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It is critical to identify biomarkers for neurological diseases (NLDs) to accelerate

drug discovery for effective treatment of patients of diseases that currently lack such

treatments. In this work, we retrieved genotyping and clinical data from 1,223 UK

Biobank participants to identify genetic and clinical biomarkers for NLDs, including

Alzheimer’s disease (AD), Parkinson’s disease (PD), motor neuron disease (MND), and

myasthenia gravis (MG). Using a machine learning modeling approach with Monte Carlo

randomization, we identified a panel of informative diagnostic biomarkers for predicting

AD, PD, MND, and MG, including classical liver disease markers such as alanine

aminotransferase, alkaline phosphatase, and bilirubin. A multinomial model trained on

accessible clinical markers could correctly predict an NLD diagnosis with an accuracy

of 88.3%. We also explored genetic biomarkers. In a genome-wide association study

of AD, PD, MND, and MG patients, we identified single nucleotide polymorphisms

(SNPs) implicated in several craniofacial disorders such as apnoea and branchiootic

syndrome. We found evidence for shared genetic risk loci among NLDs, including

SNPs in cancer-related genes and SNPs known to be associated with non-brain

cancers such as Wilms tumor, leukemia, and colon cancer. This indicates overlapping

genetic characterizations among NLDs which challenges current clinical definitions

of the neurological disorders. Taken together, this work demonstrates the value of

data-driven approaches to identify novel biomarkers in the absence of any known or

promising biomarkers.

Keywords: systems biology, machine learning, neurodegeneration, GWAS—genome-wide association study, UK

Biobank

INTRODUCTION

Neurological diseases (NLDs) pose a significant public health problem due to aging populations
and a widening global burden (Ray Dorsey et al., 2018; Nichols et al., 2019; Feigin et al., 2021).
Currently, Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β plaques
and tau protein neurofibrillary tangles. These toxic species result in the destruction of cholinergic
neurons and cause cognitive decline, leading to dementia. Parkinson’s disease (PD) is characterized
by α-synuclein inclusions in dopaminergic neurons in the substantia nigra, resulting in dopamine
depletion and movement disorders. Motor neuron disease (MND) and myasthenia gravis (MG)
are movement disorders that affect motor neurons and muscle, respectively, with MG also being an
autoimmune disease. Individuals with PD or MNDmay also develop dementia.
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FIGURE 1 | Study overview. From UK Biobank participants, Alzheimer’s

disease, Parkinson’s disease, motor neuron disease (MND), and myasthenia

gravis clinical and genotype data were obtained. The clinical data were used to

train a predictive model of neurological diseases. The model was

deconstructed to reveal predictors of disease relating to demographics,

cognitive scores, and liver health biomarkers. The genotype data were used to

perform genome-wide association studies. This analysis revealed nine genetic

risk loci that were shared among all four neurological diseases.

Despite decades of research and clinical trials, there are
currently no treatments to reverse the damage done by NLDs.
Current research has focused on toxic species such as amyloid-
β and tau in AD and α-synuclein in PD. Still, treatments
derived from the research have been largely unsuccessful at
clinical trials (Lam et al., 2020). Additional pharmacological
and non-pharmacological targets need to be identified to
enable early diagnosis and accelerate development of drugs and
interventions to treat patients with NLDs effectively, and there
is already great interest in this effort, revealing targets such
as retinoid and androgen metabolism, YKL-40, AMIGO1, and
GPRASP2; and suggesting that diet and lifestyle may also form
part of an intervention (Toschi et al., 2019; Baldacci et al.,
2020; Zool et al., 2020; Bayraktar et al., 2021; Lam et al.,
2021).

In the present study, we retrieved clinical and genotyping data
from 1,223 participants in the UK Biobank with NLDs (Sudlow
et al., 2015), identified diagnostic markers for the predictions
of NLDs, and identified shared genetic predispositions to NLDs

(Figure 1). To this end, we used the clinical data to construct a
predictive multinomial general linear model for AD, PD, MND,
and MG and perform genome-wide association studies (GWAS).
These diseases were chosen in order to represent a range of
brain-related pathologies and a range of better-studied and less
well-studied diseases.

The multinomial model was constructed using Monte Carlo
randomization to select the optimal clinical variables to be
included in themodel andwas able to predict NLD diagnosis with
88.3% accuracy. In addition to the promising true positive rate,
inspection of the model weights correctly identified directional
trends in blood and urine biochemistry and cognitive function
that confirm previous reports in the literature. These included
biomarkers which are normally associated with liver disease,
such as alanine aminotransferase (ALT), alkaline phosphatase
(ALP), and bilirubin, confirming the possibility of a role for
the liver-brain axis in NLDs such as AD, as previously reported
(Bassendine et al., 2020; Jakhmola-Mani et al., 2021).

We also used genotype data to identify genetic predispositions
to NLDs. In GWAS, we found hundreds of risk alleles that
were shared across at least two NLDs. There was enrichment for
single nucleotide polymorphisms (SNPs) associated with non-
brain cancers, such as Wilms tumor, leukemia, and colon cancer;
and craniofacial syndromes, such as apnoea and branchiootic
syndrome. We identified a panel of nine SNPs which were
present in all four NLDs studied. These included two homeobox
genes and three genes encoding biosynthetic enzymes. The
identification of these shared SNPs suggests that the same SNP
may be indicative of susceptibility to more than NLD and could
potentially suggest that there exists a basal genetic perturbation
that is linked with developing NLDs generally.

Taken together, our work demonstrates the usefulness of
data-driven approaches to quickly identify easily measurable
diagnostic biomarkers and shared genetic risk loci. Our results
suggest that cognitive measures and biochemical markers usually
associated with liver diseases are informative for the prediction
of NLDs, and that SNPs linked with non-brain cancers and
craniofacial disorders may be indicative of multiple NLDs. We
therefore recommend this data-driven approach to guide future
investigation for the study of diseases of unknown etiology or
where promising biomarkers are yet unknown.

RESULTS

Blood and Urine Biochemistry and
Cognitive Trends Inform NLD Status
We retrieved clinical data from 1,223 patients with AD, PD,
MND, or MG, of which 1,072 also had Affymetrix Axiom
genotyping data on 820,967 SNPs, from the UK Biobank
(Supplementary Table 1). The mean age of participants with
AD, PD, MND, and MG was 62.8, 62.1, 59.4, and 60.2,
respectively, compared with 53.7 for control participants. The
male proportions were 56.6, 63.3, 69.2, and 46.6%, respectively,
compared to 45.3% for controls. The cohort was made up of 89.5,
91.3, 90.8, and 91.4% British participants, respectively, compared
with 87.1% British for controls.
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FIGURE 2 | Distribution of clinical measures by diagnosis. (A) Age when attended assessment center. (B) Alanine aminotransferase. (C) Albumin. (D) Alkaline

phosphatase. (E) Apolipoprotein A. (F) Calcium. (G) Cholesterol. (H) Cystatin C. (I) Glucose. (J) LDL direct. (K) Mean time to correctly identify matches. (L)

Microalbumin in urine. (M) Phosphate. (N) Sodium in urine. (O) Testosterone. (P) Total bilirubin. (Q) Ethnic background. (R) Prospective memory result (first visit).

(Continued)
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FIGURE 2 | (S) Prospective memory result (second visit). (T) Prospective memory result (third visit). Data represent all participants, including those whose samples

which were not used in the training or testing of the multinomial model. AD, Alzheimer’s disease (n = 152); PD, Parkinson’s disease (n = 948); MND, motor neuron

disease (n = 65); MG, myasthenia gravis (n = 58); Control (n = 116,559). Mean comparisons were performed using t-tests after log transformation (except for age). *,

p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001; ns, p > 0.05.

FIGURE 3 | Genome-wide association with (A) Alzheimer’s disease, (B) Parkinson’s disease, (C) motor neuron disease, and (D) myasthenia gravis in the Affymetrix

Axiom Biobank Array. Dashed red lines and red points indicate SNPs which appeared in the top 1,000 associations by asymptotic Cochran-Armitage trend test

p-value in all four neurological diseases.

Patients with NLDs exhibited changes to blood and urine
biochemical markers (Figure 2, Supplementary Table 2).
Participants with AD had significantly higher ALT, ALP, and
cystatin C levels and had the lowest performance in the cognitive
tests. PD participants had lower ALT, albumin, apolipoprotein A
(ApoA), calcium, cholesterol, low-density lipoprotein (LDL), and
phosphate, but elevated ALP, bilirubin, glucose, microalbumin,
sodium, and testosterone, compared to control. Participants
with MND had significantly higher ALT, ALP, cystatin C,
microalbumin, and testosterone compared to control, but lower
ApoA. MG patients had decreased albumin, cholesterol, and
LDL, but increased cystatin C compared to control. We noticed
that a number of these clinical marker changes were involved in
markers usually associated with liver disease. Indeed, this result
is consistent with reports associating liver-based correlates with
cognitive function (Kellett et al., 2011; Chen et al., 2021) and
movement disorders (Lee and Yang, 2018; Jeong et al., 2021;
Zhang et al., 2021).

All NLD patients took longer to correctly identify matches in
cognitive testing than control. In the prospective memory test,

AD patients were the most likely not to recall the instruction
after two attempts and showed the least improvement between
subsequent visits. This result was to be expected since AD is
the disease most strongly associated with dementia and cognitive
decline out of the four NLDs under investigation.

A Multinomial Model Classified
Neurological Diseases and Identified
Relevant Biomarkers
From the empirical results suggesting clinical marker signatures
in NLDs, we next sought to generate a predictive model of
NLD diagnosis based on those markers. We therefore generated
a multinomial generalized linear model to predict AD, PD,
MND, MG, and control in a single test. We selected clinical
measures with good coverage among participants to create this
model and used Monte Carlo randomization to optimize the
clinical measures to be included in the model (see Methods).
The confounders in our final model can be summarized as
follows: demographics (age, ethnicity), blood test measures (ALT,
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FIGURE 4 | Distribution of shared SNPs across neurological diseases. The top

1,000 SNPs identified by genome-wide association study with Alzheimer’s

disease (AD), Parkinson’s disease (PD), motor neuron disease (MND), and

myasthenia gravis (MG) were inspected for overlap across multiple diseases.

Numbers indicate number of SNPs shared between diseases.

albumin, apolipoprotein A, calcium, cholesterol, cystatin C, LDL,
phosphate, testosterone), urine test measures (microalbumin,
sodium), and cognitive test measures (prospective memory test,
reaction test). The multinomial model had a true positive rate of
88.3% on unseen data (Supplementary Table 3A).

We performed leave-one-out cross validation to demonstrate
the essentiality of each of the variables included in the model in
terms of its contribution to predictive power (Supplementary

Table 4A). We constructed and tested new multinomial models
after singly omitting each clinical marker, separately. We found
that the model was robust to single variable omission, with
most models performing at around 87–88% accuracy. The
biggest drops arose from omission of prospective memory
result (first visit) (76.0% accuracy), age (85.8% accuracy), and
testosterone (87.0%). Omission of LDL, cystatin C, mean time
to correctly identify matches, sodium, and apolipoprotein A
all produced models with 87.7% accuracy. Age and cognition
appeared to be the most important factors contributing to
model accuracy.

We inspected the coefficients assigned to each of the
clinical variables included in the model (Supplementary Table

5A). AD was more likely to be predicted for patients with
low ALT, apolipoprotein A, cystatin C, LDL, and urine
microalbumin. High calcium, cholesterol, and urine sodiumwere
also characteristics of AD identified by the model. AD was the
disease most tightly linked to advanced age, and patients of
British, Chinese, or Irish background, were more likely to be
predicted to have AD by the model, as did those who took the
longest to identify matches. PD was assigned to those patients
with advanced age, low ALT, low apolipoprotein A, and high
testosterone. People of Chinese background or any other Asian
background were less likely to be predicted to have PD. The
model assigned MND to those patients with high ALT calcium,
cholesterol, and testosterone, but low apolipoprotein A and
phosphate. Patients who answered the ethnicity question with
“any other white background” were more likely to be assigned

MND by the model. The model linked MG with high ALT
and cystatin C, but low albumin and LDL. Patients of British
background were more likely to be assigned MG, whereas those
of Irish and those who answered “any other white background”
were less likely.

Across all diseases, the model applied a negative coefficient
for the prospective memory test at the first visit, regardless of
the result. Patients who took more attempts to recall correctly,
or did not recall at all, were more likely to be assigned AD by
the model than any other disease. Interestingly, the coefficients
for PD were very similar regardless of the result. Together with
the small coefficient given to the match identification test, the
model suggests that cognitive measures were not very important
for the classification of PD. In contrast, patients not recalling
the instruction were given very negative coefficients for MND
and MG, indicating that these patients are more likely to have
a diagnosis of AD or PD instead.

Interestingly, at the second visit, the coefficients were always
lower if the patient took two attempts rather than one, which
appeared counter-intuitive for AD. However, AD also had the
least negative coefficient, indicating that patients who took two
attempts to recall the instruction at the second visit were more
likely to be assigned AD.

The model also identified numerous interactions with blood
and urine biochemical levels, indicating elevated ALT in MND
and MG, but decreased in AD and PD; sharply decreased
apolipoprotein A in AD andMND, but more modest decreases in
PD and MG; increases in calcium and cholesterol in AD, MND,
and MG, but changes in these molecules not being significant in
PD; decreases in LDL and phosphate in any disease, but most
strikingly inMG andMND, respectively; and increases in sodium
and testosterone in all diseases. That the model was able to
suggest these directional changes, which could not be so clearly
concluded by t-tests alone (Figure 2), indicates the potential for
machine learning techniques to identify possible biomarkers for
classification in the absence of an understanding by the model of
the underlying biology.

To determine whether biomarkers alone could predict NLD
diagnoses, we repeated the Monte Carlo multinomial model
but excluded all demographics data (that is, sex, age, and
ethnic background) from the analysis. We found that this
biomarker-only model was able to predict NLDs with an
accuracy of 85.3%, which is comparable to the full model
(Supplementary Table 3B), and indicates that much of the
predictive power of the model could be explained by biomarkers
alone. This is also consistent with the leave-one-out cross
validation results on the full model (Supplementary Table 4A).
The nine variables included in the model were alkaline
phosphatase, glucose, mean time to correctly identify matches,
urine microalbumin, phosphate, prospective memory result (first
and third visits), testosterone, and total bilirubin. Similar to
the full model, the biomarker-only model predicted NLDs on
the basis of biomarkers normally associated with liver health
(alkaline phosphatase, glucose, and total bilirubin).

In addition, inspecting the model weights in the biomarker-
only model revealed retained predicted effects of clinical
measures on NLD prediction (Supplementary Table 5B). The
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biomarker-only model introduced four clinical measures that
were not selected in the full model. Alkaline phosphatase was
predictive for AD when elevated but for MG when depleted,
and glucose was predictive for MG when elevated but AD when
depleted. Prospective memory test (third visit) was predictive for
NLDs in a similar manner to second visit results in the full model.
Total bilirubin was also predictive for AD when depleted.

In leave-one-out cross validation of the biomarker-only
model, model accuracy was not impacted by single removal of
alkaline phosphatase, glucose, urine microalbumin, or phosphate
as predictors (Supplementary Table 4B). All other predictors
only modestly reduced the model accuracy from 85.3 to 85.1%,
with the exception of prospective memory result (first visit),
whose removal resulted in a model accuracy of only 66.9%. This
is in line with the full model and suggests that simple cognitive
tests are highly informative when diagnosing NLDs.

Genome-Wide Association Uncovered
Shared Heritable Factors Between
Neurological Diseases
In the multinomial model, we identified a heritable variable,
ethnicity, to predict neurodegeneration. Therefore, we
hypothesized that there might be more heritable factors
that could alter a person’s susceptibility to NLDs. To identify
heritable factors, we analyzed genotyping data originating
from an Affymetrix Axiom array, which covers 836,727 SNPs
(Figures 3, 4, Supplementary Figure 1, Supplementary Table

6). We found significant SNPs which were also linked with
non-brain cancers and craniofacial disorders. Many of these
SNPs were found to be associated with more than one NLD.
For example, AD, PD, and MND were all associated with SNPs
in LAMA2, PTPN12, and SPATA7, which are implicated in
muscular dystrophy, colon cancer, and retinitis pigmentosa,
respectively. AD, PD, and MG all had SNPs in PTCH1
(associated with holoprosencephaly) and XKR9 (associated
with otofaciocervical syndrome). AD, MND, and MG were all
associated with SNPs in VPS41 (associated with Wilms tumor)
and CHRM3 (associated with Eagle-Barrett syndrome). In total,
we found 70 SNPs linked with at least three of the four NLDs
under investigation.

Considering the functions of genes affected by the SNPs we
identified, we found a vast number of significant SNPs within
genes associated with cancer, its hallmarks, or neurotransmission
(Supplementary Data 1). An intronic SNP in the scaffold protein
interactor GAB2 was associated with all four diseases. A missense
mutation in the TNFα response gene TNFAIP3 gene was
highly associated with AD and PD, but not MND or MG. AD
was also associated with SNPs in the cytochrome P450 gene
CYP2B6, adenylate cyclase ADCY8, and signaling gene PIK3C3
(PI3K). PD was highly associated with SNPs in dysferlin (DYSF),
TP53, and numerous cytoskeleton genes such as AFAP1L1
and MYH1. MND was associated with SNPs in retinoblastoma
protein interactor RBBP5, tumor necrosis factor family member
TNFRSF25, and several cytoskeleton function genes, including
tropomyosin TPM1 and troponin TNNI3. MND was also
associated with SNPs in spermatogenesis associated genes such

as SPATA8 and SPAG16. MG was associated with SNPs in
hallmarks of cancer–related genes such as the microtubule-
associated tumor suppressor MTUS1, leukocyte-associated gene
LAIR2, and Cal proto-oncogene CBLB. MG was also associated
with SNPs in the brain- and neuron-specific genes, including
cerebellum 4 precursor (CBLN4), potassium channel KCNH5,
adenylate cyclase 8 (ADCY8), and autism susceptibility candidate
gene AUTS2.

In addition to GAB2, we also identified a further eight
SNPs which were associated with all four diseases (Figure 4,
Supplementary Table 6). LINC00290, ACO1, HLA-G, SIX1,
HS6ST1, GALNT10, ONECUT1, and HLA-DRB6 were all
present in the top 1,000 SNP associations by asymptotic p-value
in all four diseases. Of these, HLA-G, SIX1, HS6ST1, ONECUT1,
and HLA-DRB6 have existing annotations in the Online
Mendelian Inheritance inMan (OMIM) database related to brain
and craniofacial syndromes. ACO1, HS6ST1, and GALNT10
encode biosynthetic enzymes, strengthening our result in the
multinomial models suggesting a role for biochemistry-based
biomarkers. SIX1 and ONECUT1 are homeobox genes. SIX1
is a master regulator in multiple tissues and ONECUT1 is a
transcription factor of the liver; and are associated with the
craniofacial disorders branchiootic syndrome and amelogenesis
imperfecta, respectively. This further strengthens the proposed
link between NLDs and other tissues, and suggests that
interactions with other tissues may also influence craniofacial
disorders, but further investigation is required to confirm this.

These results indicate that the same SNPs may be
associated with susceptibility to more than one NLD.
Further, the identification of NLD risk SNPs linked with
cancer risk is significant as it is consistent with the reported
degeneration/cancer antagonistic shift (Aramillo Irizar et al.,
2018). The additional identification of NLD risk SNPs linked
with craniofacial disorders suggests a potentially interesting
axis of investigation for NLDs which is not well explored at
present (Kamer et al., 2020). Taken together with the results
from multinomial modeling, we propose a paradigm shift in
NLD biomarker identification to focus on liver biochemistry,
interactions with non-brain cancer, and association with
craniofacial disorders.

DISCUSSION

This study shows the value of big biological data in driving
hypothesis-free studies toward the early diagnosis and prediction
of genetic risk loci in NLDs. Inspired by empirical trends
in clinical marker data (Figure 2, Supplementary Table 2), we
first constructed a multinomial model that could predict AD,
PD, MND, or MG with an accuracy of 88.3% (Supplementary

Table 3). The clinical variables that we used to generate themodel
were selected by a Monte Carlo randomization method, and the
model weightings could be used to direct future NLD research.

Regarding the multinomial model, deconstruction
of the model weightings revealed directional machine-
learned associations between clinical markers and diseases
(Supplementary Table 5). Some of these associations have
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already been reported in the literature: for instance, our model
predicted low ALT in AD, which is consistent with the literature
(Lu et al., 2021). Our model also correctly predicted low
apolipoprotein A in AD, PD, and MND (Qiang et al., 2013;
Mariosa et al., 2017; Zuin et al., 2021) and elevated calcium in
AD and PD (Zakharov et al., 2007; Angelova et al., 2016; Ryan
et al., 2020). Such model deconstruction after machine learning
therefore appears to be a useful tool for identifying biomarkers
and guiding further investigation in a manner that is agnostic to
the assumptions of the underlying biology.

Leave-one-out cross validation (Supplementary Table 4A) on
the model and assessment of non-demographic clinical markers
only (Supplementary Tables 3B, 4B, 5B) revealed that cognitive
scores were the single most important variable in the model in
terms of predictive power. Single removal of any other variable
from the model did not adversely impact the predictive power
of the model, indicating that no single variable (apart from
cognitive scores) could reasonably predict NLDs. This, along with
the Monte Carlo randomized selection of biomarkers usually
attributed to liver health, represents a paradigm shift away from
single species in NLD research such as amyloid-β in AD and
α-synuclein in PD.

Having also included ethnicity in the full multinomial model,
we next carried out a GWAS to identify other heritable factors
which might predispose an individual to NLDs (Figures 3,
4). While we could not account for the variability in the
data due to ethnicity, we found commonalities across all four
diseases—particularly the appearance of SNPs associated with
non-brain cancers and craniofacial disorders. The identification
of hundreds of SNPs shared across at least two NLDs, dozens
of SNPs shared across at least three NLDs, and nine SNPs
shared across all four NLDs strikingly suggests some common
but yet unknown genetic mechanism associated with NLD in
general. We found a marked enrichment of SNPs annotated in
the OMIM database to be linked with non-brain cancers and
craniofacial disorders, as well as three SNPs in biosynthetic genes
(ACO1, HS6ST1, and GALNT10) and two SNPs in homeobox
genes (SIX1 and ONECUT1) among the nine SNPs shared by
all four NLDs. Our GWAS results therefore suggest that the
same SNPs may confer susceptibility to more than one NLD,
and may also represent a risk factor for non-brain cancer and
craniofacial disorders. More research must be conducted to
uncover the genetic mechanism that appears to be common to
all of these conditions.

It is important to acknowledge the limitations of the study.
Firstly, the multinomial model weightings contradicted the
literature in some places. An example of this was the significant
negative coefficient for LDL in MND, suggesting that MND
patients might have lower serum LDL, whereas this is reported
not to be the case (Chen et al., 2018; Zeng and Zhou, 2019).
Secondly, although the model had an accuracy of 88.3%, it
predicted some diseases better than others. Both of these
limitations likely were due to the relatively low numbers of
patients with AD, MND, and MG compared to PD and control.
Because of this, we indicate that the model may be improved
with the inclusion of more samples and more consistent data
collection across all patients. This limitation, however, did not
detract from themodel’s usefulness to be deconstructed to predict

biomarkers, and does not change the fact that any predictions
from the model must be treated as a starting point for future
validation. Thirdly, the model did not include any biomarkers
from cerebrospinal fluid (CSF). Cerebrospinal fluid measures are
potentially informative due to circulating factors which are not
detectable in blood. However, the UK Biobank does not collect
such data, so we could not analyses these factors in the current
study. Regarding the GWAS, again, our investigation would have
benefited with more even patient numbers across NLDs. The
studies conducted on AD and PD samples were more powerful
than those on MND and MG. We overcame this limitation by
inspecting the top 1,000 SNPs per NLD rather than imposing a
p-value cutoff, which also controlled false positive discoveries in
the larger AD and PD patient pools.

In conclusion, we propose data-driven machine learning and
data exploration by GWAS as ideal first steps toward biomarker
discovery for diseases of unknown etiology or currently lacking
promising biomarkers. Such data-driven approaches may be
extended to bench experimental work and are expected to guide
dynamic detection and quantification of target druggability, in
vivo demonstration of mechanisms of action, and prediction of
drug resistance mechanisms. In this work, we demonstrated the
value of a data-driven approach by identifying accessible blood,
urine, and cognitive biomarkers in AD, PD, MND, andMG using
a machine learning multinomial model with no knowledge of
the underlying biology. This approach highlighted liver enzymes
as potentially diagnostic biomarkers for NLDs and should now
be targets for basic biology research in NLDs as outlined
above. We also used GWAS to confirm shared genetic risk
loci between NLDs, cancer, and craniofacial disorders. Although
the aging-related antagonistic switch between degeneration and
cancer has been reported, the association between NLD and
craniofacial disorders is a yet-untapped arena that demands
further investigation.

METHODS

Acquisition of Data and Inclusion Criteria
Data were obtained from UK Biobank (Sudlow et al., 2015).
Samples were accepted as AD, MG, MND, or PD samples if
any of the respective diseases were recorded by UK Biobank,
even if other conditions were also recorded. UK Biobank records
conditions and diseases on a self-reporting basis. Participants
are asked to self-report by answering the question in a UK
Biobank questionnaire: “You selected that you have been
told by a doctor that you have other (non-cancer) serious
illnesses or disabilities, could you now tell me what they are?”
Control samples were accepted as those without any recorded h
diseases (Supplementary Table 1).

Generation of the Multinomial Model and
Leave-One-Out Cross Validation
To generate the multinomial model, standard and easily-
measurable clinical data including demographics, sight
and hearing problems, diabetes diagnosis, stroke diagnosis,
medication and treatment, illness, operations, cognitive and
mental measures, brain measurements, blood and urine tests,
and adverse events and death were obtained from UK Biobank.
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Clinical variables were removed from the analysis if <75% of
samples had a value recorded. Categorical measures with only
one category were also removed. After quality control, 40 clinical
variables remained in the analysis. A separate model was also
generated excluding demographic data.

Monte Carlo randomization was used to randomly sample
clinical variables as independent variables in a multinomial
model. Samples with any missing values across the selected
clinical variables were dropped. The multinomial model was
constructed using the R nnet package (version 7.3-14, https://
cran.r-project.org/web/packages/nnet/index.html, accessed
2021-06-01). The dependent variable was disease. The dataset
was randomly split into training (70%) and test sets (30%) to
assess the accuracy (true positive rate) of the model on test set
data. The model with the highest accuracy after 1,000 random
samplings was accepted for further consideration.

To find the model with the local maximum accuracy, clinical
variables not in the model were added, and clinical variables
already in the model were removed, individually. If, after each
model change, the model’s accuracy improved, then that change
was kept; if otherwise, then that change was reverted.

To perform leave-one-out cross validation on the multinomial
model, variables were singly removed from the model, separately,
and multinomial models were constructed and tested, as above.

Genotyping Analysis
Raw genome-wide genotyping data were obtained from the
UK Biobank Axiom Array. Axiom Analysis Suite (version
5.1.1, ThermoFisher, accessed 2021-06-01) was used to perform
quality control and analysis on the raw data to determine patient
genotypes at each SNP, using the Best Practices Workflow.
Allele frequencies were computed from genotype data for
each disease class. To detect significant differences in allele
frequencies between disease and control, Cochran-Armitage
trend tests were performed assuming a codominant allele model.
The test statistics, exact p-values, and asymptotic p-values were
recorded. CATTexact (version 0.1.1, https://cran.r-project.org/
web/packages/CATTexact/index.html, accessed 2021-06-01) R
package was used for the computation of Cochran-Armitage
p-values (Mehta et al., 1992). qqman (version 0.1.8, https://
cran.r-project.org/web/packages/qqman/index.html, accessed
2021-06-01) R package was used to plot the Manhattan and
quantile-quantile plots. The top 1,000 SNPs by asymptotic
p-value for each NLD were accepted for further visualization in
a Venn diagram. ggvenn (version 0.1.9, https://cran.r-project.

org/web/packages/ggvenn/index.html, accessed 2022-03-31) R
package was used to plot the Venn diagram. All bioinformatic
and statistical analyses were performed in R (version 4.0.2)
unless otherwise indicated.
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