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Abstract

According to recent neuroimaging studies, temporal fluctuations in functional connectiv-

ity patterns can be clustered into dynamic functional connectivity (DFC) states and corre-

spond to fluctuations in vigilance. However, whether there consistently exist DFC states

associated with wakefulness and sleep stages and what are the characteristics and elec-

trophysiological origin of these states remain unclear. The aims of the current study were

to investigate the properties of DFC in different sleep stages and to explore the relation-

ship between the characteristics of DFC and slow-wave activity. We collected both

eyes-closed wakefulness and sleep data from 48 healthy young volunteers with simulta-

neous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)

recordings. EEG data were employed as the gold standard of sleep stage scoring, and

DFC states were estimated based on fMRI data. The results demonstrated that DFC

states of the fMRI signals consistently corresponded to wakefulness and nonrapid eye

movement sleep stages independent of the number of clusters. Furthermore, the mean

dwell time of these states significantly correlated with slow-wave activity. The inclusion

or omission of regression of the global signal and the selection of parcellation schemes

exerted minimal effects on the current findings. These results provide strong evidence

that DFC states underlying fMRI signals match the fluctuations of vigilance and suggest a

possible electrophysiological source of DFC states corresponding to vigilance states.
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1 | INTRODUCTION

The human brain is organized into large scale networks with complex

patterns of functional connectivity (Biswal et al., 2010; Buckner,

Krienen, & Yeo, 2013; Fox et al., 2005), and the temporal fluctuations

in functional connectivity are considered to dynamically adjust to the

constantly changing environment (Cohen, 2018). These abilities are

crucial for cognitive operations and the binding of information, which

allow humans and animals to adaptively change their cognition and

behaviors to successfully live in a complex and changing world

(Rabinovich & Varona, 2011). Although previous studies primarily

focused on characterizing stationary connectivity patterns throughout

the duration of functional magnetic resonance imaging (fMRI) scan-

ning, fluctuations in functional connectivity over shorter timescales

might contain more information about adaptive cognition and behav-

ior (Betzel, Fukushima, HeY, & Sporns, 2016; Hutchison et al., 2013;

Krienen, Yeo, & Buckner, 2014; Laumann et al., 2017; Wang, Ong,

Patanaik, Zhou, & Chee, 2016).

Sleep is one of the most fundamental physiological states of

humans and plays a key role in human health and function (Spiegel,

Leproult, & Van Cauter, 1999). The human sleep cycle consists of

three nonrapid eye movement (NREM) sleep stages of increasing

sleep depth defined as N1, N2, and N3 sleep and rapid eye movement

(REM) sleep (Iber, Ancoli-Israel, Chesson, & Quan, 2007). Sleep

involves a regular evolution through a series of global brain activities,

that are characterized by marked changes in electrophysiological sig-

nal and behavior (Duyn, 2012; Iber et al., 2007; Siclari et al., 2017).

Each sleep stage has been indicated to be associated with a specific

stationary functional connectivity pattern (Tagliazucchi et al., 2013;

Tagliazucchi & Laufs, 2014). Moreover, previous studies have

reported that loss of consciousness during NREM sleep is associated

with increased modularity of brain activity (Boly et al., 2012).

Dynamic functional connectivity (DFC), commonly evaluated using

sliding temporal windows correlation (Allen et al., 2014; Tian, Li,

Wang, & Yu, 2018), has been adopted to qualify the time-varying

functional connectivity patterns of blood oxygenation level-

dependent (BOLD) signals across spatially separate brain regions.

Fluctuations in functional connectivity likely include physiological sig-

nals, head motion, and noise in the acquired data (Chang et al., 2013;

Handwerker, Roopchansingh, Gonzalez-Castillo, & Bandettini, 2012;

Laumann et al., 2017). However, converging evidence has indicated

the neurobehavioral significance of DFC in fluctuations of vigilance,

sustained attention, and cognitive vulnerabilities (Chang, Liu, Chen,

Liu, & Duyn, 2013; Hutchison et al., 2013; Patanaik et al., 2018;

Rosenberg et al., 2016). The association of DFC with neural oscilla-

tions, such as alpha and beta power, quantified using simultaneous

electroencephalography (EEG) (Chang, Liu, et al., 2013; Laufs et al.,

2003; Tagliazucchi, von Wegner, Morzelewski, Brodbeck, & Laufs,

2012) supports a neurobiological origin of DFC during the resting

state. Similar to the transient quasi-stable patterns detected in EEG

data (microstates), DFC can be clustered into recurring patterns, that

is, DFC states. One recent study showed that DFC states could cap-

ture variability across brain states during resting wakefulness to

stages of sleep (Haimovici, Tagliazucchi, Balenzuela, & Laufs, 2017).

However, whether DFC states consistently exist during NREM sleep

and wakefulness is unclear. The relationship between the properties

of DFC states and the electrophysiological signatures of deep sleep,

that is, slow-wave activity, is unknown.

In this study, we applied a sliding window approach to character-

ize the properties of DFC states during eyes-closed wakefulness and

different sleep stages, and explored the relationships between the

characteristics of DFC states and slow-wave activity. Simultaneous

EEG-fMRI scanning was performed during participants’ regular sleep

time without sleep deprivation. In the experiment, volunteers fell into

NREM sleep, ranging from light (N1 and N2) sleep to deep (N3) sleep.

We adopted EEG as the gold standard for sleep stage scoring and esti-

mated DFC states based on fMRI data recorded during wakefulness

and different sleep stages to investigate the properties of DFC with

different parameter settings during preprocessing and DFC states

clustering. We further computed the slow-wave activity based on

EEG data to explore the relationship between these DFC states and

slow-wave activity.

2 | MATERIALS AND METHODS

2.1 | Participants

Forty-eight healthy participants (26 males and 22 females; age 22.50

± 2.64 years old) were recruited from the campus of Peking Univer-

sity. They were all right-handed and free from the following condi-

tions: (a) history of psychiatric or neurological illness, (b) history of a

medically documented brain injury, (c) history of psychoactive drug

consumption, or (d) current or previous drug or alcohol abuse. All par-

ticipants were asked to refrain from alcohol and caffeine during the

experiment days. This study was approved by the Institutional Review

Board of Peking University Sixth Hospital, and informed consent was

obtained from each participant.

2.2 | Experimental design

Participants were asked to follow a regular sleep schedule for 2 weeks

before MRI data collection, and their habitual sleep patterns were

monitored through actigraphy and sleep diaries.

An adaptation session to our MR scanner (3T Prisma Scanner, Sie-

mens Healthineers, Erlangen, Germany) was conducted at the Center

for MRI Research, Peking University, within a week after the 2-week

sleep schedule was maintained. Participants were asked to lie in the

scanner wearing an EEG cap (64-channel MR-compatible EEG system,

Brain Products, Munich, Germany) and underwent 6 min of

T1-weighted scanning and 30 min of BOLD fMRI scanning. Within a

week after the adaptation session, simultaneous EEG-fMRI recordings

were conducted at the participants’ usual bedtime. Notably, no sleep
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deprivation was involved, and natural sleep under normal homeostatic

sleep pressure was investigated in this study.

2.3 | Data acquisition

EEG-fMRI data were acquired during sleep using a 3T Prisma Scanner

and a 64-channel MR-compatible EEG system from Brain Products

with a sampling rate of 5,000 Hz. The recording montage included

57 EEG channels positioned according to the international 10/20 sys-

tem, two reference channels (A1, A2), two electrooculography (EOG)

channels, two electromyography (EMG) channels, and one electrocar-

diogram (ECG) channel. The resistance of the reference and ground

channels was maintained as less than 10 kΩ, while the resistance of

the other channels was maintained as less than 20 kΩ. The resistance

of all the channels was confirmed before starting and after ending the

MR scanning. During EEG-fMRI data acquisition, participants laid qui-

etly, and cushions were used to restrain head movements.

Simultaneous EEG-fMRI sessions were performed using a gradient

echo-planar imaging sequence with following parameters: Repetition

time (TR) = 2,000 ms, echo time (TE) = 30 ms, flip angle (FA) = 90�,

number of slices = 33, slice thickness = 3.5 mm, gap = 0.7 mm,

matrix = 64 × 64, and in-plane resolution = 3.5 × 3.5 mm2. During the

sleep session, participants were instructed to close their eyes and try

to sleep. The session ended when participants were completely awake

and were unable to fall asleep again or when all 4,096 volumes (the

largest number of volumes that can be acquired in a run for the BOLD

fMRI sequence) were recorded.

For registration purposes, high-resolution anatomical images were

acquired for each participant using a three-dimensional magnetization-

prepared rapid gradient echo T1-weighted sequence (TR = 2,530 ms,

TE = 2.98 ms, inversion time = 1,100 ms, FA = 7�, number of

slices = 192, matrix = 512 × 448, voxel resolution = 0.5 × 0.5 × 1 mm3).

During data acquisition, participants were instructed to lie quietly in the

scanner.

2.4 | EEG preprocessing and sleep stage scoring

EEG data preprocessing was performed using BrainVision Analyzer

2.1 (Brain Products, Munich, Germany). MR gradient artifacts in the

EEG data were removed using the average artifact subtraction

method (Allen, Josephs, & Turner, 2000). For the ballistocardiogram

artifacts, the R peaks were detected semiautomatically with manual

adjustment for peaks misidentified by the software. The R peaks were

transferred from the ECG to the EEG over a selectable time delay and

the average artifacts were then subtracted from the EEG data (Allen

et al., 2000; Allen, Polizzi, Krakow, Fish, & Lemieux, 1998). Then, the

data were re-referenced to the mean values for channels A1 and A2,

temporally filtered (0.3–35 Hz) and down-sampled to 250 Hz. The

sleep stage was scored for every 30-s frame of preprocessed EEG

data and was performed visually by an experienced technician and

double-checked by another experienced technician according to

American Academy of Sleep Medicine criteria (Iber et al., 2007). Sleep

recordings were divided into five discrete stages: (a) eyes-closed

wakefulness (Stage W), (b) non-REM stage 1 (Stage N1), (c) non-REM

stage 2 (Stage N2), (d) non-REM stage 3 (Stage N3), and (e) REM.

EEG data acquired from the frontal electrode (F3 and F4) were

used to compute slow-wave activity. The power spectral density was

computed using a fast Fourier transform on the 5-min EEG data after

artifact removal based on 4 s Hanning window, overlapped by 2 s,

using Welch's method based on custom script (“pwelch” function in

MATLAB 2016b). Slow-wave activity was calculated as the activity

within the 0.75–4 Hz band (Leger et al., 2018; Ly et al., 2016).

2.5 | fMRI data processing

Sleep fMRI data were divided into sessions with a duration of 5 min

based on EEG sleep stage scoring. Each session corresponding to the

wake state or a specific sleep stage. For example, we defined a 5-min

session as N1 when the N1 stage occupied the entire 5-min session.

A similar procedure was applied to divide the other sleep stages and

wakefulness. For each session, fMRI data were preprocessed using

the FMRIB Software Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki,

version 5.0.9) tools (Smith et al., 2004). Preprocessing steps included:

(a) a correction for the slice acquisition time shift; (b) a correction for

head motion; (c) the removal of nonbrain tissue; (d) the projection of

each fMRI dataset to the MNI152 standard space and resampling to

2 × 2 × 2 mm3 voxels; (e) the regression of realigned data using 6 head

motion parameters and autoregressive models of motion: 6 head

motion parameters, 6 head motion parameters at one time point

before the volume, and the 12 corresponding squared items (Friston

24-parameter model; Friston, Williams, Howard, Frackowiak, &

Turner, 1996; Yan et al., 2013), the global signal, white matter signal,

ventricular signal and their first derivatives; (f) the removal of linear

tends and temporal filtering to retain frequencies between 0.01 and

0.1 Hz, and (g) spatial smoothing with a 6-mm full-width half-

maximum Gaussian kernel.

2.6 | Computation of DFC states

DFC states were computed using MATLAB (2016b, The MathWorks

Inc., Natick, MA). Whole-brain dynamic functional networks were

constructed based on the preprocessed fMRI data. We extracted sig-

nals from 264 regions defined using a functional atlas (Power et al.,

2011), and constructed dynamic functional networks using a sliding

window approach (Allen et al., 2014; Hutchison et al., 2013). Specifi-

cally, Pearson's correlation coefficients were calculated between each

pair of regions based on the time course within each sliding window.

The sliding window had a temporal width of 30 TRs (60 s) with a slid-

ing step of 1 TR (2 s). We chose this window to obtain sufficient data

to estimate functional connectivity at the low-frequency band of

interest (0.01–0.1 Hz) and to capture temporal variations in functional

connectivity over shorter timescales (Betzel et al., 2016; Leonardi &
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Van De Ville, 2015; Liao et al., 2015). For each 5-min session, we

obtained 121 windows of a 264 × 264 symmetric correlation matrix

and transformed the correlation coefficients into z values by Fisher's

r-to-z transformation.

Correlation matrices from all 5-min sessions were concatenated

together, and k-means clustering was performed to identify DFC

states. Each windowed matrix was regarded as one observation, and

each element of the 264 × 264 matrix was regarded as one variable.

Cityblock distance was used as the distance measure, and the

k-means++ algorithm was used for cluster center initialization. The

number of clusters was set by varying k-value (k ranges from 2 to 8)

to avoid possible bias caused by the use of an inappropriate k-value.

The k-means clustering was repeated 100 times to increase chances

of escaping local minima (Allen et al., 2014).

Three dynamic network metrics were computed based on the clus-

tered states. (a) Mean dwell time (MDT) was measured as the average

number of consecutive windows classified as instances of the same

states and computed separately for each state. (b) Frequency of expres-

sion was measured as the proportion of all windows classified as

instances of a particular state, also computed separately for each state.

(c) Number of transitions was measured as the number of state transi-

tions (Hutchison & Morton, 2015).

2.7 | Statistical analysis

The Kruskal–Wallis test, a nonparametric statistical method used for

one-way ANOVA, was employed to investigate significant differences

in dynamic network metrics among wakefulness and N1, N2, and N3

sleep stages. Spearman's correlation was computed to investigate the

relationship between the dynamic network metrics and slow-wave

activity. We obtained the corrected p value from the Kruskal–Wallis

test by dividing the original p value by the number of clusters

(k-value). The results with p values less than the corrected p values

were considered statistically significant after Bonferroni's correction.

For example, for k = 4, if the p value from Kruskal–Wallis test was less

than 0.0001/4, we concluded that the difference was significant after

correction, that is, p < .0001, Bonferroni corrected.

2.8 | Validation analysis

Global signal regression in preprocessing is a debatable issue, and

some researchers argue that global signal regression introduces artifi-

cial anti-correlations into connectivity networks (Chen et al., 2018;

Fox, Zhang, Snyder, & Raichle, 2009; Murphy, Birn, Handwerker,

Jones, & Bandettini, 2009). We explored the effects of the global

signal on dynamic network metrics and the results of the statistical

analyses by eliminating the global signal regression step during

preprocessing. We replicated all the analyses with an automatic

anatomic labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) and com-

pared the results to data based on the Power264 atlas to assess

whether the selection of whole-brain parcellation schemes affected

the current findings.

3 | RESULTS

3.1 | DFC states correspond to wakefulness and N1,
N2, and N3 sleep

Thirty-six sessions of wakefulness (9 males and 3 females; age 22.33

± 3.52 years old), 25 sessions of N1 sleep (8 males and 10 females;

age 21.72 ± 3.01 years old), 101 sessions of N2 sleep (11 males and

12 females; age 21.61 ± 3.15 years old), and 104 sessions of N3 sleep

(12 males and 12 females; age 21.46 ± 2.96 years old) were analyzed

in this study.

Figure 1a shows DFC states obtained by k-means clustering with

k = 4. State 1 displayed high within-network connectivity in the

somatomotor network, the cingulo-opercular task control network,

the auditory network and the default mode network. Strong anti-

correlations between the cingulo-opercular task control network and

the default mode network and between the auditory network and the

default mode network were also observed. State 2 displayed high

within-network connectivity in the frontoparietal task control net-

work and strong anti-correlations between the visual network and the

default mode network and between the visual network and the

frontoparietal task control network. State 3 and State 4 displayed

intermediate connectivity patterns between State 1 and State 2.

Significant differences in the MDT among wakefulness, N1, N2,

and N3 were observed for all four DFC states (p < .0001, Bonferroni

corrected). State 1 exhibited a shorter MDT and a lower frequency of

expression during N1, N2, and N3 than during wakefulness (Figure 1b,

c). In contrast, State 2 exhibited a longer MDT and a higher frequency

of expression during N3 sleep than during N1, N2 and wakefulness

and during N2 than during wakefulness. State 3 exhibited a longer

MDT and a higher frequency of expression during N1, N2, and N3

compared with wakefulness and during N2 than during N3. In addi-

tion, State 4 exhibited a longer MDT and a higher frequency of

expression during N1 than during N2 and N3 and during N2 and

wakefulness than during N3.

Figure 2 shows the results for the Kruskal–Wallis test results of

both the MDT and frequency of expression during wakefulness, N1,

N2, and N3 across varying k values (k = 2–8). The four states obtained

when k = 4 were established as the reference states, and the states

with other k values were designated based on the strength of the cor-

relations between their connectivity patterns and these four reference

states. Significant differences in the MDT and frequency of expres-

sion were consistently observed among wakefulness, N1, N2, and N3

(p < .0001, Bonferroni corrected) when k ranged from 2 to 4, in the

first five states when k ranged from 5 to 7, and in the first four states

and the eighth state when k = 8. There was at least one state with

generally weak connectivity across the brain that temporally
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dominated during N3 sleep and another state with strong connection

that dominated during wakefulness for varying k values (k = 2–8).

Figure 3 shows the number of state transitions across varying

k values (k = 2–8) for wakefulness, N1, N2, and N3. Significant differ-

ences in the number of state transitions were observed among wake-

fulness, N1, N2, and N3 (p < .01, k = 2–8). A consistently greater

number of DFC state switches was observed in N2 sleep than in

wakefulness (p < .05), and larger numbers were observed in N3 sleep

than in wakefulness when k ranged from 3 to 6 (p < .05), in N2 than in

N1 sleep when k ranged from 2 to 5 (p < .05), and in N2 than in N3

sleep when k = 2 and k = 3 (p < .05).

3.2 | Slow-wave activity correlated with the MDT
and frequency of expression

We further assessed the relationship between the slow-wave activity

and the MDT of the DFC states (Figure 4). For k = 4, the MDT of State

1 was negatively correlated with slow-wave activity (R = −.51,

p = 1.28 × 10−18), while the MDT of State 2 was positively correlated

with slow-wave activity (R = .66, p = 5.88 × 10−34). Similarly, the fre-

quency of expression of State 1 was negatively correlated with slow-

wave activity (R = −.51, p = 9.76 × 10−19), while that of State 2 was

positively correlated with slow-wave activity (R = .67, p = 4.29 ×

10−36). Corresponding to the results in Figure 1b,c, State 2 with k = 4

clusters had a significantly larger MDT and frequency of expression in

N3 sleep than in wakefulness, N1 and N2 sleep, which was also mar-

ked by a high amplitude of slow-wave activity. State 1 with k = 4 dis-

played a significant larger MDT and frequency of expression in

wakefulness than in N1, N2, and N3 sleep, which had the lowest

slow-wave activity. No significant correlations were found between

the number of transitions and slow-wave activity.

Figure 5 shows the strength of the correlations between MDT and

frequency of expression with slow-wave activity across varying k values.

When k ranged from 2 to 8, State 1 had a significantly larger MDT and a

higher frequency of expression in wakefulness than in N1, N2, and N3

sleep that was consistently negatively correlated with slow-wave activ-

ity, while when k ranged from 2 to 8, State 2 showed a significantly larger

MDT and a higher frequency of expression in N3 sleep than in wakeful-

ness, and N1 and N2 sleep were consistently positively correlated with

slow-wave activity. In addition, State 4 with a k-value ranging from 4 to

8 showed a significantly smaller MDT and frequency of expression in N3

sleep than in wakefulness, and N1 and N2 sleep were consistently

F IGURE 1 Dynamic functional connectivity states of k-means clustering when k = 4. (a) The cluster centroids from k-means clustering. The
(b) mean dwell time (MDT) and (c) frequency of expression for the four states during wakefulness, N1, N2, and N3 sleep (error bars refer to
standard errors). AtN, attention network; AuN, auditory network; CN, cerebellar network; CON, cingulo-opercular task control network; DMN,
default mode network; FPN, frontoparietal task control network; SCN, subcortical network; SMN, somatomotor network; SN, salience network;
VN, visual network [Color figure can be viewed at wileyonlinelibrary.com]
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negatively correlated with slow-wave activity. Thus, the number of clus-

ters during k-means clustering showedminimal influence on the relation-

ship between slow-wave activity and dynamic network metrics. No

significant correlations were found between the number of transitions

and slow-wave activity with other k values.

3.3 | Validation results

Figure 6 shows the results of the Kruskal–Wallis test for both the

MDT and frequency of expression among N1, N2, N3, and wakeful-

ness when the global signal was reserved using the Power264

template and the global signal was removed using the AAL template.

The results for the first two states were consistent with the data

shown in Figure 2, as these states showed the largest MDT and fre-

quency of expression in wakefulness or N3 sleep compared with other

stages. The results were also consistent for the third state, which dis-

played a smaller MDT and frequency of expression in wakefulness

than in N1, N2, and N3 sleep, and for the fourth state, which had a

smaller MDT and frequency of expression in N3 sleep than in wake-

fulness and N1 and N2 sleep (Figure 2 vs. Figure 6).

The number of transitions was significantly larger in N2 sleep than

in wakefulness when k ranged from 2 to 7, larger in N2 sleep than in

wakefulness and N1 and N3 sleep when k = 3, larger in N3 sleep

than in wakefulness when k ranged from 3 to 6, larger in N1 sleep

than in wakefulness when k = 2 and k = 3, and larger in N1 and N2

sleep than in wakefulness and N3 sleep when k = 2 (p < .05) with the

global signal reserved using the Power264 template. In addition, the

number of transitions was significantly larger in N2 and N3 sleep than

in wakefulness when k ranged from 2 to 8, and larger in N1, N2, and

N3 sleep than in wakefulness when k ranged from 4 to 8 except k = 6

(p < .05) with the global signal removed using the AAL template. The

results were similar to those obtained using the Power264 template

with the global signal removed (Figure 7 vs. Figure 3).

Figure 8 shows the strength of the correlations between of MDT

and frequency of expression with slow-wave activity when the global

signal was reserved using the Power264 template and when the

global signal was removed using the AAL template. These results were

consistent with the data shown in Figure 5 for the first two states,

F IGURE 2 Results of the Kruskal–Wallis test of MDT and frequency of expression across k values [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 3 The number of transitions between DFC states across
k values (error bars refer to standard errors)
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which had the largest MDT and frequency of expression in wakeful-

ness or N3 sleep compared with the other stages, and for the fourth

state which had a smaller MDT and frequency of expression in N3

sleep than in wakefulness and N1 and N2 sleep.

These results from the validation analyses suggested that global

signal removal and selection of the whole-brain atlas had minimal

influence on the characteristics of DFC among wakefulness, N1, N2,

and N3, and their relationships with slow-wave activity.

4 | DISCUSSION

In this study, we investigated the properties of DFC in wakefulness and

different sleep stages based on the sliding window approach. Our results

showed that dynamic connectivity states consistently corresponded to

specific sleep stages or wakefulness, independent of the number of

clustered states or preprocessing parameters. These results indicated

that wakefulness and different sleep stages have specific recurring

F IGURE 4 State 1 and State 2 inferred from k-means clustering (k = 4) temporally predominate during wakefulness and N3 sleep stages and
significantly correlate with slow-wave activity [Color figure can be viewed at wileyonlinelibrary.com]
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connectivity patterns.We further explored the relationship between the

characteristics of these dynamic connectivity states and slow-wave

activity and found that states with a larger MDT in N3 sleep sessions

showed significant positive correlations with slow-wave activity, while

states with a larger MDT in wakefulness sessions showed significant

negative correlations with slow-wave activity. These results revealed the

characteristics of dynamic connectivity patterns in wakefulness and dif-

ferent sleep stages and provide a potential neural electrophysiology basis

for these dynamic connectivity patterns.

4.1 | Dynamic connectivity properties of NREM
sleep and wakefulness

Sleep has been associated with reduced functional connectivity within

the default mode network and reduced anti-correlation between task-

positive networks and the default mode network (De Havas, Parimal,

Soon, & Chee, 2012) compared with wakefulness. These alterations in

functional connectivity have also been observed during mind wander-

ing (Christoff, Gordon, Smallwood, Smith, & Schooler, 2009) and dur-

ing eyes-closed rest compared with eyes-open rest (Van Dijk et al.,

2010). It has been proposed that sleep is facilitated by both reduced

thalamocortical connectivity at sleep onset (Poudel, Innes, Bones,

Watts, & Jones, 2014) and a breakdown of general connectivity asso-

ciated with deep sleep (Spoormaker et al., 2010). Both of these pro-

cesses reduce the brain's capacity to integrate information across

separated regions (Horovitz et al., 2009; Samann et al., 2011).

DFC states during wakefulness have been reported to exhibit a

richer repertoire of functional connectivity compared with states of

anesthesia (Barttfeld et al., 2015). It has also been reported that clus-

tering or hierarchical approaches can reveal dynamic connectivity

states that could be linked with ongoing cognitive fluctuations and

functional connectivity changes when people shift between sleep

and wakefulness (Laumann et al., 2017). Haimovici and colleagues

demonstrated that coarse dynamic connectivity states matched

wakefulness and sleep stages by setting the number of clusters equal

to the number of stages in the human NREM sleep cycle (Haimovici

et al., 2017). In our study, we set a varying k-value (k ranges from

2 to 8) and found similar dynamic connectivity patterns that charac-

terized wakefulness and NREM sleep across different k-values during

clustering.

Differences in states that dominated during wakefulness and deep

sleep were observed in a widespread network of regions. The state

that temporally dominated during wakefulness displayed high within-

network connectivity of the somatomotor network and the default

mode network, and strong anti-correlations between the cingulo-

opercular task control network and the default mode network and

between the auditory network and the default mode network. This

result was consistent with previous findings of a loss of within-

network connectivity in the somatomotor network and the default

mode network during reduced consciousness (Spoormaker, Gleiser, &

Czisch, 2012; Wu et al., 2012), and were also consistent with the

Global Neuronal Workspace theory stating that different streams of

information compete for the brain in widespread network regions

(Dehaene & Changeux, 2011).

The number of state transitions was consistently larger in N2

sleep than in wakefulness and generally larger in N3 sleep than in

F IGURE 5 The correlations between MDT/frequency of expression and slow-wave activity across k values [Color figure can be viewed at
wileyonlinelibrary.com]
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wakefulness, independent of the selection of parcellation schemes

and preprocessing procedures. One or two DFC states temporally

dominated approximately 90% of the duration of the wakefulness

state, thus corresponding to a small number of state transitions. In

contrast, more DFC states temporally fluctuated and frequently

shifted during N2 and N3 sleep, corresponding to more state transi-

tions. These results differ from findings from previous animal studies,

which indicated that wakefulness is characterized by a richer reper-

toire of functional configurations than the state of anesthesia

(Barttfeld et al., 2015). However, the definition of wakefulness state

in the previous study was not the same as the definition used in the

current study, which considered eyes-closed while trying to fall sleep

as wakefulness, and the state of sedation also is not equivalent to the

sleep state. Moreover, another study suggested that spontaneous

activity should be reduced to the circulation of a more random pattern

of neural activity that is shaped and constrained by anatomical con-

nectivity under the nonconscious condition (Deco, Jirsa, & McIntosh,

2011). However, none of these studies provided direct evidence of

the potential changes in the number of state switches under varying

consciousness conditions. The current study fills this gap by showing

more transitions among DFC states during sleep.

These results provide strong evidence that the dynamic

connectivity states underlying the BOLD signal match fluctuations of

vigilance.

F IGURE 6 Validation of the results obtained from the Kruskal–Wallis test of MDT/frequency of expression across k-values using different
preprocessing parameters and parcellation schemes [Color figure can be viewed at wileyonlinelibrary.com]
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4.2 | Slow-wave activity correlated with the MDT of
dynamic connectivity states

The slow-wave activity of NREM sleep is a well-established marker of

sleep pressure (Tononi & Cirelli, 2014), and the individual dissipation

rate of slow-wave power reflects individual sleep homoeostasis effi-

cacy in the elimination of sleep pressure (Tarokh, Carskadon, &

Achermann, 2012). Furthermore, Boly and colleagues demonstrated

that brain network integration decreased in proportion to slow-wave

activity, consistent with a breakdown of brain connectivity resulting

from the neural response associated with slow oscillations (Boly et al.,

2012). Here, we assessed the relationship between the MDT of the

dynamic connectivity states and slow-wave activity, and found that

the MDT of the state that dominated in N3 sleep sessions positively

correlated with the power of slow-wave activity, while the MDT of

the state that dominated in wakefulness sessions negatively corre-

lated with slow-wave activity. These results were consistent across

varying k-values during clustering and were independent of global

mean signal removal and brain atlas selection during preprocessing,

indicating potential electrophysiological mechanisms underlying

dynamic connectivity states that correspond to vigilance states.

4.3 | DFC states vary with k-values and global signals

k-Means clustering identifies DFC states by grouping the network

configurations that are more similar to each other among the network

configurations of all clusters, thus, the DFC states with larger k-values

will reveal intermediate network configurations between separate

DFC states with smaller k-values. A previous study reported that the

instability of clustering increased with the number of estimated brain

states for expansion in the solution space (Reinen et al., 2018). We

chose a range of k-values of 2–8 to cover the number of sleep stages

and validate the stability of clustering.

Previous studies revealed the clinical effects of global signal fluc-

tuations in subjects with neuropsychiatric conditions (Yang et al.,

2014) and the differences in the global signal among participants only

contributed to the prediction of the vigilance state after sleep restric-

tion, but not baseline performance (Patanaik et al., 2018). In line with

these studies, the global signal did not change the main results of this

study.

4.4 | Removal of gradient and ballistocardiogram
artifacts

Average artifact subtraction is currently the most commonly used cor-

rection method for removing gradient and ballistocardiogram artifacts

in previous sleep studies based on simultaneous EEG-fMRI recordings

(Hale et al., 2016; Horovitz et al., 2009; Samann et al., 2011; Tsai

et al., 2014). Several studies used average subtraction to remove gra-

dient artifacts and an independent component analysis (ICA) to

remove ballistocardiogram artifacts (Boly et al., 2012; Lei, Wang,

Yuan, & Chen, 2015). We further adopted an ICA to remove residual

artifacts from 21 randomly chosen sessions of EEG data and to deter-

mine whether the gradient and ballistocardiogram artifacts were satis-

factorily corrected after average artifact subtraction preprocessing in

our study. We decomposed each session of EEG data into 59 compo-

nents after average artifact subtraction preprocessing, and removed

one or two components that might be related to residual artifacts.

The residual artifact components were always present in the last

30 components after ICA, indicating that the residual artifact compo-

nents accounted for a very small proportion of the variance in the

preprocessed EEG data after average artifact subtraction. The removal

of these residual artifacts components did not change the scoring of

the sleep stages for these sessions. Moreover, we calculated the

power of slow-wave activity in these sessions with and without fur-

ther ICA denoising, and the results were almost identical.

F IGURE 7 Validation of the number of transitions between DFC states across k values using different preprocessing parameters and
parcellation schemes (error bars refer to standard errors)
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4.5 | Limitations and future work

The present study has several limitations. First, we collected relatively

few 5-min sessions in the N1 sleep stage for dynamic connectivity analy-

sis, because the proportion of data acquired that corresponded to the

N1 sleep stage was relatively small, and these periods lasted for a rela-

tively short time. Second, we chose the sliding window approach to con-

struct the dynamic connectivity matrix, and the window length was

fixed, which might influence the flexibility to detect non-regular changes

in functional connectivity (Lindquist, Xu, Nebel, & Caffo, 2014). Finally,

our study provided evidence of an association between dynamic connec-

tivity states underlying BOLD signals and slow-wave activity. However,

the plots were relatively scattered, and thus the strength of their correla-

tions and the causal links between neurophysiology and dynamic con-

nectivity patterns in the brain require further investigation.

5 | CONCLUSIONS

In the present study, the dynamic connectivity states of BOLD signals

consistently corresponded to wakefulness and sleep stages, and the

MDT of the state significantly correlated with slow-wave activity.

These results provide strong evidence that dynamic connectivity

states match the fluctuation of vigilance, and indicate possible electro-

physiology mechanisms underlying dynamic connectivity states that

correspond to vigilance states.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and Develop-

ment Program of China (2018YFC2000603 and 2017YFC0108900),

F IGURE 8 Validation of the correlations between MDT/frequency of expression and slow-wave activity using different preprocessing
parameters and parcellation schemes [Color figure can be viewed at wileyonlinelibrary.com]

5266 ZHOU ET AL.

http://wileyonlinelibrary.com


China's National Strategic Basic Research Program (“973”) grant

(2015CB856400), National Natural Science Foundation of China

(81871427, 81671765, 81430037, 81727808, 81790650, 81790651

and 31421003), Beijing Municipal Natural Science Foundation

(7172121), Beijing Municipal Science & Technology Commission

(Z181100001518005, Z161100002616006 and Z171100000117012),

Shenzhen Peacock Plan (KQTD2015033016104926), Guangdong

Pearl River Talents Plan Innovative and Entrepreneurial Team

(2016ZT06S220), Shenzhen Science and Technology Research Funding

Program (JCYJ20170412164413575). We thank the National Center

for Protein Sciences at Peking University in Beijing, China, for assistance

withMRI data acquisition and data analyses.

CONFLICT OF INTEREST

The authors have no financial or competing interests to declare.

DATA AVAILABILITY STATEMENT

Data are available on request from the authors. The data that support

the findings of this study are available from the corresponding author

upon reasonable request.

ORCID

Jia-Hong Gao https://orcid.org/0000-0002-9311-0297

REFERENCES

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., &

Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in

the resting state. Cerebral Cortex, 24, 663–676.
Allen, P. J., Josephs, O., & Turner, R. (2000). A method for removing imag-

ing artifact from continuous EEG recorded during functional MRI.

NeuroImage, 12, 230–239.
Allen, P. J., Polizzi, G., Krakow, K., Fish, D. R., & Lemieux, L. (1998). Identifi-

cation of EEG events in the MR scanner: The problem of pulse artifact

and a method for its subtraction. NeuroImage, 8, 229–239.
Barttfeld, P., Uhrig, L., Sitt, J. D., Sigman, M., Jarraya, B., & Dehaene, S.

(2015). Signature of consciousness in the dynamics of resting-state

brain activity. Proceedings of the National Academy of Sciences of the

United States of America, 112, 887–892.
Betzel, R. F., Fukushima, M., HeY, Z. X. N., & Sporns, O. (2016). Dynamic

fluctuations coincide with periods of high and low modularity in

resting-state functional brain networks. NeuroImage, 127, 287–297.
Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., …

Milham, M. P. (2010). Toward discovery science of human brain func-

tion. Proceedings of the National Academy of Sciences of the United

States of America, 107, 4734–4739.
Boly, M., Perlbarg, V., Marrelec, G., Schabus, M., Laureys, S., Doyon, J., …

Benali, H. (2012). Hierarchical clustering of brain activity during human

nonrapid eye movement sleep. Proceedings of the National Academy of

Sciences of the United States of America, 109, 5856–5861.
Buckner, R. L., Krienen, F. M., & Yeo, B. T. (2013). Opportunities and limi-

tations of intrinsic functional connectivity MRI. Nature Neuroscience,

16, 832–837.

Chang, C., Liu, Z., Chen, M. C., Liu, X., & Duyn, J. H. (2013). EEG correlates

of time-varying BOLD functional connectivity. NeuroImage, 72,

227–236.
Chang, C., Metzger, C. D., Glover, G. H., Duyn, J. H., Heinze, H. J., &

Walter, M. (2013). Association between heart rate variability and fluc-

tuations in resting-state functional connectivity. NeuroImage, 68,

93–104.
Chen, X., Liao, X., Dai, Z., Lin, Q., Wang, Z., Li, K., & He, Y. (2018). Topolog-

ical analyses of functional connectomics: A crucial role of global signal

removal, brain parcellation, and null models. Human Brain Mapping, 39,

4545–4564.
Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W.

(2009). Experience sampling during fMRI reveals default network and

executive system contributions to mind wandering. Proceedings of the

National Academy of Sciences of the United States of America, 106,

8719–8724.
Cohen, J. R. (2018). The behavioral and cognitive relevance of time-vary-

ing, dynamic changes in functional connectivity. NeuroImage, 180,

515–525.
De Havas, J. A., Parimal, S., Soon, C. S., & Chee, M. W. (2012). Sleep depri-

vation reduces default mode network connectivity and anti-correlation

during rest and task performance. NeuroImage, 59, 1745–1751.
Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the

dynamical organization of resting-state activity in the brain. Nature

Reviews. Neuroscience, 12, 43–56.
Dehaene, S., & Changeux, J. P. (2011). Experimental and theoretical

approaches to conscious processing. Neuron, 70, 200–227.
Duyn, J. H. (2012). EEG-fMRI methods for the study of brain networks

during sleep. Frontiers in Neurology, 3, 100.

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., &

Raichle, M. E. (2005). The human brain is intrinsically organized into

dynamic, anticorrelated functional networks. Proceedings of the

National Academy of Sciences of the United States of America, 102,

9673–9678.
Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global sig-

nal and observed anticorrelated resting state brain networks. Journal

of Neurophysiology, 101, 3270–3283.
Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R.

(1996). Movement-related effects in fMRI time-series. Magnetic Reso-

nance in Medicine, 35, 346–355.
Haimovici, A., Tagliazucchi, E., Balenzuela, P., & Laufs, H. (2017). On wake-

fulness fluctuations as a source of BOLD functional connectivity

dynamics. Scientific Reports, 7, 5908.

Hale, J. R., White, T. P., Mayhew, S. D., Wilson, R. S., Rollings, D. T.,

Khalsa, S., … Bagshaw, A. P. (2016). Altered thalamocortical and intra-

thalamic functional connectivity during light sleep compared with

wake. NeuroImage, 125, 657–667.
Handwerker, D. A., Roopchansingh, V., Gonzalez-Castillo, J., &

Bandettini, P. A. (2012). Periodic changes in fMRI connectivity.

NeuroImage, 63, 1712–1719.
Horovitz, S. G., Braun, A. R., Carr, W. S., Picchioni, D., Balkin, T. J.,

Fukunaga, M., & Duyn, J. H. (2009). Decoupling of the brain's default

mode network during deep sleep. Proceedings of the National Academy

of Sciences of the United States of America, 106, 11376–11381.
Hutchison, R. M., & Morton, J. B. (2015). Tracking the brain's functional

coupling dynamics over development. The Journal of Neuroscience, 35,

6849–6859.
Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A.,

Calhoun, V. D., Corbetta, M., … Chang, C. (2013). Dynamic functional

connectivity: Promise, issues, and interpretations. NeuroImage, 80,

360–378.
Iber, C., Ancoli-Israel, S. S., Chesson, A., & Quan, S. F. (2007). The AASM

manual for the scoring of sleep and associated events: Rules, terminology,

and technical specifications. Westchester, IL: American Academy of

Sleep Medicine.

ZHOU ET AL. 5267

https://orcid.org/0000-0002-9311-0297
https://orcid.org/0000-0002-9311-0297


Krienen, F. M., Yeo, B. T., & Buckner, R. L. (2014). Reconfigurable task-

dependent functional coupling modes cluster around a core functional

architecture. Philosophical Transactions of the Royal Society B: Biological

Sciences, 369, 20130526.

Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., &

Kleinschmidt, A. (2003). Electroencephalographic signatures of atten-

tional and cognitive default modes in spontaneous brain activity fluc-

tuations at rest. Proceedings of the National Academy of Sciences of the

United States of America, 100, 11053–11058.
Laumann, T. O., Snyder, A. Z., Mitra, A., Gordon, E. M., Gratton, C.,

Adeyemo, B., … Petersen, S. E. (2017). On the stability of BOLD fMRI

correlations. Cerebral Cortex, 27, 4719–4732.
Leger, D., Debellemaniere, E., Rabat, A., Bayon, V., Benchenane, K., &

Chennaoui, M. (2018). Slow-wave sleep: From the cell to the clinic.

Sleep Medicine Reviews, 41, 113–132.
Lei, X., Wang, Y., Yuan, H., & Chen, A. (2015). Brain scale-free properties

in awake rest and NREM sleep: A simultaneous EEG/fMRI study. Brain

Topography, 28, 292–304.
Leonardi, N., & Van De Ville, D. (2015). On spurious and real fluctuations

of dynamic functional connectivity during rest. NeuroImage, 104,

430–436.
Liao, X., Yuan, L., Zhao, T., Dai, Z., Shu, N., Xia, M., … He, Y. (2015). Sponta-

neous functional network dynamics and associated structural sub-

strates in the human brain. Frontiers in Human Neuroscience, 9, 478.

Lindquist, M. A., Xu, Y., Nebel, M. B., & Caffo, B. S. (2014). Evaluating

dynamic bivariate correlations in resting-state fMRI: A comparison

study and a new approach. NeuroImage, 101, 531–546.
Ly, J. Q., Gaggioni, G., Chellappa, S. L., Papachilleos, S., Brzozowski, A.,

Borsu, C., … Vandewalle, G. (2016). Circadian regulation of human cor-

tical excitability. Nature Communications, 7, 11828.

Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A.

(2009). The impact of global signal regression on resting state correla-

tions: Are anti-correlated networks introduced? NeuroImage, 44,

893–905.
Patanaik, A., Tandi, J., Ong, J. L., Wang, C., Zhou, J., & Chee, M. W. L.

(2018). Dynamic functional connectivity and its behavioral correlates

beyond vigilance. NeuroImage, 177, 1–10.
Poudel, G. R., Innes, C. R., Bones, P. J., Watts, R., & Jones, R. D. (2014).

Losing the struggle to stay awake: Divergent thalamic and cortical

activity during microsleeps. Human Brain Mapping, 35, 257–269.
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A.,

Church, J. A., … Petersen, S. E. (2011). Functional network organization

of the human brain. Neuron, 72, 665–678.
Rabinovich, M. I., & Varona, P. (2011). Robust transient dynamics and brain

functions. Frontiers in Computational Neuroscience, 5, 24.

Reinen, J. M., Chen, O. Y., Hutchison, R. M., Yeo, B. T. T., Anderson, K. M.,

Sabuncu, M. R., … Holmes, A. J. (2018). The human cortex possesses a

reconfigurable dynamic network architecture that is disrupted in psy-

chosis. Nature Communications, 9, 1157.

Rosenberg, M. D., Finn, E. S., Scheinost, D., Papademetris, X., Shen, X.,

Constable, R. T., & Chun, M. M. (2016). A neuromarker of sustained

attention from whole-brain functional connectivity. Nature Neurosci-

ence, 19, 165–171.
Samann, P. G., Wehrle, R., Hoehn, D., Spoormaker, V. I., Peters, H.,

Tully, C., … Czisch, M. (2011). Development of the brain's default

mode network from wakefulness to slow wave sleep. Cerebral Cortex,

21, 2082–2093.
Siclari, F., Baird, B., Perogamvros, L., Bernardi, G., LaRocque, J. J.,

Riedner, B., … Tononi, G. (2017). The neural correlates of dreaming.

Nature Neuroscience, 20, 872–878.
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F.,

Behrens, T. E., Johansen-Berg, H., …Matthews, P. M. (2004). Advances

in functional and structural MR image analysis and implementation as

FSL. NeuroImage, 23(Suppl 1), S208–S219.

Spiegel, K., Leproult, R., & Van Cauter, E. (1999). Impact of sleep debt on

metabolic and endocrine function. Lancet, 354, 1435–1439.
Spoormaker, V. I., Gleiser, P. M., & Czisch, M. (2012). Frontoparietal con-

nectivity and hierarchical structure of the brain's functional network

during sleep. Frontiers in Neurology, 3, 80.

Spoormaker, V. I., Schroter, M. S., Gleiser, P. M., Andrade, K. C.,

Dresler, M., Wehrle, R., … Czisch, M. (2010). Development of a large-

scale functional brain network during human non-rapid eye movement

sleep. The Journal of Neuroscience, 30, 11379–11387.
Tagliazucchi, E., & Laufs, H. (2014). Decoding wakefulness levels from typi-

cal fMRI resting-state data reveals reliable drifts between wakefulness

and sleep. Neuron, 82, 695–708.
Tagliazucchi, E., von Wegner, F., Morzelewski, A., Brodbeck, V.,

Jahnke, K., & Laufs, H. (2013). Breakdown of long-range temporal

dependence in default mode and attention networks during deep

sleep. Proceedings of the National Academy of Sciences of the United

States of America, 110, 15419–15424.
Tagliazucchi, E., von Wegner, F., Morzelewski, A., Brodbeck, V., & Laufs, H.

(2012). Dynamic BOLD functional connectivity in humans and its elec-

trophysiological correlates. Frontiers in Human Neuroscience, 6, 339.

Tarokh, L., Carskadon, M. A., & Achermann, P. (2012). Dissipation of sleep

pressure is stable across adolescence. Neuroscience, 216, 167–177.
Tian, L., Li, Q., Wang, C., & Yu, J. (2018). Changes in dynamic functional

connections with aging. NeuroImage, 172, 31–39.
Tononi, G., & Cirelli, C. (2014). Sleep and the price of plasticity: From syn-

aptic and cellular homeostasis to memory consolidation and integra-

tion. Neuron, 81, 12–34.
Tsai, P. J., Chen, S. C., Hsu, C. Y., Wu, C. W., Wu, Y. C., Hung, C. S., …

Lin, C. P. (2014). Local awakening: Regional reorganizations of brain

oscillations after sleep. NeuroImage, 102(Pt 2), 894–903.
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F.,

Etard, O., Delcroix, N., … Joliot, M. (2002). Automated anatomical

labeling of activations in SPM using a macroscopic anatomical

parcellation of the MNI MRI single-subject brain. NeuroImage, 15,

273–289.
Van Dijk, K. R., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., &

Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for

human connectomics: Theory, properties, and optimization. Journal of

Neurophysiology, 103, 297–321.
Wang, C., Ong, J. L., Patanaik, A., Zhou, J., & Chee, M. W. (2016). Sponta-

neous eyelid closures link vigilance fluctuation with fMRI dynamic

connectivity states. Proceedings of the National Academy of Sciences of

the United States of America, 113, 9653–9658.
Wu, C. W., Liu, P. Y., Tsai, P. J., Wu, Y. C., Hung, C. S., Tsai, Y. C., …

Lin, C. P. (2012). Variations in connectivity in the sensorimotor and

default-mode networks during the first nocturnal sleep cycle. Brain

Connectivity, 2, 177–190.
Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di

Martino, A., … Milham, M. P. (2013). A comprehensive assessment of

regional variation in the impact of head micromovements on func-

tional connectomics. NeuroImage, 76, 183–201.
Yang, G. J., Murray, J. D., Repovs, G., Cole, M. W., Savic, A., Glasser, M. F.,

… Anticevic, A. (2014). Altered global brain signal in schizophrenia. Pro-

ceedings of the National Academy of Sciences of the United States of

America, 111, 7438–7443.

How to cite this article: Zhou S, Zou G, Xu J, et al. Dynamic

functional connectivity states characterize NREM sleep and

wakefulness. Hum Brain Mapp. 2019;40:5256–5268. https://

doi.org/10.1002/hbm.24770

5268 ZHOU ET AL.

https://doi.org/10.1002/hbm.24770
https://doi.org/10.1002/hbm.24770

	Dynamic functional connectivity states characterize NREM sleep and wakefulness
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Participants
	2.2  Experimental design
	2.3  Data acquisition
	2.4  EEG preprocessing and sleep stage scoring
	2.5  fMRI data processing
	2.6  Computation of DFC states
	2.7  Statistical analysis
	2.8  Validation analysis

	3  RESULTS
	3.1  DFC states correspond to wakefulness and N1, N2, and N3 sleep
	3.2  Slow-wave activity correlated with the MDT and frequency of expression
	3.3  Validation results

	4  DISCUSSION
	4.1  Dynamic connectivity properties of NREM sleep and wakefulness
	4.2  Slow-wave activity correlated with the MDT of dynamic connectivity states
	4.3  DFC states vary with k-values and global signals
	4.4  Removal of gradient and ballistocardiogram artifacts
	4.5  Limitations and future work

	5  CONCLUSIONS
	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  DATA AVAILABILITY STATEMENT

	REFERENCES


