genetic models in-

cluding stroke prone SHR rats [195] and Dahl S rats [172, 

196]. Previous studies have shown that treatment of rats and 

mice with TGF- 2 induces a renal interstitial fibrosis in the 

outer medulla resembling that seen in patients with hyperten-

sion [197, 198]. Transgenic mice that over express TGF-  

also develop glomerular lesions and tubulointerstitial renal 

disease resembling that seen in patients with hypertension 
and diabetes [199-203]. 

 The most direct evidence for a role for TGF-  in the 

pathogenesis of renal disease comes from inhibitor studies. 
These studies have shown that chronic treatment of rats with 
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a TGF-  neutralizing antibody [204], decorin, an endoge-

nous inhibitor of TGF-  [205], or antisense constructs that 

down regulate the expression of TGF-  or T RII [193] re-
duce the degree of glomerulosclerosis in the anti-Thy1 

model of glomerulonephritis. Several investigators have re-

ported that knock-down of the production of TGF-  with 
antisense TGF- 1 oligodeoxynucleotides or by blocking the 

actions of the TGF-  with a neutralizing antibody also re-

duces the degree of proteinuria and glomerular damage in 
diabetic mice [190, 206-208]. Beneficial effects of TGF-  

neutralizing antibodies have also been reported in rats with 

puromycin nephropathy [185] and in mice with cyclosporin-
induced nephropathy [209]. These studies indicate that TGF-

 levels are elevated in diabetes, hypertension and following 

renal injury. They also suggest that TGF-  plays a causal 
role in the pathogenesis of renal fibrosis associated with 

these conditions. Sustained overproduction of TGF-  [196] 

also leads to apoptosis of podocytes [210, 211], mesangial 
cells

 
[212] and tubular epithelial cells [213, 214],

 
damage to 

the glomerular filtration barrier, proliferation of mesangial 

cells, increased deposition of extracellular matrix, and col-
lapse of glomerular capillaries. TGF-  also promotes epithe-

lial-mesenchymal transformation, [169, 170, 215, 216] lead-

ing to renal interstitial fibrosis, loss of capillaries and tubular 
necrosis. 

 

POTENTIAL FOR NEW THERAPEUTIC STRATE-

GIES FOR IMPROVED RENAL PROTECTION 

 Overall, there is strong evidence that impaired autoregu-
lation of RBF leading to increased transmission of fluctua-
tions in system pressure to the glomerular capillaries mark-
edly increases the susceptibility to the development of prote-
inuria, glomerulosclerosis and chronic kidney disease. Much 
of the work using animal models have indicated that this is 
largely associated with changes in the myogenic component 
of renal autoregulation. Examination of the signaling path-
ways involved indicates that the control of the tone of the 
afferent arteriole by myogenic, tubuloglomerular feedback 
and vasoconstrictor agonists activate common signaling 
pathways involving activation of PLC, IP3, DAG, release of 
intracellular Ca

2+
, opening of TRP channels, membrane de-

polarization, Ca
2+

 entry through VGCC and sensitization of 
the contractile mechanism to Ca

2+
. There are several poten-

tial intervention points that might restore the efficiency of 
the myogenic autoregulatory mechanisms to protect the 
glomerulus from barotrauma. These include; TRP channel 
agonists, BK channel blockers, 20-HETE agonists or 
CYP4A inducers, L-type calcium channel agonists and rho 
kinase agonists. Unfortunately, none of these approaches 
would be selective for increasing the tone of the afferent 
arteriole and would likely be associated with unacceptable 
risks and side effects such as the development of hyperten-

 

Fig. (4). Proposed mechanisms contributing to the development of diabetic and hypertensive nephropathy. Autoregulation of renal 

blood flow is impaired in patients with salt sensitive forms of hypertension and diabetes as well as in Dahl salt sensitive (Dahl-SS) and 

Fawn-hooded hypertensive (FHH) rats. The impaired autoregulation leads to greater transmission of fluctuations in arterial pressure to the 

glomerulus and increased glomerular capillary pressure (Pgc). Elevated Pgc results in increased expression of matrix metalloproteases and 
transforming growth factor beta (TGF- ). Increased TGF-  promotes glomerulosclerosis, increased glomerular permeability to albumin 
(Palb), myoepithelial transformation, proteinuria and renal interstitial fibrosis.  
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sion, cardiac arrhythmias and vasospasm. These same path-
ways also play a key role in cell growth and proliferation so 
these drugs may promote the development of vascular hyper-
trophy and arteriosclerosis or certain forms of cancer. As a 
result, it appears that the most effective strategy to slow the 
progression of renal disease for the foreseeable future will 
remain strict control of diabetes and the associated renal 
vasodilation and to reduce systemic pressure with ACE in-
hibitors and ARBs which lower glomerular capillary pres-
sure by dilating the efferent arteriole. This approach may 
someday be augmented with the emergence of new anti-
fibrotic agents that block the actions of TGF-  and matrix 
metalloproteinase 2. Indeed, recent data have been very 
promising in experimental animal models of diabetes, hy-
pertension and renal disease. However, none of these com-
pounds have yet entered clinical development for the pre-
vention of hypertension and/or diabetic nephropathy in 
humans.  
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LIST OF ABBREVIATIONS 

ACE = Angiotensin converting enzyme  

ARB = Angiotensin receptor blocker 

BK = Large conductance potassium channel  

DAG = Diacylglycerol  

DOCA = Deoxycorticosterone acetate 

EET = Eicosatetraenoic acid  

ENaC = Epithelial sodium channels  

FHH rats = Fawn hooded hypertensive  

GFR = Glomerular filtration rate 

IP3 = Inositol trisphosphate  

NOS = Nitric oxide synthase  

MMP2 = Matrix metalloproteinase 2  

Palb = Glomerular permeability to albumin 

PLC = Phospholipase C  

PKC = Protein kinase C  

RBF = Renal blood flow 

SHR = Spontaneously hypertensive rats 

TGF-  = Transforming growth factor beta  

TRPC6 = Transient receptor potential canonical 6  

TRPM4 = Transient receptor potential melastatin 4  

 

VGCC = Voltage gated calcium channel  

VSM = Vascular smooth muscle  

20-HETE = 20-hydroxyeicosatetraenoic acid  
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