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Abstract

Background

Widely access to interferon-free direct-acting antiviral regimens (IFN-free DAA) is poised to

dramatically change the impact of the HCV epidemic among people who inject drugs

(PWID). We evaluated the long-term effect of increasing HCV testing, treatment and

engagement into harm-reduction activities, focused on active PWID, on the HCV epidemic

in British Columbia (BC), Canada.

Methods

We built a compartmental model of HCV disease transmission stratified by disease progres-

sion, transmission risk, and fibrosis level. We explored the effect of: (1) Increasing treatment

rates from 8 to 20, 40 and 80 per 1000 infected PWID/year; (2) Increasing treatment eligibil-

ity based on fibrosis level; (3) Maximizing the effect of testing by performing it immediately

upon ending the acute phase; (4) Increasing access to harm-reduction activities to reduce

the risk of re-infection; (5) Different HCV antiviral regimens on the Control Reproduction

Number Rc. We assessed the impact of these interventions on incidence, prevalence and

mortality from 2016 to 2030.

Results

Of all HCV antiviral regimens, only IFN-free DAAs offered a high chance of disease elimina-

tion (i.e. Rc < 1), but it would be necessary to substantially increase the current low testing

and treatment rates. Assuming a treatment rate of 80 per 1000 infected PWID per year, cou-

pled with a high testing rate, the incidence rate, at the end of 2030, could decrease from

92.9 per 1000 susceptible PWID per year (Status Quo) to 82.8 (by treating only PWID with
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fibrosis level F2 and higher) or to 65.5 (by treating PWID regardless of fibrosis level). If

PWID also had access to increased harm-reduction activities, the incidence rate further

decreased to 53.1 per 1000 susceptible PWID per year. We also obtained significant

decreases in prevalence and mortality at the end of 2030.

Conclusions

The combination of increased access to HCV testing, highly efficacious antiviral treatment

and harm-reduction programs can substantially decrease the burden of the HCV epidemic

among PWID. However, unless we increase the current levels of treatment and testing, the

HCV epidemic among PWID in BC, and in other parts of the world with similar epidemiologi-

cal background, will remain a substantial public health concern for many years.

Introduction
The burden of hepatitis C virus (HCV) infection remains a major public health challenge, par-
ticularly among people who inject drugs (PWID), who have an estimated global HCV preva-
lence of 67% [1]. Studies have shown that PWID acquire HCV relatively fast following
initiation of injecting illicit drugs (2). Given that there is no efficacious preventive HCV vaccine
on the horizon, engagement in harm-reduction programs (specifically the use of needle
exchange, drug treatment programs (pharmacological or not), and supervised injection sites),
timely HCV diagnosis, assessment and treatment for HCV infection are key components for
decreasing HCV-related disease burden [2–4]. Without treatment, 15%-25% of chronically
infected individuals will develop cirrhosis, with concomitant increased risk for end-stage liver
disease and hepatocellular carcinoma [5]. To date, there is still a large number of individuals
unaware that they are infected with HCV (50% in the United States,>60% in Europe and 26%
in cohort studies in Vancouver Canada), and similarly, a large number of individuals with no
or limited access to treatment (<10% in the United States and Canada and<16% in Europe);
thus, ongoing HCV transmission remains a concern [6–12].

Until recently, those infected with HCV were treated with pegylated interferon and ribavirin
(pegIFN–RBV) for 24 to 48 weeks depending on the HCV genotype [5]. The primary goal of
treatment is to achieve sustained virologic response (SVR); i.e. to achieve a virological cure
defined as no detectable HCV in the bloodstream 24 weeks after treatment [5]. Since the
pegIFN–RBV treatment had poor efficacy and associated safety and tolerability issues, its
uptake was extremely low. Since 2011, the HCV treatment field has been revolutionized with
the approval of higher-efficacy (although poorly tolerated[13]) drugs such as boceprevir
(BOC) and telaprevir (TPV), and more recently sofosbuvir, which is more tolerable and with
treatment efficacies as high as 90% for most common HCV genotypes [14–17].

The advent of IFN-free regimens of direct-acting agents (DAAs) is poised to dramatically
change the HCV treatment landscape. In recent randomized clinical trials, these agents have
markedly increased therapeutic efficacy due to their higher potency, improved safety profile
and ease of administration [18]. In 2015, a highly tolerable and efficacious DAA combination
treatment of ledipasvir and sofosbuvir was approved by Health Canada for people with geno-
type 1 hepatitis C virus [19]. It is anticipated that fully oral, once daily regimens with pan-geno-
typic activity will be able to eradicate HCV infection within 12 weeks in more than 95% of
patients [20].

Effect of INF-Free DAAs on the HCV Epidemic
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In view of these therapeutic advances, recent mathematical models have demonstrated the
dramatic effect that increasing HCV treatment coverage has on decreasing both HCV inci-
dence and prevalence, particularly when using IFN-free DAA regimens [13, 21–25]. Based on
these advances in HCV treatment, we propose to evaluate the potential impact of increasing
HCV testing, treatment and engagement into harm-reduction activities, focused on active
PWID, on the HCV epidemic in British Columbia (BC), Canada. The ultimate goal of this
model is to provide theoretical support for the implementation of a combination of these previ-
ous strategies aimed at reducing the individual and public health burdens of the HCV epidemic
amongst active PWID not only in BC, but also around the world.

Materials and Methods
The use of mathematical modeling in this study provides a means to combine the complex
individual-based knowledge of clinical, behavioural and epidemiological aspects of the HCV
epidemic. Based on the premise of this type of model, we are able to forecast epidemic trends,
determine key factors that influence the course of infection within and between individuals,
and predict the impact of different interventions such as the ones investigated in this study.

Deterministic Compartmental Transmission Model
The model has seven mutually exclusive compartments (Fig 1): (1) Susceptible (S)—individuals
at-risk of HCV infection among those never exposed to the HCV virus or at risk of being re-
infected among those virus-experienced who achieved SVR; (2) Risk reduction (R)—individu-
als at-risk of re-acquiring HCV among virus-experienced individuals. These individuals have
achieved SVR, and instead of going back to the “pool” of susceptibles, they receive access to
increased harm-reduction activities to reduce their risk of re-infection; (3) Acutely Infected (I)
—individuals who have recently become newly infected or re-infected; (4) Chronic Unaware
(Cu)—after the acute phase, individuals enter the chronic stage and stay in this compartment
until they get tested for HCV; (5) Chronic Aware (Ca)—there are two sets of individuals in this
compartment: those who had been tested (confirmed to be HCV RNA positive) during the
chronic stage and were waiting for treatment, and individuals who previously failed treatment
and were still eligible to receive treatment; (6) On Treatment (T); and (7) Chronic aware and
not eligible for treatment (Cn)—individuals who have been deemed ineligible for treatment due
to contraindication and environmental reasons (e.g., unstable housing, ongoing drug use).

Each of these compartments has sub-compartments corresponding to the five liver fibrosis
stages in the METAVIR scoring system [26]—F0 (i.e., no fibrosis) to F4 (i.e., cirrhosis) (Fig 1).
We assumed that individuals while in the I,Cu,Ca and Cn compartments can sustain increasing
liver damage and move from fibrosis stage Fj to Fj+1, for j = 0,1,2,3 depending on the time they
spend in these stages; and individuals in the S and R compartments can reduce their liver dam-
age (due to treatment) and move from fibrosis stage Fj to Fj−1 for j = 0,1,2,3 also based on the
time these individuals spend on these compartments. Since there is no population-level data
regarding the fibrosis distribution amongst PWID in BC, the fibrosis distribution for this
model was numerically derived to fit the BC prevalence, which is estimated to be 65% of the
PWID population. In other words, with all model parameters fixed, after a long-time simula-
tion, this model arrived at the endemic equilibrium, which gave us the baseline distribution of
fibrosis amongst the PWID population in BC.

In this model, at each interaction, PWID were classified based on three risk levels: two injec-
tion risk scenarios (high and low risk) based on whether PWID access harm-reduction services,
and an additional zero-risk scenario where PWID can temporarily cease injection drug use
(approximately after 5.7 years) [27]. Additionally, PWID can exit the model via mortality; the
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mortality parameter for compartments involving HCV-infected PWID was specific to their
fibrosis level. Throughout the simulation, some HCV-infected PWID become unable to trans-
mit HCV by temporary cessation of injection drug use, and they return to be able to transmit
HCV by relapse into injection drug use (approximately after 1.3 years)[27]. Additionally, the
number of PWID tested and treated throughout the simulation was obtained by multiplying
the testing (τ) or treatment (σ) rates by the number of chronically unaware (i.e. Cu compart-
ment) or aware (i.e. Ca compartment) PWID, respectively. Hence, this formulation guarantees
that we never tested or treated more individuals than those available in those compartments.

This model was calibrated based on available data to match the 2012 HCV prevalence in BC
(i.e. 18,068 PWID in BC, assuming that 65% are HCV RNA positive [22]). This calibration was
based on the parameter β (i.e. the average contact rate between susceptible and infected
PWID), which was numerically derived to fit the 65% HCV prevalence in BC in the endemic
scenario. As such, with all other parameters fixed, we ran a long-time simulation inside a
Nelder-Mead simplex algorithm that determined the optimal value of β assuming a tolerance
of 10−6 [28]. These analyses were implemented using the optimization package in the SCIPY
library in PythonTM version 2.7.6.

Fig 1. HCV Transmission and Disease Progression Model Schematic.

doi:10.1371/journal.pone.0143836.g001
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The Status Quo scenario was for the stable endemic equilibrium, which was reached under
the constraints of keeping a constant total PWID population (N = 18,068) and HCV prevalence
(65%) throughout the simulation, using Peg-IFN+RBV treatment as the standard of care up to
2012 in BC. We decided to use data from 2012 to start our simulation, since we do not have
more current information on testing and treatment uptake in BC. We then let the model run
from 2013 to 2030 adjusting for changes in treatment guidelines in which Peg-IFN+RBV plus
(BOC or TPV) is the current standard of care in BC since 2013. It is important to mention that
throughout all simulated scenarios, we kept the total PWID population (N = 18,068) constant.

In addition, based on available testing and clinical data in BC from 2003 to 2009, we
assumed that the HCV genotype distribution in our population was 65% for genotype 1, 30%
for genotype 2 and 3 and 5% for other genotypes, and that, yearly, approximately 140 per 1000
infected PWIDs are tested and that 8 per 1000 infected PWID are treated for HCV [8]. Note
that based on the current standard of care in BC, eligible individuals need to have fibrosis level
F2 and higher to be eligible for treatment.

All model parameters and their explanation along with the set of differential equations can
be found in the S1 File. The differential equation model was implemented using the scientific
computing libraries in PythonTM version 2.7.6.

Main Outcomes
We projected the course of the HCV epidemic in BC by comparing the Status Quo scenario to
different HCV-TTHR scenarios. The measures of intervention impact at the end of 15 years
(from 2016 until 2030) included: (1) HCV incidence rates—obtained by dividing the estimated
number of new HCV cases by the estimated size of the susceptible PWID population in a given
calendar year; (2) all-cause mortality rates—obtained by dividing the estimated number of
deaths by estimates of the size of the infected PWID population in a given calendar year; and
(3) HCV prevalence—obtained by dividing the estimated number of individuals living with
HCV by the estimated size of the PWID population in a given calendar year. We ultimately
presented these outcomes in terms of percent change in incidence, prevalence and mortality at
the end of 2030. We calculated the percentage change in each of these outcomes when compar-
ing the different intervention scenarios to the Status Quo scenario.

We also calculated the effect of the four HCV antiviral regimen scenarios on the Control
Reproduction Number (Rc) for a wide range of treatment and testing rates. The definition of
stable endemic equilibrium can be in terms of Rc [29], which assumes that the entire population
is susceptible and biomedical and/or behavioral interventions are in place [30]. A Rc< 1 means
that, over time, the model will reach the disease-free equilibrium—meaning that on average an
infected individual produces less than one new infection over the course of his/her infectious
period, and thus, the epidemic cannot grow. A Rc > 1 means that, over time, the model will
reach a stable endemic equilibrium—meaning that each infected individual produces, on aver-
age, more than one new infection, and the disease continues to spread in the population.

Modeling Scenarios
In this model, from 2016 until 2030, we assessed the effect of the following interventions:

Treatment and testing. We increased treatment coverage rates from 8 to 20, 40 and 80
per 1000 PWID per year, assuming that IFN-free DAA becomes the standard of care from
2016 to 2030 (Intervention Scenario 1). Based on the conditions in the Intervention Scenario 1,
we additionally assessed the effect of increasing treatment coverage and eligibility to all individ-
uals regardless of fibrosis level (Intervention Scenario 2). At last, based on the conditions in the
Intervention Scenarios 1 and 2, we explored a best case scenario in which testing is done
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immediately upon ending the acute phase to assess the maximal effect that increased testing
can have on controlling this epidemic (Intervention Scenario 3).

Treatment and testing conditions for the elimination of the HCV epidemic. We
assessed the effect of different HCV antiviral regimens on Rc if the infected PWID in the popu-
lation were receiving: (i) Peg-IFN+RBV which was the standard of care in BC up to 2012—we
assumed a 55% SVR and a duration of treatment between 24–48 weeks depending on the geno-
type; (ii) Peg-IFN+RBV plus (BOC or TPV) which is the current standard of care in BC—we
assumed a 70% SVR and a duration of treatment between 24–48 weeks depending on the geno-
type; (iii) IFN-free DAA which is expected to be the standard of care in one to two years—we
assumed a 90% SVR and a duration of treatment of 12 weeks (conservative assumption)
regardless of genotype; and (iv) the ‘Best Case’ scenario in which we assumed a 100% SVR and
a duration of treatment of 1 week regardless of genotype.

Engagement into harm-reduction activities. This last set of interventions relates to the
engagement of individuals into harm-reduction activities to reduce their risk of being re-
infected after achieving SVR. Note that in the model, the parameter β (i.e. the average contact
rate between susceptible and infected individuals) includes the background rate of individuals
in the population currently accessing harm-reduction programs (53 per 100 PWID per year)
[31], and this parameter was fit to match the BC prevalence. This intervention was modeled by
including a compartment (R) in which some individuals, upon achieving SVR, receive access to
increased harm-reduction activities instead of returning to the pool of susceptibles. The rate in
which these individuals move into the R compartment is given by the parameter κ. In the base-
line scenario, we assumed that 0 per 1000 newly-cured PWID go into this compartment since
it is one of our proposed interventions and it is not currently available in BC; in the interven-
tion scenarios we assumed that 100, 200, 400, 500, 600 and 800 per 1000 newly-cured PWID
per year go into this compartment after achieving SVR. Note that the removal rate (γ) from
this compartment and into the Susceptibles compartment was assumed to be constant and set
at 60 per 1000 PWID per year [32].

Sensitivity analysis
We first estimated the univariate sensitivity coefficients for the incidence and prevalence
changes under the three treatment uptake scenarios (i.e. increase treatment rate from 8 to 20,
40 and 80 per 1000 PWID per year) for the top ten parameters at the end of 2030. These sensi-
tivity coefficients measure the relative change in the target variable with respect to the relative
change in a model parameter [33]. Positive coefficients occur when changes (i.e. an increase or
a decrease) in a parameter are positively associated with changes in the target variable (i.e.
HCV incidence rate or prevalence). Negative coefficients occur when changes in a parameter
are negatively associated with changes in the target variable. The magnitude of the sensitivity
coefficient reflects how sensitive the target variable is to changes in each parameter. The sensi-
tivity analyses were implemented using the scientific computing libraries in PythonTM version
2.7.6.

Secondly, we estimated the percent change in HCV incidence rate and prevalence at the end
of 2030, with respect to our model predictions based on the Status Quo scenario, with the
exception that we increased treatment coverage to 80 per 1000 PWID treated per year and
DAA was modeled as the standard of care from 2016 to 2030. We considered lower and higher
values for the parameters with most uncertainty based on the available literature: fibrosis
regression time (4 versus 13.3 (as in [34]) years), fibrosis progression time (9.6 (as in [35]) ver-
sus 21.2 (as in [36]) years), average treatment length (8 versus 16 weeks), SVR rate (80% versus
100%), high versus low infectivity (2.0/0.4 (as in [22]) versus 1/1), time to relapse into injection
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drug use (5 versus 1 year), injection drug use duration (10 versus 4 years), relative infectivity
while chronically infected with respect to the acutely infected stage (20% (as in [22]) versus
7%), and the assumed HCV prevalence in BC at the Status Quo scenario (50% versus 75%).

Ethics approval
This study received approval from the University of British Columbia ethics review committee
at the St Paul’s Hospital, Providence Health Care site (H13-00469). Note that all data collected
for the model is publicly available online through different published manuscripts and reports.
Thus, we did not utilize any patient-level information to conduct this study and there was no
need to obtain informed consent.

Results

Status Quo
The model predicted that between 2016 and 2030, there would be an estimated 8,832 cumula-
tive new HCV infections and 5,169 cumulative number of mortality cases. Additionally, the
model estimated that the HCV incidence rate in 2030 would be 92.9 per 1000 susceptible
PWID per year and the mortality rate would be 29.4 per 1000 infected PWID per year. Note
that in the Status Quo scenario, the HCV prevalence was kept constant at 65% of the PWID
population.

Effect of testing and treatment
Fig 2 presents the results for the percent change in the estimated HCV incidence rate, preva-
lence and mortality rate, in comparison to the Status Quo scenario at the end of 2030.

Intervention Scenario 1. When we changed the type of antiviral treatment from Peg-
IFN+RBV plus (BOC or TPV) to INF-free DAA, the estimated HCV incidence rate (per 1000
susceptible PWID per year) decreased to 91.1 (1.9% decrease), 88.5 (4.7% decrease), 85.6
(7.8% decrease) and 82.8 (10.9% decrease) for the treatment scenarios 8, 20, 40 and 80 PWID
treated per year, respectively (Fig 2(A) blue bar). The estimated HCV prevalence decreased
to 63% (2.4% decrease), 61% (6.2% decrease), 58% (10.5% decrease) and 55% (14.8%
decrease) for the treatment scenarios 8, 20, 40 and 80 PWID treated per year, respectively
(Fig 2(B) blue bar). The estimated HCV mortality rate (per 1000 infected PWID per year)
decreased to 28.4 (3.3% decrease), 26.9 (8.5% decrease), 25.0 (14.8% decrease) and 23.0
(21.5% decrease) for the treatment scenarios 8, 20, 40 and 80 PWID treated per year, respec-
tively (Fig 2(C) blue bar).

Intervention Scenario 2. In addition to the conditions in the Intervention Scenario 1, here
we changed treatment eligibility (i.e. fibrosis F0 and higher). The estimated HCV incidence rate
decreased to 91.4 (1.6% decrease), 87.6 (5.7% decrease), 82.0 (11.7% decrease) and 72.8 (21.6%
decrease) for the treatment scenarios 8, 20, 40 and 80 PWID treated per year, respectively (Fig
2(A) green bar). The estimated HCV prevalence decreased to 63% (2.9% decrease), 59% (8.3%
decrease), 54% (16.3% decrease) and 46% (29.3% decrease) for the treatment scenarios 8, 20,
40 and 80 PWID treated per year, respectively (Fig 2(B) green bar). The estimated HCV mor-
tality rate (per 1000 infected PWID per year) decreased to 29.3 (0.3% decrease), 28.7 (2.3%
decrease), 27.8 (5.4% decrease) and 26.1 (11.2% decrease) for the treatment scenarios 8, 20, 40
and 80 PWID treated per year, respectively (Fig 2(C) green bar).

Intervention Scenario 3. Based on the conditions in the Intervention Scenarios 1 and 2, if
we also increased testing immediately upon ending the acute phase, the estimated HCV inci-
dence rate decreased to 90.7 (2.4% decrease), 85.8 (7.7% decrease), 78.4 (15.6% decrease) and
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Fig 2. Percent change in (A) HCV incidence rate, (B) HCV prevalence and (C) mortality, at the end of
2030, for different testing and treatment scale-up scenarios. Blue bars: assume that 140 per 1000 PWIDs
are tested and that 8, 20, 40 and 80 per 1000 PWID are treated for HCV per year; treatment eligibility applies
only to the chronic aware population (Ca) with fibrosis level F2 and higher. Green bars: assume that 140 per
1000 PWIDs are tested and that 8, 20, 40 and 80 per 1000 PWID are treated for HCV per year; treatment
eligibility applies only to the chronic aware population (Ca) with fibrosis level F0 and higher. Gold bars:
assume that PWIDs are tested immediately upon ending the acute phase and that 8, 20, 40 and 80 per 1000
PWID are treated for HCV per year; treatment eligibility applies both to the chronic unaware (Cu) and aware
(Ca) population with fibrosis level F0 and higher. Note that in this case PWID do not spend time in the Cu

compartment and go straight to the Ca compartment due to the testing intervention.

doi:10.1371/journal.pone.0143836.g002
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65.5 (29.5% decrease) for the treatment scenarios 8, 20, 40 and 80 PWID treated per year,
respectively (Fig 2(A) gold bar). The estimated HCV prevalence decreased to 62% (3.9%
decrease), 58% (10.9% decrease), 51% (21.5% decrease) and 40% (38.9% decrease) for the treat-
ment scenarios 8, 20, 40 and 80 PWID treated per year, respectively (Fig 2(B) gold bar). The
estimated HCVmortality rate (per 1000 infected PWID per year) decreased to 29.3 (0.2%
decrease), 28.8 (1.8% decrease), 28.0 (4.5% decrease) and 26.6 (9.4% decrease) for the treatment
scenarios 8, 20, 40 and 80 PWID treated per year, respectively (Fig 2(C) gold bar).

Effect of interventions on the distribution of fibrosis level. Fig 3 presents the results for
the estimated HCV prevalence for Intervention Scenarios 1 to 3 in comparison to the Status
Quo scenario at the end of 2030.

Based on Fig 3(A), the distribution of the two lowest fibrosis levels (F0 and F1) remains rela-
tively unchanged since these individuals need to wait to become eligible to receive treatment.
Only when we treated individuals regardless of their fibrosis level (Fig 3(B)), we observed a
stronger shift in the fibrosis distribution in the higher treatment scenario in comparison to the
baseline scenario. This effect was even more noticeable when we also increased the testing rate
(Fig 3(C)), in which testing was done immediately upon ending the acute phase to assess the
maximal effect that increased testing can have on controlling this epidemic. Please see S1 File
for a detailed analysis of the results presented in Fig 3.

Treatment and Testing conditions for the Elimination of the HCV
Epidemic
Results of the Rc analysis are shown in the heat map plots (Fig 4). Colors indicate the magni-
tude of the Rc at that particular pair of values for testing and treatment rates; dark blue is the
lowest and dark red is the highest. The black curve in each plot delimits the threshold at which
Rc is equal to one, the area below the curve corresponds to Rc < 1, and the area above this curve
corresponds to Rc> 1.

Based on preliminary results, we observed that if we calculate Rc considering the current
treatment eligibility in BC (i.e. fibrosis level F2 and higher), we would never stabilize the epi-
demic and disease elimination would not be possible. As such, in this set of results, we consid-
ered a broad treatment eligibility in which PWID are treated regardless of their fibrosis level
(i.e. fibrosis level F0 and higher). Thus, Fig 4 on the left-hand side (LHS) shows the estimates
for Rc for different testing and treatment rates and for different types of antiviral regimens. Fig
4 on the right-hand side (RHS) corresponds to the same data now in terms of the time to test-
ing (after the acute phase) and the time to access treatment after diagnosis. The figures on the
RHS help us answer two questions: how often do people need to be tested and how soon after
testing positive should they start treatment to achieve Rc < 1? Considering the Peg-IFN+RBV
regimen, the model estimated that in BC, at the current testing and treatment rates, i.e. 140 and
8 per 1000 infected PWID per year, respectively, the Rc was 2.93 (Fig 4A LHS). In this scenario,
based on an antiviral regimen with very low efficacy, there is very little opportunity to increase
testing and treatment rates to obtain a Rc< 1, and PWID in this scenario would need to be
tested and initiate treatment in a very short time after HCV infection (Fig 4A RHS). If the regi-
men was changed to Peg-IFN + RBV plus (BOC or TPV) the Rc was estimated to be 2.89 (Fig
4B LHS). In this scenario to obtain a Rc < 1, for example, if most PWID were tested within six
months after the end of the acute phase, they would need to be treated within one year after the
positive diagnosis (Fig 4B RHS). If the regimen was based on IFN-free DAA the estimated Rc

was 2.72 (Fig 4C LHS) and in our ‘Best Case’ scenario the estimated Rc was 2.65 (Fig 4D LHS).
Note that in these last two scenarios, we would need to drastically and efficiently increase test-
ing and treatment rates to achieve disease elimination.
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Effect of Harm-Reduction
In Fig 5, we estimated the incidence rates from 2016 to 2030 for varying rates of increased
access to harm-reduction activities for PWID who achieved SVR (parameter κ), while assum-
ing a constant testing rate of 140 per 1000 infected PWID per year and a treatment rate of 80
per 1000 infected PWID per year using the IFN-free DAA regimen. Note that this intervention
started to be implemented in the model in the year 2016 onward.

Fig 5(A) describes the effect of this intervention considering the current standard of care in
BC for HCV treatment eligibility (i.e. fibrosis level F2 or higher), and Fig 5(B) describes this
effect for a broad treatment eligibility in which PWID are treated regardless of their fibrosis
level (i.e. fibrosis level F0 or higher). Thus, based on Fig 5(A), when we only have the back-
ground harm-reduction coverage as in the Status Quo scenario (black line), the estimated HCV
incidence rate was 82.8 per 1000 PWID at the end of 2030. If, in addition to the background
harm-reduction coverage, we also increased κ from 100 to 800 PWID per year (color lines), the
incidence rate at the end of 2030 further declined to 80.8 for κ = 100 (2.4% decrease) or 68.1
for κ = 800 (17.7% decrease) per 1000 PWID per year.

If the treatment eligibility criterion was relaxed (Fig 5(B)), we obtained a much stronger
effect of this intervention. Based on the background harm-reduction coverage as in the Status
Quo scenario (black line), the estimated HCV incidence rate was 72.8 per 1000 PWID at the
end of 2030. If, in addition to the background harm-reduction coverage, we also increased κ
from 100 to 800 PWID per year (color lines), the incidence rate at the end of 2030 further
declined to 70.0 for κ = 100 (3.9% decrease) or 53.1 for κ = 800 (27.1% decrease) per 1000
PWID.

Sensitivity analysis
We first estimated the univariate sensitivity coefficients for the HCV incidence rate (Fig 6(A))
and HCV prevalence (Fig 6(B)) changes under the three treatment uptake scenarios (i.e.
increase treatment rate from 8 to 20, 40 and 80 per 1000 PWID per year) for the top ten param-
eters. Based on these two figures, we note the heterogeneity on the effect of each of these
parameters on the estimated HCV incidence rate and prevalence. Overall, the most sensitive
parameter was the relative risk for the high-risk group (hr), which shows that higher values for
this parameter were associated with smaller decreases in HCV incidence rate and prevalence.
Also note that the importance of this parameter decreased by increasing the treatment coverage
rate in the population.

Secondly, we estimated the percent change in HCV incidence rate (Fig 7(A)) and HCV
prevalence (Fig 7(B)), with respect to our model predictions based on the Status Quo scenario,
for the parameters with the most uncertainty based on the available literature. The value for
the HCV prevalence in BC in 2012 (i.e. Status Quo scenario) was the assumption that mostly
influenced the changes in HCV incidence rate and prevalence at the end of 2030. If the BC
HCV prevalence in the Status Quo scenario increased from 65% to 75%, we would expect that

Fig 3. Model results for the estimated number of HCV prevalent cases (y-axis) at the end of 2030
stratified by fibrosis level (F0,. . .,F4) and treatment scale-up scenarios; (A) Based on the current
standard of care in British Columbia for HCV treatment eligibility (i.e. fibrosis level F2 and higher)
(Intervention Scenario 1); (B) Based on a broad treatment eligibility in which PWID are treated
regardless of their fibrosis level (i.e. fibrosis level F0 and higher). In all scenarios individuals received
IFN-free DAAs (Intervention Scenario 2); (C) Based on a broad treatment eligibility in which PWID are
treated regardless of their fibrosis level (i.e. fibrosis level F0 and higher) and higher testing rates (i.e.
immediately upon ending the acute phase) (Intervention Scenario 3). In all scenarios individuals
received IFN-free DAAs.

doi:10.1371/journal.pone.0143836.g003
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the HCV incidence rate would increase by approximately 43% and HCV prevalence would
increase by approximately 21% at the end of 2030. If the BC HCV prevalence in the Status Quo
scenario decreased from 65% to 50%, we would expect that the HCV incidence rate would
decrease by approximately 41% and HCV prevalence would decrease by approximately 22% at
the end of 2030. The two other assumptions that influenced the HCV incidence rate (although
to a lesser extent) were the relative infectivity while chronically infected with respect to the
acutely infected stage and the fibrosis progression time. For the HCV prevalence, the two other
assumptions that influenced this outcome (also to a lesser extent) were the SVR rate and fibro-
sis progression time.

Discussion
In this paper we analyzed the results of a mathematical model of HCV transmission, focused
on PWID, developed to assess the impact of increasing HCV testing, treatment and engage-
ment into harm-reduction activities, focused on active PWID, on the HCV epidemic in BC.
Our results indicated that increased treatment coverage based on IFN-free DAA regimens,
even at moderate levels, is a powerful strategy to decrease HCV incidence, prevalence and mor-
tality. Furthermore, the impact of this intervention, coupled with an enhanced harm-reduction
program focused on individuals highly vulnerable to re-infection after successfully completing
therapy, can further decrease the impact of the HCV epidemic. This model has important pub-
lic health and economic implications since it was commissioned by the BCMinister of Health,
performed by the BC Centre for Excellence in HIV/AIDS and the BC Centre for Disease Con-
trol, to provide theoretical evidence and help inform on the feasibility of the proposed

Fig 4. Estimated Control Reproduction Number for different HCV antiviral regimens: (A) Peg-IFN + RBV; (B) Peg-IFN + RBV plus (BOC or TPV); (C)
IFN-free DAA; and (D) Best Case Scenario. In all scenarios, we assumed that: i) PWID moved into the risk reduction compartment after achieving SVR at a
rate of 450 per 1000 PWID per year; and ii) PWID were eligible for treatment regardless of fibrosis level (i.e. F0 and higher).

doi:10.1371/journal.pone.0143836.g004

Fig 5. Model results for the estimated incidence rate from 2016 to 2030 for various scenarios of increased access to harm-reduction activities for
PWID after achieving sustained virologic response; (A) Based on the current standard of care in British Columbia for HCV treatment eligibility (i.e.
fibrosis level F2 and higher); (B) Based on a broad treatment eligibility in which PWID are treated regardless of their fibrosis level (i.e. fibrosis level
F0 and higher). In all scenarios individuals received IFN-free DAAs. The ‘No engagement’ scenario only includes the background harm-reduction rate as per
the Status Quo scenario. The other scenarios in these figures refer to the parameter κ, the rate in which individuals move into the Risk Reduction
compartment (R). This intervention started to be implemented in 2016.

doi:10.1371/journal.pone.0143836.g005
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interventions and their potential impact on the burden associated with the HCV epidemic. In
addition, this model sets the stage for a future cost-effectiveness analysis.

The combination of increased coverage of HCV treatment and access to different harm-
reduction programs can be implemented in settings with heterogeneity in injecting practices in
the population. This can be asserted since in a recent paper focused on a large cohort of active
PWID in BC followed since 1996, the Vancouver Injection Drug Users Study, we demonstrated
that cocaine and heroin injection have continuously been the preferred injecting drugs in BC
and highly predictive of HCV infection [37]. Additionally, in this cohort, since 2005, the use of
methamphetamine has been increasing, but is still at a lower level than the latter two illicit
drugs. Thus, by considering in our harm-reduction component the combined efficacies of
accessing needle exchange, drug treatment programs (pharmacological or not) and supervised
injection sites, these interventions can be applied to a variety of drug use patterns in a

Fig 6. Results for the sensitivity analyses for the top ten parameters with the highest sensitivity coefficients: (A) HCV incidence rate at the end of
2030; and (B) HCV prevalence at the end of 2030.

doi:10.1371/journal.pone.0143836.g006

Fig 7. Results for the sensitivity analysis for the parameters with most uncertainty based on the available literature: (A) Percent change in HCV
incidence in comparison to the Status Quo at the end of 2030; and (B) Percent change in HCV prevalence in comparison to the Status Quo at the
end of 2030.

doi:10.1371/journal.pone.0143836.g007
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population. However, some may argue that these interventions will not work for some PWID
at the highest risk of HCV transmission because these individuals may be the most difficult
ones to engage and to retain in treatment and in harm-reduction programs. Therefore, to max-
imize the public health impact of these interventions, we will need an optimized implementa-
tion strategy, which particularly emphasizes the need to reach, support, treat and protect these
individuals [8].

One critical aspect for the success of the proposed interventions is to identify and test indi-
viduals unaware that they are HCV-positive [38, 39]. To do so, it is important that different
agencies in our healthcare system implement an aggressive “seek” campaign to identify and
test these individuals. Testing should focus more on HCV RNA testing as this actively tests for
virus as opposed to HCV antibody testing which only tests for previous exposure. Currently,
testing often occurs in relation to risk-based testing or for clinical diagnosis of late-stage liver
disease. In addition, the determination of liver fibrosis should focus on cheaper, safer and
less-invasive methodology (e.g., Fibroscan) as opposed to liver biopsy, which has been the
gold-standard for many years [40]. As many PWID also suffer from mental illnesses or other
comorbid conditions and are often current injectors, there is some reluctance on the part of
healthcare providers to engage these individuals into HCV assessment and treatment due to
fears of non-adherence to the antiviral regimens. However, there are now international recom-
mendations that PWID should be offered HCV treatment based on data that SVR is similar
among PWID and non-PWID [41]. With new and better-tolerated antivirals on the horizon,
such as IFN-free DAAs, adherence could be addressed by directly observed therapy, consistent
with the approach taken to treat opioid dependence in BC (i.e. daily witnessed ingestion of
medication at a registers’ pharmacy). However, an aggressive seek, test and treat approach
would still be necessary as would a retention in care and harm-reduction strategy to minimize
the risk of re-infection. The individual and public health consequences of treating these indi-
viduals at a late stage of their disease are enormous, since their quality of life and survival have
been significantly reduced, and they may incur substantial costs to the healthcare system due
to care requirements linked to end-stage liver disease [42, 43].

This model is unique in different aspects and it has important implications. First, we
included movement across different fibrosis states in this population to inform treatment eligi-
bility and success. Knowing the distribution of fibrosis states is known to currently have a
direct effect in determining treatment eligibility in many jurisdictions and efficacy, to affect the
progression of liver disease, and to be associated with both direct medical costs and health-
related quality of life [35]. Given the high uncertainty in this parameter, based on the sensitivity
analysis, we showed that both changes in incidence and prevalence at 15 years were not signifi-
cantly influenced by the values used for these transition rates. In future versions of this model,
in view of new data on disease progression based on IFN-free DAAs through the different
ongoing clinical trials, we plan to fine-tune this model, specifically focusing on the effect of
treatment on the distribution of fibrosis states in a population. Second, this model provides an
independent validation of the results inMartin et al. supporting the notion that HCV treat-
ment can be used to reduce the HCV incidence, prevalence and mortality among PWID [21,
22]. It is important to mention that this model is quite different from the seminal paper by
Martin et al. in 2013 assessing the impact of treatment on the HCV epidemic among PWID
using INF-free DAA in several aspects, including [22]: (1) it used data from a community-
based cohort study conducted in Vancouver (N = 2913) instead of being based on the overall
BC population infected or at risk of being infected with HCV; (2) it did not model the effect of
fibrosis progression or changes in treatment eligibility on the projected course of the HCV epi-
demic; and (3) it did not model changes in access to harm-reduction programs which have
been shown to further decrease the population impact of this epidemic. Third, in this model we
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showed the synergistic effect of using the strategies “HCV Treatment as Prevention” and
increased harm-reduction coverage on the HCV epidemic among PWID. In this case, the
harm-reduction component played two roles: to prevent premature mortality and to reduce
the risk of onward transmission. Thus, the effect of this strategy on the estimated incidence
rate is probably due to the lower risk of reinfection among PWID. Fourth, through our differ-
ent cohort studies of PWID in Vancouver we are in a favorable position to test the interven-
tions of this study since the PWID population in these cohorts is quite heterogeneous (e.g.,
they include young and old PWID, high and low risk PWID, individuals with mental health
issues and HIV/HCV co-infected), thus allowing us to assess the feasibility of these interven-
tions in a variety of risk groups within the PWID population. At last, the knowledge gained
from the proposed interventions tested through this model can offer insights into the develop-
ment and implementation of new prevention strategies, inform policy and decision makers,
and suggest possible directions for future investigation.

This model also has some limitations. First, we assumed a homogenous mixing in the
PWID population, thus simplifying the complexities that exist in the sharing networks of these
individuals. Second, the sensitivity analysis showed that the estimated HCV prevalence and
incidence were most sensitive to the average contact rate that incorporates, among several
parameters, the HCV transmission probability. Based on different studies, we can divide the
HCV natural history in two phases with distinct infectivity based on the HCV RNA levels [5,
44, 45]. Unfortunately, there is no definite evidence on what the associated transmission proba-
bilities for these phases are. Third, although the mortality rates associated with liver disease,
among PWID infected with HCV in BC, were high, the literature has several studies with mor-
tality data amongst PWID consistent with the one used in this study [46–48]. Finally, we did
not model the impact of the proposed interventions comparing the HCV mono-infected popu-
lation and the individuals co-infected with HCV and HIV. In the PWID HIV-positive popula-
tion, HCV prevalence is estimated as high as 90%, and HCV progression is much faster [49].
Thus, in the future, we plan extend the present model to specifically investigate the impact of
the proposed interventions on the HIV/HCV co-infected PWID population.

In conclusion, we provided theoretical support that the new IFN-free DAAs have the potential
to cure more individuals, and their impact on the HCV burden in BC’s PWID population can be
strongly enhanced by effective evidence-based initiatives that identify, treat and engage individu-
als into long-term risk reduction. However, unless we increase the current levels of treatment and
testing, the HCV epidemic among PWID in BC, and in other parts of the world with similar epi-
demiological background, will remain a substantial public health concern for many years.
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