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Abstract: A novel Bacillus thuringiensis Cry protein, Cry8Hb, active against Diabrotica virgifera virgifera
(Western corn rootworm, WCRW) was discovered. Unexpectedly, the anti-rootworm activity of
the Cry8Hb toxin was enhanced significantly by fusing Escherichia coli maltose binding protein
(MBP) to this Cry toxin. While the exact mechanism of the activity enhancement remains indefinite,
it is probable that the enhancement is a result of increased solubility of the MBP-Cry8Hb fusion in
the rootworm midgut. This hypothesis was examined using a synthetic Cry3 protein called IP3-1,
which was not soluble at a neutral pH like Cry8Hb and marginally active to WCRW. When IP3-1
was fused to MBP, its anti-WCRW activity was enhanced 13-fold. To further test the hypothesis,
DNA shuffling was performed on IP3-1 to increase the solubility without MBP. Screening of shuffled
libraries found six new IP3 variants showing very high anti-WCRW activity without MBP. Sequence
and 3D structure analysis of those highly active, shuffled IP3 variants revealed several charge-altering
mutations such as Lys to Glu on the putative MBP-attaching side of the IP3 molecule. It is likely that
those mutations make the protein acidic to substitute the functions of MBP including enhancing the
solubility of IP3 at a neutral pH.

Keywords: Bacillus thuringiensis; Novel Cry protein; Maltose binding protein; DNA shuffling; Western
corn rootworm

Key Contribution: E. coli MBP (maltose binding protein) enhanced the activity of Cry8Hb and
Cry3Aa against Western corn rootworm; DNA shuffling was used to examine the effect of MBP
on Cry3Aa.

1. Introduction

Bacillus thuringiensis (Bt), a spore-forming bacterium, is known for its pathogenicity to insects
including agricultural pests. When Bt sporulates, it produces crystalline inclusion bodies that contain
one or more proteins called Cry proteins. Some of the Cry proteins are highly active against certain
insect species, for example Cry1Aa against silkworm. While many Cry proteins are active against
lepidopteran insects, only a few are known to be active against Diabrotica species. Cry34Ab and
Cry35Ab [1] and modified Cry3 proteins such as Cry3Bb [2] have been utilized in transgenic corn
to control the Diabrotica complex, particularly Diabrotica virgifera virgifera (Western corn rootworm,
WCRW). The wild-type Cry3 proteins are known for their high activity against coleopteran species,
for example, Leptinotarsa decemlineata (Colorado potato beetle), but their activity against corn rootworm,
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particularly WCRW, is not high enough for commercial application in transgenic corn. Walters et al. [3]
found that mutations enhanced the anti-WCRW activity of Cry3Aa. They inserted a cathepsin
recognition sequence in the loop between α-helices 3 and 4 in Domain I. Cathepsins that belong
to the cysteine protease family have been identified as the major proteases found in the corn rootworm
digestive system [4]. The other Cry3 protein, Cry3Bb, has been found to be active against WCRW [5].
Vaughn et al. [2] engineered Cry3Bb to enhance its activity against WCRW. Both modified Cry3Aa and
Cry3Bb proteins have been shown to be effective in transgenic Bt-corn to control the rootworm complex.

Other WCRW-active Cry proteins include Cry8Bb [6] and Cry8Hb (this study). We discovered
that the anti-rootworm activity of Cry8 proteins was significantly enhanced when they were fused
to Escherichia coli maltose binding protein (MBP). A similar observation was made with a synthetic
Cry3 called IP3-1. The activity enhancement of IP3-1 with MBP was extraordinarily high. It appears
MBP increases the solubility of the WCRW-active Cry proteins in a neutral pH solution similar to
WCRW gut digestive juice and enhances the insecticidal activity. Therefore, we applied the DNA
shuffling technology described by Stemmer [7,8] to elucidate the functions of MBP. DNA shuffling is a
powerful tool to generate highly diversified sequences artificially. The shuffled library was screened
for anti-WCRW activity, and the relationship between sequence and activity was examined.

During this study, a high throughput screening method was developed for WCRW based on an
existing method designed for lepidopteran insect species [9].

2. Results

2.1. WCRW-Active Bt Isolate and Its Cry Protein

Bt crystal protein samples isolated from a large number of naturally occurring Bt strains were
screened against WCRW. Figure 1 shows an E-PAGE image of one plate-full of Cry proteins. This plate
contained approx. 60% of Bt isolates showing typical 130 kDa Cry proteins, and some of those had
additional 70 kDa proteins which could be truncated Cry proteins such as Cry2 and Cry3. All other
plates showed patterns similar to this plate. Only one sample from a particular Bt strain, DP7-F11,
showed significant activity against WCRW. As shown in Figure 1, the crystal protein preparation from
DP7-F11 produced one band at about 130 kDa. A large amount of the Cry protein was prepared from
flask-grown DP7-F11 (Figure 2, Panel A, Lane 1) and subjected to further characterizations. When the
Cry protein was digested with trypsin, two major polypeptides, one around 65 kDa and the other
about 55 kDa, were observed (Figure 2, Lane 2). The trypsin digestion pattern suggested that the
130 kDa protein is a protoxin like WCRW-active Cry8Bb whose mature toxin has a protease-sensitive
loop between α-helices 3 and 4 [10]. The N-terminal sequences of the DP7-F11 55 kDa protein extracted
from the SDS-PAGE gel were determined by Edman degradation method as SVTNIRSQFETVNNFF
without any ambiguity at each step. The high-quality sequence suggests that the 55 kDa band contains
only one protein. A BLAST search of this Edman sequence against known Bt Cry proteins showed
significant homology to Cry8Ha, matching 11 residues out of 16, and Cry7Ja, matching 9 out of 16.
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Figure 1. An example of SDS-PAGE analysis of Cry proteins isolated from Bt strains arrayed in one 
seed culture plate, DP7. In this plate of screening 96 Bt strains, one strain, F11 (boxed), was found to 
be active against WCRW. For the analysis, E-PAGE™ Precast Gel System from Life Technologies was 
used. E-PAGE has 96 sample lanes and eight marker lanes (Am – Hm), in which, E-PAGE™ SeeBlue® 
Protein Standard was loaded. The molecular weights of the standards are shown on Row A, C, E, and 
G. The gel was stained with Coomassie Blue. Digital image of the stained gel was aligned by rows 
utilizing Life Technologies’ E-Editor™ Software. 

 
Figure 2. SDS-PAGE analysis of the Cry8Hb protein (protoxin) isolated from DP7-F11 (Panel A) and 
MBP fusions of Cry8Hb and IP3 toxins (toxin part only) (Panel B). Panel A, Lane 1, 135 kDa Cry8Hb 
from DP7-F11; Lane 2, trypsin-digested 65 kDa and 55 kDa fragments of the DP7-F11 protein. Panel 

Figure 1. An example of SDS-PAGE analysis of Cry proteins isolated from Bt strains arrayed in one
seed culture plate, DP7. In this plate of screening 96 Bt strains, one strain, F11 (boxed), was found to
be active against WCRW. For the analysis, E-PAGE™ Precast Gel System from Life Technologies was
used. E-PAGE has 96 sample lanes and eight marker lanes (Am–Hm), in which, E-PAGE™ SeeBlue®

Protein Standard was loaded. The molecular weights of the standards are shown on Row A, C, E,
and G. The gel was stained with Coomassie Blue. Digital image of the stained gel was aligned by rows
utilizing Life Technologies’ E-Editor™ Software.

As described in Materials and Methods, a novel cry gene tentatively called RX002 was cloned, and
its complete nucleotide sequence encoding a 133 kDa Cry protoxin was determined. The nucleotide
sequence was submitted to the NCBI Genbank, and an accession number, KP713881, was assigned.
The N-terminal sequence of the 55-kDa trypsin-digested polypeptide starts at Ser165, directly following
Arg164, a possible trypsin site. No attempt was made to determine the C-terminus of the 55 kDa
protein, but it was presumed to be Lys669 or Lys670 based on the size and previous reports of trypsin
activation of Cry1A-type proteins [11]. The calculated molecular weight of the theoretical polypeptide of
Ser165-Lys669 is 56.5 kDa. No N-terminal sequencing was done with the 65 kDa polypeptide. However,
based on the size determined by SDS-PAGE and alignments with other well-characterized Cry proteins,
the N-terminal amino acid for the 65 kDa polypeptide is likely to be Ala75. Trypsin could digest Lys74
to produce a polypeptide from Ala75 to Lys699 whose calculated molecular weight is 66 kDa.

A BLAST search of the whole RX002 peptide sequence confirmed that the closest homologue was
Cry8Ha, as predicted from the N-terminal sequence of the 55 kDa trypsin-digested polypeptide. It is
expected that RX002 and Cry8Ha are three domain-type Bt Cry proteins structurally similar to Cry3Aa
whose 3D structure has been determined by X-ray crystallography [12]. Domain assignments of RX002
and Cry8Ha were made by aligning those sequences with that of Cry3Aa. The alignment showed
that RX002 and Cry8Ha have almost identical Domain I and III, but Domain II and the protoxin
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region sequences were somewhat different. Therefore, the Bacillus thuringiensis Toxin Nomenclature
Committee [13] assigned a new holotype Cry name, Cry8Hb1, to RX002.

Toxins 2019, 11, x FOR PEER REVIEW 3 of 20 

 

 
Figure 1. An example of SDS-PAGE analysis of Cry proteins isolated from Bt strains arrayed in one 
seed culture plate, DP7. In this plate of screening 96 Bt strains, one strain, F11 (boxed), was found to 
be active against WCRW. For the analysis, E-PAGE™ Precast Gel System from Life Technologies was 
used. E-PAGE has 96 sample lanes and eight marker lanes (Am – Hm), in which, E-PAGE™ SeeBlue® 
Protein Standard was loaded. The molecular weights of the standards are shown on Row A, C, E, and 
G. The gel was stained with Coomassie Blue. Digital image of the stained gel was aligned by rows 
utilizing Life Technologies’ E-Editor™ Software. 

 
Figure 2. SDS-PAGE analysis of the Cry8Hb protein (protoxin) isolated from DP7-F11 (Panel A) and 
MBP fusions of Cry8Hb and IP3 toxins (toxin part only) (Panel B). Panel A, Lane 1, 135 kDa Cry8Hb 
from DP7-F11; Lane 2, trypsin-digested 65 kDa and 55 kDa fragments of the DP7-F11 protein. Panel 

Figure 2. SDS-PAGE analysis of the Cry8Hb protein (protoxin) isolated from DP7-F11 (Panel A)
and MBP fusions of Cry8Hb and IP3 toxins (toxin part only) (Panel B). Panel A, Lane 1, 135 kDa
Cry8Hb from DP7-F11; Lane 2, trypsin-digested 65 kDa and 55 kDa fragments of the DP7-F11 protein.
Panel B, Lane 4, MBP-Cry8Hb(toxin); Lane 5, trypsin-digested MBP-Cry8Hb; Lane 6, MBP-IP3-1;
Lane 7, trypsin-digested MPB-IP3-1; Lane 8, trypsin-digested MBP-IP3-7. Very faint bands at 65 kDa
(arrowheads) were visible in Lane 5 (Cry8Hb) and Lane 7 (IP3-1) but not reproduced clearly in the
photograph. Lanes 3 and 9 were SeeBlue® Plus-2 protein standard with approximate molecular weights
in kDa. The stained SDS-PAGE gel, Panel A, Lane 2, was blotted on a sheet of PVDF membrane, and
the 55 kDa band (boxed) was excised for N-terminal sequencing at Stanford University Protein and
Nucleic Acid Facility.

The gene encoding Cry8Hb was cloned in pMAXY3206 and expressed in a plasmid-cured,
cry-minus Bt host called G8 [9]. The recombinant Bt produced inclusion bodies which were dissolved
easily in 2% 2-mercaptoethanol with NaOH added to make it pH10.5. The protoxin was purified by
size-exclusion column chromatography and exposed to trypsin. SDS-PAGE analysis of trypsin-digested
Cry8Hb produced a 65 kDa polypeptide along with the 55 kDa fragment. The digestion pattern was
identical to the pattern observed with the Cry protein prepared from DP7-F11. The Cry8Hb protoxin
purified from the recombinant Bt was active against WCRW. EC50 of the protoxin protein was estimated
to be approximately 700 ppm, which is equivalent to 350 ppm by toxin weight.

2.2. MBP Enhances the Anti-WCRW Activity of Cry8Hb

A 5′ portion of the cry8Hb gene encoding a 75 kDa polypeptide (Met1- Lys699) was cloned in
pVER6805 vector and expressed as a fusion with MBP. The fusion protein was purified by Ni-NTA
affinity chromatography utilizing the His-tag attached to MBP (Figure 2, Panel B, Lane 4). Trypsin
digestion of MBP-Cry8Hb produced a minor 65 kDa and a major 55 kDa polypeptides (Figure 2,
Lane 5). The 65 kDa band in the SDS-PAGE gel was very faint, indicating that the digestion at the α3-4
loop was highly efficient when fused with MBP. There was a 44 kDa polypeptide band. The size of this
band indicates the polypeptide is MBP whose theoretical molecular weight in pVER6805 is 43.8 kDa.
Only the 44 kDa was positive with mouse anti-MBP antibody by Western blotting. Judging from the
size of MBP produced by the trypsin digestion, it appeared that the protease-cleaved Arg in the Factor
Xa recognition sequence (IEGR) engineered at the end of MBP in the original pMAL. In addition, it is
possible that trypsin digests at the second Arg residue of Cry8Hb. However, the second Arg residue
is not likely to be a site for trypsin, as this Arg residue is followed by Pro. The junction amino acid
sequence between MBP and Cry8Hb was as follows.

. . . (MBP) . . . IEGRISELG–MRPNN . . . (Cry8Hb)...
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When both MBP-Cry8Hb and the trypsin-digested sample were assayed against WCRW using
N = 3 (18 wells per dose of each sample), it was found that the MBP fusion was more active. EC50 of
MBP-Cry8Hb was 178 ppm with 145–220 ppm 95% confidence limits while EC50 of the trypsin digest
was 390 ppm with 325–483 ppm 95% confidence limits. For comparison, both EC50 values were
calculated based on the weight of the 65-kDa portion, which is the active part of Cry8Hb without MBP
after the concentrations of the MBP-fusion and non-fusion were determined by SDS-PAGE. There was
no significant difference in the anti-WCRW activity of the trypsin-digested Cry8Hb between two
samples prepared from Bt as a protoxin and E. coli as an MBP fusion.

The MBP-Cry8Hb fusion was highly soluble in the HEPES buffer, but its trypsin-digested
Cry8Hb was not. The pH of the digested sample was raised to pH10.5, and Superdex 200 column
chromatography was performed with 25 mM CAPS-NaOH buffer, pH10 to purify the trypsin-digested
Cry8Hb away from MBP. Similarly, the Bt-made Cry8Hb protoxin was highly soluble in a neutral pH
buffer such as Tris-HCl buffer, pH8 but precipitated within a few minutes during the trypsin digestion.

2.3. DNA Shuffling of Cry3-Type Protein

The DNA shuffling technology described by Stemmer [7,8] was applied to examine the
relationship between solubility and activity of a Cry3 protein. This was to test the hypothesis that
increasing the solubility of the Cry toxin in the environment of WCRW midgut enhances the activity,
at least in a similar pH range. A new Cry3-type gene, termed IP3-1, was synthesized and used as
the parent gene for DNA shuffling. The IP3-1 peptide sequence was produced by computer-assisted
protein design using the Cry3-family proteins. IP3-1 peptide sequence differed from that of Cry3Aa
at the following residues: W106L (the 106th amino acid residue, Trp, in Cry3Aa was replaced with
Leu), M117I, V140F, I186V, F206L, K230H, S258T, P292S, E294G, F346L, G468A, L491F, M503T, R531G,
and I593M. The IP3-1 gene was cloned in pVER6805 and expressed as an MBP fusion with a poly
His tag. The 6XHis-MBP-IP3-1 fusion was highly expressed in the cytoplasm of E. coli BL21(DE3)
cells as a soluble protein. The protein was purified by Ni-NTA affinity chromatography (Figure 2,
Panel B, Lane 6) and then digested with trypsin. Within a few minutes of trypsin digestion at pH8, the
clear MBP fusion solution became turbid indicating that MBP removal reduced the solubility of IP3-1.
SDS-PAGE analysis showed that the digestion produced a minor 65 kDa polypeptide along with a major
55-kDa polypeptide in addition to a 44-kDa polypeptide (Figure 2, Lane 7) like Cry8Hb. The 55 kDa
polypeptide suggested that trypsin cleaved the loop between α-helices 3 and 4. Western blotting using
anti-MBP antibody confirmed that the 44 kDa polypeptide was MBP. Since this IP3-1 parent protein
was not soluble without MBP in the HEPES buffer at pH8, it was further mutated by DNA shuffling.

After shuffled IP3 DNA was cloned in E. coli, several clones were picked at random and sequenced
before the library was screened for intended traits. Sequencing revealed that the picked clones differ
from the parent IP3-1 by 5 to 10 amino acid mutations. The desired traits were not only high solubility,
but also anti-WCRW activity without MBP. However, it is possible that shuffling would produce
variants with high solubility but no or little anti-WCRW activity due to one or more detrimental
mutation(s). Therefore, the shuffled library was screened directly by anti-WCRW activity after the
fusion proteins were digested with trypsin to detach MBP, then the solubility of those active proteins
was examined. Since no anti-WCRW activity was observed with purified MBP, no further purification
was made after the digestion for high throughput screening that was necessary after DNA shuffling.
The protein concentration of the assay samples was set at 0.1 mg/mL, which was 17 ppm when mixed
in the diet. The screening identified six clones showing at least 50% insect responses. Those six proteins
were numbered IP3-2 to IP3-7.

MBP-fusion proteins of these highly active, shuffled IP3 variants were produced in flasks and
purified by large-scale Ni-NTA affinity chromatography. Concentrations of the purified proteins were
set at 2 mg/mL in 50 mM HEPES-NaOH buffer, pH8 and then digested with trypsin. None of those
highly active IP3 variants precipitated during the digestion, indicating increased solubility by DNA
shuffling at least up to 2 mg/mL. After 1-h digestion, the buffer pH in an aliquot was lowered to pH7
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with a small volume of HCl to confirm the solubility at pH7. No precipitation was observed with
any of those shuffled IP3 variants at pH7. Trypsin digestion of the MBP fusions of those shuffled IP3
variants was analyzed by SDS-PAGE. Figure 2, Lane 8 shows an example with MBP-IP3-7. SDS-PAGE
revealed that MBP-IP3-7 was digested with trypsin into two 65 and 44 kDa polypeptides. Unlike the
cases of MBP-IP3-1 (Figure 2, Lane 7), no 55 kDa band was observed with MBP-IP3-7 (Lane 8). All other
shuffled, highly active IP3 variants had SDS-PAGE profiles similar to that of IP3-7 indicating that
trypsin failed to digest the loop between α-helices 3 and 4.

2.4. Size Exclusion Chromatography of Trypsin-Digested IP3 Proteins

Superdex 200 column chromatography was used to separate the trypsin-activated, shuffled IP3
proteins from MBP. Since no precipitation was observed during the trypsin digestion at pH8,
the digestion mixture was loaded to the Superdex column without any pH adjustment. The elution
was made with 25 mM Tris-HCl buffer, pH8. Figure 3 shows an example of Superdex chromatography
conducted with IP3-7. Most of the 65 kDa polypeptide was eluted in Fractions 15–17 (peaked at 195 mL
elution volume). At this elution volume, ~70-kDa reference proteins such as bovine serum albumin
were expected to show up. Since the 65 kDa polypeptide in Fractions 15–17 was toxic to WCRW, it was
considered to be the mature IP3 toxin. This elution volume suggested that the trypsin-digested IP3-7
was monomeric at pH8. All other shuffled IP3 variants selected for high anti-WCRW activity showed
very similar chromatography patterns (data not shown) confirming that those shuffled, MBP-free
IP3 molecules were monomeric at pH8. SDS-PAGE indicated the peak in Fractions 18–19 contained
mostly a polypeptide of 44 kDa. This polypeptide was determined to be MBP with the anti-MBP
antibody. No significant anti-WCRW activity comparable to the 65 kDa protein was found in this 44 kDa
MBP sample.
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Figure 3. Superdex 200 column chromatography of trypsin-digested MBP-IP3-7 showing most of
65 kDa, MBP-free IP3-7 molecules were monomeric eluting at approx. 195 mL elution volume
(Fraction 16) from this GE 26/70 XK preparative column. The 44 kDa MBP appeared at approx.
215 mL elution volume (Fractions 18–19). For this example, 5 mL of 2 mg/mL MBP-P3-7 were digested
with trypsin as described in Materials and Methods, and the whole mixture was loaded into the column
without any pH adjustment. The elution was made with 25 mM Tris-HCl buffer, pH8 at 2 mL/min
using a Gilson 306 HPLC pump under TRILUTION® LC computer software control for high elution
volume reproducibility. The column eluate was monitored with a UV detector at 280 nm and collected
by fraction collector starting at 72 mL elution volume as shown on the top of the chromatogram. Each
fraction was 8 mL. Selected fractions, 7 to 9 and 15 to 24, were analyzed by SDS-PAGE. Numbers on
the PAGE gel indicate the fraction numbers corresponding to those on the top of the chromatogram.
A protein size marker, SeeBlue® Plus-2, was included in the last (right side) lane with approximate
molecular weights in kDa.
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On the other hand, IP3-1 required high-pH CAPS buffer to conduct the chromatography (Figure 4).
The IP3-1 protein precipitated during trypsin digestion under the same condition as those of shuffled
IP3 in 50 mM Tris-HCl buffer, pH8 indicating insolubility at this pH and concentration. Therefore, pH of
the digestion mixture was raised to pH10.5 before it was loaded to the Superdex column. At pH10, the
IP3-1 toxin, mostly 55 kDa by SDS-PAGE, was eluted at an elution volume similar to that of shuffled
IP3 proteins (Figure 4). The elution volume of the trypsin-digested IP3-1 protein indicated that the size
of the protein is around 70 kDa, not 55 kDa as shown by SDS-PAGE. It is likely that the first three alpha
helices, 1–3, were still attached to the remaining IP3-1 protein after trypsin cleaved the loop between
α-helices 3–4 until it was exposed to SDS.
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Figure 4. Superdex 200 column chromatography of trypsin-digested MBP-IP3-1 (upper trace) overlaid
on the top of the trance of trypsin-digested MBP-IP3-7 (lower trace from Figure 3). After trypsin
digestion of IP3-1, the protein was solubilized by increasing pH with 25 mM CAPS and NaOH to pH
10.5 and loaded to the column. Other experimental conditions were identical to those described in
Figure 3 except for 25 mM CAPS-NaOH buffer, pH10 used as the elution solvent for IP3-1.

2.5. Activity of Shuffled IP3 Proteins to WCRW

Dose-response assays determined EC50 values of those selected IP3 variants. A summary of the
assay results is shown in Table 1. All shuffled IP3 variants were highly active without MBP while the
parent IP3-1 required MBP to reach the level of the activity similar to those of the shuffled variants.
Those six highly active clones were sequenced. DNA shuffling added 6 to 8 mutations to the IP3-1
sequence (Table 2A and Table 2B, gray shade). Among those mutations, several Lys residues were
mutated to Glu, possibly making the protein more acidic. When the shuffled IP3 sequences were
compared with Cry3Aa, there were 21 to 23 mutations.

Table 1. Anti-WCRW activity of IP3 shuffled variants determined by dose-response insect assay.

Sample ID EC50 (ppm)

Average Std. Dev. N

IP3-1 214 109 3

IP3-2 19 11.3 3
IP3-3 14.7 6.03 3
IP3-4 13.7 7.77 3
IP3-5 11.3 6.51 3
IP3-6 11.6 2.07 3
IP3-7 7.33 2.52 3

MBP-IP3-1 16.1 5.7 6

Std. Dev.: standard deviation, N: number of assay replications.
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Table 2A. Sequence and structural analysis of IP3 variant proteins produced by DNA shuffling.

Cry3Aa1− IP3-1 IP3-2 IP3-3

Resd# AA 2nd St α/β # Sol Exp Adj HyPo pKa AA Adj HyPo pKa AA Adj HyPo pKa AA Adj HyPo pKa

63 K Helix 1 68% −2.66 10.4 K −2.66 10.4 K −2.66 10.4 K −2.66 10.4

97 N Helix 2 97% −3.39 N −3.39 N −3.39 N −3.39
106 W Helix 2 1% 0 L 0.02 L 0.02 L 0.02
117 M Helix 2 2% 0.04 I 0.09 I 0.09 I 0.09

119 Q Coil 55% −1.91 Q −1.91 Q −1.91 Q −1.91

140 V Helix 3 1% 0.05 F 0.03 F 0.03 F 0.03
152 K Helix 3 97% −3.77 10.4 K −3.77 10 E −3.87 4.3 E −3.87 4.3
158 R Coil 18% −0.83 12 R −0.83 E −0.74 E −0.74
186 I Coil 37% 1.66 V 1.03 V 1.03 V 1.03
206 F Helix 5 2% 0.05 L 0.06 L 0.06 L 0.06

221 E Coil 86% −3.01 4.3 E −3.01 4.3 E −3.01 4.3 S −0.86
222 K Helix 6 96% −3.75 10.4 K −3.75 10.4 K −3.75 10.4 S −0.96
230 K Helix 6 98% −3.81 10.4 H −3.13 6 H −3.13 6 H −3.13 6
232 Q Helix 6 5% −0.16 Q −0.16 Q −0.16 Q −0.16
258 S Coil 54% −0.43 T −0.38 T −0.38 T −0.38
292 P Coil 48% −0.76 S −0.48 S −0.48 S −0.48
294 E Coil 55% −1.91 4.3 G 0 G 0 G 0
340 I Sheet 2 0% 0 I 0 V 0 V 0
346 F Sheet 2 35% 0.97 L 1.32 L 1.32 L 1.32
384 K Coil 70% −2.75 10.4 K −2.75 7.3 E −2.82 4.3 E −2.82 4.3
468 G Helix 0% 0 A 0 A 0 A 0
472 Q Sheet 10 14% −0.49 Q −0.49 L 0.55 L 0.55
491 L Sheet 11 4% 0.13 F 0.1 F 0.1 F 0.1

496 K Turn 24% −0.95 10.4 K −0.95 10.4 K −0.95 10.4 K −0.95 10.4

503 M Sheet 12 52% 0.99 T −0.37 T −0.37 T −0.37

531 R Coil 43% −1.92 12 G 0 G 0 G 0
557 Y Coil 70% −0.91 10 Y −0.91 10 Y −0.91 10 Y −0.91 10

584 F Sheet 19 18% 0.5 F 0.5 F 0.5 F 0.5
589 F Sheet 19 1% 0.04 F 0.04 L 0.05 L 0.05

593 I Coil 6% 0.26 M 0.16 M 0.16 M 0.16
610 S Coil 55% −0.44 S −0.44 S −0.44 S −0.44

Average HyPo & pKa= −0.94 9.55 −0.84 8.61 −0.81 7.51 −0.65 7.57

HyPo, pKa reduction= −0.1 0.94 −0.13 2.03 −0.29 1.98

Resd# = residue number; AA = amino acid; 2nd St = secondary structure; α/β # = α helix. and β strand numbers used in the Cry3Aa X-ray structure; Sol Exp = side residue solvent
exposure; HyPo = hydrophobicity index; Adj = adjusted by residue solvent exposure; Gray shade = mutations specific to shuffled variants.
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Table 2B. Sequence and structural analysis of IP3 variant proteins produced by DNA shuffling.

IP3−4 IP3-5 IP3-6 IP3-7

Resd# AA Adj HyPo pKa AA Adj HyPo pKa AA Adj HyPo pKa AA Adj HyPo pKa
63 R −3.07 12 R −3.07 12 E −2.73 4.3 E −2.73 4.3
97 D −3.39 3.9 D −3.39 3.9 N −3.39 N −3.39

106 L 0.02 L 0.02 L 0.02 L 0.02
117 I 0.09 I 0.09 I 0.09 I 0.09
119 H −1.74 6 H −1.74 6 Q −1.91 Q −1.91
140 F 0.03 F 0.03 F 0.03 F 0.03
152 E −3.87 4.3 E −3.87 4.3 E −3.87 4.3 E −3.87 4.3
158 E −0.74 E −0.74 E −0.74 E −0.74
186 V 1.03 V 1.03 V 1.03 V 1.03
206 L 0.06 L 0.06 L 0.06 L 0.06
221 E −3.01 4.3 S −0.86 E −3.01 4.3 S −0.86
222 K −3.75 10.4 S −0.96 K −3.75 10.4 S −0.96
230 H −3.13 6 H −3.13 6 H −3.13 6 H −3.13 6
232 Q −0.16 Q −0.16 H −0.15 6 H −0.15 6
258 T −0.38 T −0.38 T −0.38 T −0.38
292 S −0.48 S −0.48 S −0.48 S −0.48
294 G 0 G 0 G 0 G 0
340 I 0 I 0 I 0 I 0
346 L 1.32 L 1.32 L 1.32 L 1.32
384 K −2.75 10.4 K −2.75 10.4 K −2.75 10.4 K −2.75 10.4
468 A 0 A 0 A 0 A 0
472 Q −0.49 Q −0.49 Q −0.49 Q −0.49
491 F 0.1 F 0.1 F 0.1 F 0.1
496 K −0.95 10.4 K −0.95 10.4 E −0.97 4.3 E −0.97 4.3
503 T −0.37 T −0.37 T −0.37 T −0.37
531 G 0 G 0 G 0 G 0
557 Y −0.91 10 Y −0.91 10 H −2.25 6 H −2.25 6
584 L 0.7 L 0.7 F 0.5 F 0.5
589 F 0.04 F 0.04 F 0.04 F 0.04
593 V 0.16 V 0.16 M 0.16 M 0.16
610 S −0.44 S −0.44 T −0.39 T −0.39

Ave= −0.84 7.77 −0.68 7.88 −0.88 6.25 −0.72 5.9

Reduction= −0.1 1.78 −0.26 1.67 −0.06 3.3 −0.22 3.65

Resd# = residue number; AA = amino acid; 2nd St = secondary structure; α/β # = α helix.and β strand numbers used in the Cry3Aa X-ray structure; Sol Exp = side residue solvent
exposure; HyPo = hydrophobicity index; Adj = adjusted by residue solvent exposure; Gray shade = mutations specific to shuffled variants.
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2.6. Analysis of Mutations Found in IP3 Shuffled Variants

Possible structural modifications arising from mutations occurred to IP3-1 by DNA shuffling were
analyzed on the 3D X-ray structure of Cry3Aa [12] and summarized in Table 2B. Amino acid sequence
diversities introduced to IP3-1 and its shuffled variants are relatively conserved with the sequence
of Cry3Aa. It is likely that the diversities cause no significant changes to the Cry3Aa 3D structure,
especially the protein backbone folding. Indeed, a 3D structural model of IP3-1 built with Accelrys
Discovery Studio software suite utilizing the homology modeling subroutine MODELER 9.15 [14]
showed no significant differences from the Cry3Aa structure. Table 2B lists 2D structure assignments,
side-chain solvent exposure, hydrophobicity indices and pKa values of amino acid residues specific
to IP3-1 and those mutated by shuffling. At the bottom of the table, average hydrophobicity and
pKa of all amino acid residues specific to each IP3 variant are listed. Hydrophobicity indices were
adjusted by their corresponding side-chain solvent exposure percentages. For pKa, only those residues,
charged atoms of which were fully exposed, were included in the average pKa calculation. In shuffled,
activity-enhanced IP3 variants, several charge-converting mutations such as Lys mutated to Glu were
found on solvent-exposed residues. The analysis indicated that the mutations introduced by shuffling
(gray shaded) made the IP3 variants more acidic than the parent IP3-1 protein. As shown in the bottom
row of Table 2B, average pKa values of shuffled IP3 proteins were lower than that of IP3-1 by 0.7 to 2.7.
On the other hand, no significant changes in hydrophobicity were induced by shuffling. Interestingly,
IP3-7, which showed the highest anti-WCRW activity, had the lowest average pKa.

Mutations introduced by DNA shuffling were mapped on the Cry3Aa structure (Figure 5). It was
found that most pKa−reducing (acidifying) mutations, such as Lys to Glu, were clustered on one side
of the IP3 protein molecule (Figure 5, Panel A). There was no such mutation on the opposite side
(Panel C). Since the coordinates of the first 60 amino acid residues are not available in the Cry3Aa
X-ray structure, the orientation of MBP fused to the N-terminus of IP3 remains uncertain. However,
it seems that MBP is on the side of IP3-1 shown in Panel A. This assumption is based on a deduced
structure of this part of the protein from the Cry2Aa structure [15]. Those five mutations found in the
surface area (Panel A, circled) which is presumably covered by MBP (Panel B) may assume MBP’s
solubility enhancement role. Indeed, MBP has quite a few acidic or negatively charged, amino acid
residues on its surface (Panel B). This suggests that the negative charges on a particular side of IP3
molecule as shown in Panel A is important for the high anti-WCRW activity.
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Figure 5. The 3D X-ray structure of Cry3Aa (Panel A and C) on which pKa-reducing mutations
introduced by DNA shuffling are mapped and shown in dark gray. Those mutations are clustered
on one side (A) of the protein on which MBP is believed to occupy when fused to IP3. In Panel B,
negatively charged Asp and Glu residues on MBP are shown in dark gray on the solvent-exposed side,
which is presumably not attaching to IP3 or Cry3Aa. Panel C shows a view of the other side of Cry3Aa,
opposite to Panel A. No mutations are visible on this side displayed in Panel C.
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2.7. Processing of MBP-IP3-7 in WCRW Gut Fluid

Digestions of MBP-IP3-7 in WCRW gut fluid were observed by SDS-PAGE (Figure 6).
Within 15 min, the MBP-IP3-7 fusion was digested down to two 65 kDa and 44 kDa polypeptides.
The 44 kDa polypeptide was considered to be MBP because of the size. At 0 min, MBP-IP3-7 showed
two distinct bands (Figure 6, Lane 3) slightly larger than the 65 kDa and 44 kDa bands which were not
seen at and after 15 min and after that. This observation suggests that not only the junction between
MBP and IP3-7 but also a site between the leader sequence and the mature toxin, or even within the
leader sequence, were possible sites for WCRW gut proteases. After IP3-7 was digested down to 65 kDa,
it was resistant to any further digestion. The absence of the 55 kDa polypeptide indicates that the loop
between α3 and α4 of IP3-7 was resistant to WCRW gut proteases. The MBP-free, trypsin-digested
65-kDa IP3-7 was purified by Superdex 200 column chromatography as shown in Figure 4 and exposed
to the gut fluid. The 65-kDa toxin was completely resistant to the insect proteases (Figure 6, Panel B).
Toxins 2019, 11, x FOR PEER REVIEW 13 of 20 

 

 
Figure 6. Digestion of MBP-IP3-7 (Panel A) and MBP-free, trypsin-digested, Superdex-purified IP3-7 
(Panel B) with WCRW midgut digestive fluid. Approx. 0.5 mg/mL of IP3-7 proteins were exposed to 
the gut fluid, and the digestion was observed by SDS-PAGE. In Panel A, Lane 2 was MBP-IP3-7 not 
exposed to the gut fluid. Lanes 3–8 were MBP-IP3-7 digested with the gut fluid for 0 min (Lane 3), 15 
min (Lane 4), 30 min (Lane 5), 1 h (Lane 6), 2 h (Lane 7) and 4 h (Lane 8). In Panel B, Lane 10 was 
MBP-free IP3-7 not exposed to the gut fluid. Lanes 11–16 were MBP-free IP3-7 incubated with the gut 
fluid for 0 min (Lane 11), 15 min (Lane 12), 30 min (Lane 13), 1 h (Lane 14), 3 h (Lane 15) and 16 h 
(Lane 16). Lane 17 was the gut fluid only. Lanes 1 and 9 were BenchMark™ Protein Ladder (Life 
Technologies, Carlsbad, CA, USA) with approx. molecular weights in kDa. 

3. Discussion 

A new Cry protein, Cry8Hb, was found in a Bt strain active against WCRW. Its primary 
sequence is similar to that of Cry8Ha. The host Bt strain of Cry8Ha, Bt185, was reported to be active 
against Asian cockchafer, Holotrichia parallela [16]. When two primary peptide sequences were 
compared between Cry8Ha and Cry8Hb, there were significant differences in Domain II. The 
2D-structure (α-helices and β-strands) assignment made on Cry8Hb indicates that those significant 
differences are in β5-β9 make the Cry8Hb Domain II Loop 2 that connects β6 to β7 unique. The 
specific sequence difference suggests that Loop 2 of Cry8Hb is important for its WCRW specificity.  

Yamamoto [17] reported that the Cry1A-type protoxin is highly soluble at a neutral pH. Upon 
ingestion, the Cry1A-type protoxin is activated by proteases in the insect digestive system. Trypsin 
can simulate the activation in vitro. When the Cry1A protoxin is digested with trypsin at pH8, the 
activated toxin precipitates. This precipitated toxin can then be solubilized in low or high pH away 
from pH7 indicating that its pI is around pH7. A similar observation was made with 
anti-WCRW-active Cry8Bb [6] and Cry8Hb (this study). During trypsin digestion of the Cry8Bb and 
Cry8Hb protoxins at pH8, those toxins precipitated. The gut fluid of Cry1A-susceptible insects is as 
alkaline as pH10 [18]. Under these conditions, the activated toxins, such as those of Cry1A and Cry8, 
remain soluble. Superdex gel filtration of trypsin-activated Cry3 and Cry8 toxins indicates that 
those toxins are monomeric in 25 mM CAPS-NaOH buffer, pH10. However, midgut fluid of 
WCRW is weakly acidic [19]. In acidic WCRW gut fluid, the activated toxin is likely to aggregate 
and precipitate as observed in vitro. On the other hand, the MBP fusion of the Cry8Hb toxin was 
highly soluble at pH8, and even at pH7, and its activity against WCRW was two-fold higher than 
that of the MBP-free toxin. Structural modeling of MBP-Cry8 fusion proteins indicated that the MBP 
molecule does not obstruct the receptor binding of Cry8 toxins, assuming the Domain II loops are 
involved in binding. It is possible that the MBP fusion binds to a receptor first, and then the MBP is 
excised from the Cry protein by gut proteases. We have found that the junction between MBP and 
the toxin is very sensitive not only to trypsin, but also to WCRW gut proteases in vitro. It is also 
possible that MBP is cleaved off by gut proteases before the toxin binds to a receptor. Regardless 
whether binding occurs before or after MBP excision, high solubility of the activated Cry protein in 
WCRW gut fluid appeared to be important for its activity. This solubility requirement was 

Figure 6. Digestion of MBP-IP3-7 (Panel A) and MBP-free, trypsin-digested, Superdex-purified IP3-7
(Panel B) with WCRW midgut digestive fluid. Approx. 0.5 mg/mL of IP3-7 proteins were exposed to
the gut fluid, and the digestion was observed by SDS-PAGE. In Panel A, Lane 2 was MBP-IP3-7 not
exposed to the gut fluid. Lanes 3–8 were MBP-IP3-7 digested with the gut fluid for 0 min (Lane 3),
15 min (Lane 4), 30 min (Lane 5), 1 h (Lane 6), 2 h (Lane 7) and 4 h (Lane 8). In Panel B, Lane 10 was
MBP-free IP3-7 not exposed to the gut fluid. Lanes 11–16 were MBP-free IP3-7 incubated with the gut
fluid for 0 min (Lane 11), 15 min (Lane 12), 30 min (Lane 13), 1 h (Lane 14), 3 h (Lane 15) and 16 h (Lane
16). Lane 17 was the gut fluid only. Lanes 1 and 9 were BenchMark™ Protein Ladder (Life Technologies,
Carlsbad, CA, USA) with approx. molecular weights in kDa.

3. Discussion

A new Cry protein, Cry8Hb, was found in a Bt strain active against WCRW. Its primary sequence
is similar to that of Cry8Ha. The host Bt strain of Cry8Ha, Bt185, was reported to be active against Asian
cockchafer, Holotrichia parallela [16]. When two primary peptide sequences were compared between
Cry8Ha and Cry8Hb, there were significant differences in Domain II. The 2D-structure (α-helices and
β-strands) assignment made on Cry8Hb indicates that those significant differences are in β5-β9 make
the Cry8Hb Domain II Loop 2 that connects β6 to β7 unique. The specific sequence difference suggests
that Loop 2 of Cry8Hb is important for its WCRW specificity.

Yamamoto [17] reported that the Cry1A-type protoxin is highly soluble at a neutral pH. Upon
ingestion, the Cry1A-type protoxin is activated by proteases in the insect digestive system. Trypsin can
simulate the activation in vitro. When the Cry1A protoxin is digested with trypsin at pH8, the activated
toxin precipitates. This precipitated toxin can then be solubilized in low or high pH away from pH7
indicating that its pI is around pH7. A similar observation was made with anti-WCRW-active Cry8Bb [6]
and Cry8Hb (this study). During trypsin digestion of the Cry8Bb and Cry8Hb protoxins at pH8, those
toxins precipitated. The gut fluid of Cry1A-susceptible insects is as alkaline as pH10 [18]. Under
these conditions, the activated toxins, such as those of Cry1A and Cry8, remain soluble. Superdex gel
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filtration of trypsin-activated Cry3 and Cry8 toxins indicates that those toxins are monomeric in 25 mM
CAPS-NaOH buffer, pH10. However, midgut fluid of WCRW is weakly acidic [19]. In acidic WCRW
gut fluid, the activated toxin is likely to aggregate and precipitate as observed in vitro. On the other
hand, the MBP fusion of the Cry8Hb toxin was highly soluble at pH8, and even at pH7, and its activity
against WCRW was two-fold higher than that of the MBP-free toxin. Structural modeling of MBP-Cry8
fusion proteins indicated that the MBP molecule does not obstruct the receptor binding of Cry8 toxins,
assuming the Domain II loops are involved in binding. It is possible that the MBP fusion binds to a
receptor first, and then the MBP is excised from the Cry protein by gut proteases. We have found that
the junction between MBP and the toxin is very sensitive not only to trypsin, but also to WCRW gut
proteases in vitro. It is also possible that MBP is cleaved off by gut proteases before the toxin binds
to a receptor. Regardless whether binding occurs before or after MBP excision, high solubility of the
activated Cry protein in WCRW gut fluid appeared to be important for its activity. This solubility
requirement was examined further. A synthetic cry3 gene, IP3-1, was expressed in E. coli as a fusion
with MBP and found that MBP enhanced the activity of IP3-1 13 fold.

Some technical issues of assaying insoluble proteins may exist. The activated Cry toxins are in
25 mM CAPS-NaOH buffer, pH10 to maintain the high solubility. On the other hand, the WCRW
diet used in this study is about pH6. The pH of the diet-toxin mixture was pH6.1. At this low pH,
the solubility of the toxin must not be maintained in the diet. The other possible issue is that high pH
of the CAPS buffer may denature the Cry toxins. However, the toxin denaturation is unlikely since no
significant activity reduction was observed with the activated toxin in the high pH CAPS buffer when
compared with the protoxin activity in the neutral HEPES buffer.

Cry3 proteins are naturally truncated. The protein is not soluble in a neutral pH solution without
a highly concentrated salt [12]. It has been reported that Cry3 proteins are not highly active against
WCRW unless certain modifications are made to the proteins [2,3]. For example, Walters et al. [3]
reported that engineering the loop between α-helices 3 and 4 increased the anti-WCRW activity.
It seems the efficient digestion of the loop by chymotrypsin/cathepsin is important for the activity.
A similar loop modification made on Cry8Bb enhanced the activity [10]. Our present study showed
another way of enhancing the activity of WCRW-specific Cry proteins. During this study, we have
found that MBP increases the solubility of those Cry8 proteins at a neutral pH and enhances the
activity. Also, the activity enhancement with MBP was observed with a synthetic Cry3A-type protein
called IP3-1.

DNA shuffling technology was applied to increase the anti-WCRW activity of the IP3 protein
without MBP. The shuffling produced IP3 variants with both increased solubility at a neutral pH and
high anti-WCRW activity. Superdex size-exclusion column chromatography indicates that the IP3
shuffled variant proteins are mostly monomeric at pH8. Those soluble and highly active variants share
a common feature, namely, two mutations in the loop between α-helices 3 and 4 that make the loop
resistant to WCRW gut proteases. Most mutations found in the shuffled IP3, particularly those making
the protein acidic, are clustered on one side of the IP3 molecule on which MBP is likely to attach when
fused to IP3. This assumption on the MBP-IP3 structure indicates that those mutations are likely to
assume the solubility enhancing function of MBP.

DNA shuffling requires an efficient screening of a large number of variants. During this study,
Cry8Hb was not chosen to conduct DNA shuffling to improve its solubility and activity because
of its low activity even as an MBP fusion. The EC50 of MBP-Cry8Hb was 178 ppm. Without MBP,
it was 390 ppm. To screen shuffled variants at this concentration, it requires 100 µL of approximately
3 mg/mL MBP-fusion protein samples. It is highly challenging to prepare a volume of protein samples
at this concentration in a high throughput mode. In addition, there is no X-ray 3D structure for Cry8Hb
available. Without the structure, it is difficult to understand the MBP-dependent activity enhancement
by DNA shuffling as we have shown with Cry3. Furthermore, we found that the activity enhancement
of Cry3 (IP3) with MBP is much higher than that of Cry8.
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4. Materials and Method

4.1. High-Throughput Cry Protein Preparation from Bt Strains

A large number of Cry proteins from a Bt culture collection were screened for anti-WCRW activity.
For screening, a Bt culture collection was arranged in seed culture plates made of 96-well microtiter
plates containing LB-agar. Six production plates using Bel-Art™ Scienceware® 96-Deep Well Plates
(Scienceware, Wayne, NJ, USA) were prepared with 1 mL of a Bacillus sporulation medium [17] per
well to produce spores and crystals. Those six production plates were inoculated with Bt cultures from
one seed culture plate. The production plates were covered with AirPore tape (Qiagen, Valencia, CA,
USA) and incubated in a shaker-incubator at 350 rpm, 30 ◦C for 72 h until the Bt cultures sporulated
and produced insecticidal crystals. The spores and crystals from 6 production plates were collected in
one combined plate as pellets by centrifuging at 3300× g for 30 min. Any soluble materials, particularly
proteases, were removed from the spore-crystal pellets by suspending the pellet in each well in 2 mL
500 mM NaCl followed by centrifugation to re-collect spores and crystals. This process was repeated
three times. The final spore and crystal preparations were suspended in 120 µL water per well and
chilled on ice. To solubilize the crystals, 150 µL of pre-chilled 4% 2-mercaptoethanol, pH of which was
adjusted to pH10.5 with 10 N NaOH, were added to the crystal suspension in each well, and the plates
were centrifuged at 3300× g for 30 min. The supernatant was aspirated with a 96-channel pipette and
desalted (buffer-exchanged) by Sephadex G25 gel filtration. Sephadex G25 was pre-saturated with
25 mM HEPES-NaOH buffer, pH8 to make the final Cry protein samples in this buffer, which is not
toxic to WCRW even at 100 mM. The purity and concentrations of the Cry proteins in the eluate from
Sephadex were determined by SDS-PAGE using 96-well E-PAGE™ 6% Protein Gels (Life Technologies,
Carlsbad, CA, USA). The SDS-PAGE gel was stained with Coomassie Blue and photographed.

4.2. Bioassay of Cry Proteins

Insecticidal activity of purified Cry proteins was determined in 96-well microtiter plates as
reported by Cong et al. [9] for lepidopteran insect species. In this study, neonate larvae of WCRW
were used and scored in the same 0–3 numerical scoring system, which was based on larval growth
and mortality. Since each Cry protein sample per dose was tested in 6 replicated wells, the theoretical
maximum score was 18 at each treatment (a score of 3 assessed in all six wells). EC50 was defined as the
toxin protein concentration that produced a total score of 9 (50% of the maximum score of 18). For the
first-tier screening, only one appropriate dose was assayed to eliminate those with little or no activity.
Active samples found by the first-tier screening were then assayed in a dose-response scheme to
determine EC50. For some samples, the dose-response assay was repeated several times. The number
of repetitions is reported in Results as “N” along with the 95% confidence limits or standard deviations.

4.3. Cloning and Sequencing a WCRW-Active cry Gene from DP7-F11 Bt Isolate

The WCRW-active cry gene was cloned from a genomic DNA preparation of the DP7-F11 Bt isolate.
The genomic DNA sample was prepared from DP7-F11 cells harvested during the early logarithmic
growth at A600nm = 0.2 to 0.3 using QIAprep® Spin Miniprep kit (Qiagen). Bt cry genes have been
found on large plasmids. Since P2 in the QIAprep kit is an alkaline solution that may denature large
plasmids, P2 was replaced with 1% SDS in water. A fragment of the WCRW-active cry gene in DP7-F11
was amplified from the genomic DNA preparation by 30-cycle PCR using Phusion® High-Fidelity
DNA Polymerases (New England BioLabs, Ipswich, MA, USA). The PCR was performed at 72 ◦C for
10 s per cycle using primers listed below for annealing at 37 ◦C for 30 s following the denaturation
step at 94 ◦C for 10 s.

Forward primers (F); Reverse primers (R):

F1, 5′-GATAAAATCACTCAAATTCC; R-1, 5′-GGGATGAATTCGATTCGGTC0
F-2, 5′-GGCGAAATCACCCAAATACC; R-2, 5′-GGGATAAATTCGATTCGGTC
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F-3, 5′-GATAAAATTACTCAGATTCC; R-3, 5′-GGAATAAATTCAATTCTATC
F-4, 5′-ACAAAAATCTCACAAATCCC; R-4, 5′-GGAATAAGTTCGAACTTATC
F-5, 5′-GATAAAATTACTCAAATTCC; R-5, 5′-GGGATGAATTCGATTTTGTC
F-6, 5′-AATAAAATCACTCAAATACC; R-6, 5′-GGGATGAGCTCGATTCGGTC
F-7, 5′-CAGAAAATCACCCAGATCCC; R-7, 5′-GGGATGAACTCGATACGATC
F-8, 5′-GAAAGAATCACACAATATCC; R-8, 5′-GGGATTAATTCCATTCTATC

These primers were based on the two conserved regions within the coding sequences for Domain
III of Cry7 and Cry8 proteins [20]. All those primers were mixed and added to one PCR reaction
mixture. DNA amplified by PCR was cloned in E. coli by using Zero Blunt® TOPO® PCR Cloning Kit
for Sequencing (Life Technologies, Carlsbad, CA, USA). A large number of clones were sequenced,
and the sequence analysis revealed one clone, which appeared to be a fragment encoding Domain III
of a novel Cry protein. This gene was tentatively named RX002.

The 5′-flanking region of the PCR-amplified portion of RX002 including the sequence encodes
Domain I and Domain II was amplified using APAgene™ genome walking Kit (Bio S&T, Montreal, QC,
Canada) following the manufacturer’s recommended procedure. For this gene walking, four reverse
primers were designed based on the partly determined sequence of the new RX002 gene as follows:

RX002-Ra, 5′-TATTAAGGGGCCAACTGCTCCGGCTAATGG
RX002-Rb, 5′-GCTCCGGCTAATGGAACACCCAATAACC
RX002-Rc, 5′-GATCTCCAGTATTGTAACCATTTACTG
RX002-Rd, 5′-AATCAGTTGTTGGTTCATTCGC

DNA produced by the genome walking procedure was cloned in the same TOPO®-cloning kit
and sequenced. The 3’ flanking region of the cloned RX002 Domain III was amplified by PCR using
the following primer set:

Forward primer, 5′-TGCGGAGGAATTGATAGATGCGG
Reverse primer, 5′-TCTGWYTGATTYSCACCATCACG

The forward primer was from the sequence of RX002, which had been determined by the first
cloning step. Since the RX002 sequence appeared to be a Cry8 type, the reverse primer was obtained
from a highly homologous region of known cry8 genes encoding the protoxin domain by aligning
those sequences. The PCR amplification produced most of the protoxin coding region except for the
200 to 300 bp towards the C-terminus based on the size of the RX002 protein. In addition, no stop
codon was found in the amplified 3′ sequence. The missing end was then obtained by inverted PCR on
TaqI-digested and circularized template DNA prepared from the DP7-F11 genomic DNA preparation
using two primers designed from the RX002 sequence as follows:

Forward primer, 5′-GGAGATGGCTACGTAACGATTCG
Reverse primer, 5′-CCTTCTTTTCTTGCGGTAACACG

PCR amplified DNA was cloned into the TOPO cloning system as described above and sequenced.
All fragments of RX002 were aligned to produce the full-length sequence. The RX002 gene sequence
was confirmed by PCR amplification of the entire coding region in one reaction using primers designed
from the assembled sequence and the DNA sample prepared from DP7-F11. The RX002 nucleotide
sequence was submitted to the NCBI Genbank, and the peptide sequence was sent to the Bacillus
thuringiensis Toxin Nomenclature Committee for new Cry protein assignment. The committee assigned
a new Cry name as Cry8Hb1.

4.4. Cloning cry8Hb (RX002) in Bt and E. coli for Protein Expression

The cry8Hb (RX002) gene encoding the entire protoxin was cloned in a Bt-E. coli shuttle vector,
pMAXY3206, to express it in a plasmid-cured, cry-minus Bt G8 strain. The cloning procedure and
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the pMAXY3206 shuttle vector constructed with pBluescriptKS(+) for E. coli and pBC16.1 for Bt were
described by Cong et al. [9].

In addition to cloning the whole protoxin in Bt, a 5′ portion of the cry8Hb gene encoding a 75 kDa
polypeptide (Met1- Lys699) was cloned in the pVER6805 vector to be expressed in E. coli as a fusion
with MBP. The pVER6805 vector, which is similar to pMAL-pIII of New England BioLabs, has the
same promoter and gene encoding MBP as those of the pMAL vector. In pVER6805, a poly histidine
tag (6xHis) was attached to the MBP N-terminus for Ni-NTA affinity purification, and the EcoRI site
was replaced with SphI for cloning the newly found cry gene inframe after MBP between SphI and
BamHI recognition sequences. The SphI site utilizes the translation start ATG encoding Met. The toxin
portion cloned in PVER6805 was amplified from the whole cry8Hb gene by PCR using the following
two primers:

Forward primer, 5′-CAAAGCATGCGTCCAAATAATCAAAATGAATATG
Reverse primer, 5′-GTTTGGATCCTTACTTTGCCACCTCTAAATCGTTC

These primers add SphI and BamHI recognition sequences (underlined) at the 5’ and 3’ ends of
the cry8Hb gene when amplified by PCR. The forward primer sequence mutates the second amino
acid residue of Cry8Hb from Ser to Arg. The PCR-amplified gene was digested with SphI and BamHI
and cloned in pVER6805, which had been digested with the same enzymes. After cloning in Top10 E.
coli (Life Technologies, Carlsbad, CA, USA), the DNA sequence of MBP-Cry8Hb was confirmed by
Sanger DNA sequencing. All DNA sequencing during this study was done by MCLab (South San
Francisco, CA, USA). Expression of the MBP-Cry8Hb fusion protein was performed in BL21 (DE3) E.
coli (Life Technologies, Carlsbad, CA, USA).

4.5. IP3-1 Sequence Design and DNA Shuffling

A new Cry3-type protein termed IP3-1 was designed using Cry3Aa as the backbone on which
mutations were introduced. Those mutations were chosen from sequence diversities among naturally
occurring Cry3-type proteins available in the NCBI Protein Database. The IP3-1 gene was synthesized
using E. coli codon usages by DNA2.0 (Newark, CA, USA). The synthesized IP3-1 gene was amplified
by PCR using the following primers and cloned in pVER6805 as described above for cry8Hb (RX002).

Forward primer, CAAAGCATGCACCCTAACAACAGGTCAGAGC (underline: SphI)
Reverse primer, GTTTGGATCCTCAGTTGACCGGGATGAACTC (underline: BamHI)

When IP3-1 was cloned in pVER6805, the second residue was replaced with His by the forward
primer to create the SphI site. The nucleotide sequence of IP3-1 was disclosed in a patent [21].

DNA shuffling was performed on IP3-1 under mutational conditions as described by
Stemmer [7,8]. The same primer set made for cloning the IP3-1 gene in pVER6805 was utilized
to amplify shuffled DNA by PCR. The PCR-amplified DNA was digested with SphI and BamHI and
cloned in pVER6805. E. coli BL21(DE3) was transformed with pVER6805 holding the shuffled genes
and plated on LB-carb100 (carbenicillin 100 µg/mL) agar plates for picking individual clones.

About 5000 clones were selected in 96-well microtiter plates containing LB-carb100 agar for
seed cultures. From each seed plate, 16 production plates consisting of 96-deep well Scienceware®

plates containing 1 mL MagicMedia™-carb100 (Life Technologies, Carlsbad, CA, USA) in each well,
were inoculated. The plates were sealed with AirPore tape and incubated in a shaker-incubator running
at 250 rpm at 37 ◦C for 8 h followed by 16 ◦C for 64 h. During the 16 ◦C incubation, the shuffled
IP3 protein was accumulated in the BL21 cell as a soluble protein. The E. coli cells produced in one
production plate were collected by centrifugation at 3300× g for 15 min. After supernatant was
discarded, the cell suspension in the second plate was pipetted into the centrifuged plate, and the cells
were packed on to the existing pellet by centrifugation. Repeating the process, all cells from 16 plates
were combined in one plate. The centrifuged cells in each well were lysed in 400 µL of 2 mg/mL
lysozyme solution in 50 mM sodium phosphate buffer, pH8 containing 5 mM MgCl2 and 0.25 unit/mL
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OmniCleave endonuclease (Epicenter, Madison, WI, USA) at 37 ◦C for 3 h followed by addition of
1% Triton X100. The lysed cells were centrifuged at 3300× g for 30 min to collect supernatant called
clear lysate. The clear lysate preparations were screened for full-length IP3 expression by Western
blotting using E-PAGE, iBlot® nitrocellulose membranes (Life Technologies, Carlsbad, CA, USA) and
anti-MBP antibody (Sigma-Aldrich cat# A3963, St Louis, MO, USA) following Life Technologies’ iBlot
protocol. Full-length IP3 proteins confirmed by Western blotting were purified by Ni-NTA affinity
chromatography in AcroPrep™ 1 mL 96-well filter plates with 1.0 µ glass fiber media (Pall Corporation,
Port Washington, NY, USA). In the filter plate, 200 µL bed volume of Ni-NTA Superflow (Qiagen, )
was loaded per well, and approximately 400 µL of clear lysate was charged. The affinity purification
was performed by following the manufacturer’s instruction except for centrifuging the filter plates
stacked on 96-deep well receiver plates at 10× g for 3 min for sample loading, washing, and elution.
Elution was made with 200 µL of 200 mM histidine in 50 mM sodium phosphate buffer, pH8 from
each well. Histidine and sodium phosphate in the eluate were exchanged with 25 mM HEPES-NaOH
buffer, pH8 by Sephadex G25 gel filtration in the AcroPrep™ filter plates. Sephadex G25 Superfine
(GE Healthcare Life Sciences, Pittsburg, PA, USA) was suspended in 25 mM HEPES-NaOH buffer,
pH8, and loaded to the filter plates to make a 700 µL bed volume in each filter well. The gel filtration
was made in the Sephadex filter plate which works like a bundle of 96 spin columns.

The concentrations of Ni-NTA-purified proteins were determined by Caliper LabChip® GXII
capillary electrophoresis. The protein analysis was repeated at least three times until the final
concentrations were considered reliable within the predetermined deviation of less than 10%.
The concentration was normalized with 25 mM HEPES-NaOH buffer, pH8 using Hamilton Microlab
Star before submission for bioassay.

4.6. Large-Scale Purification of Bt Cry Proteins

For purifying large amounts of Bt Cry proteins, especially alkaline-solubilized protoxins which
are highly soluble (for example, 10 mg/mL) in Tris-HCl buffer at pH 8, the Bt cultures were grown in
flasks, and the protoxin proteins were purified by size exclusion column chromatography as described
by Yamamoto [17]. The purified Cry proteins were dialyzed in 25 mM HEPES-NaOH buffer, pH8 for
insect bioassay. The dialyzed Cry proteins were analyzed by SDS-PAGE using NuPAGE® Bis-Tris gels
with MOPS buffer (Life Technologies, Carlsbad, CA, USA).

Selected variants of shuffled IP3 proteins cloned in pVER6805 as a fusion with 6XHis-MBP were
purified from E coli cells produced in flasks. The proteins were liberated by disrupting the cells with
1% Triton X100 after the lysozyme treatment as described in Section 4.5. Ni-NTA Superflow (Qiagen)
was used to conduct affinity purification in 1.5 × 12 cm BioRad Econo-Pac® columns following
Qiagen’s protocol. The eluate from Ni-NTA column was dialyzed in 25 mM HEPES-NaOH buffer,
pH8. MBP was removed by digesting the fusion with trypsin at 1:50 enzyme to substrate ratio in 50
mM HEPES-NaOH buffer, pH8 at 37 ◦C for 1 h.

Trypsin-activated mature Cry toxins particularly those of Cry8Hb and IP3-1 were insoluble in
the HEPES buffer at pH8. Almost immediately after trypsin was added to the MBP fusions of those
Cry toxins for activation, the toxin proteins precipitated. Therefore, the trypsin-digested toxins were
solubilized by raising the pH to 10.5 with 25 mM CAPS and NaOH and purified by Superdex 200
preparative column chromatography using 25 mM CAPS-NaOH buffer, pH10 as the elution-elution
solvent. The column eluate was monitored by SDS-PAGE, and fractions contained the toxin were
collected, combined and concentrated in Amicon Ultra-15, 10 kDa-cutoff, centrifugal filter units
(Sigma-Aldrich, St Louis, MO, USA). The purified toxins in the CAPS buffer were subjected to the
insect bioassay. The large-scale preparation of shuffled IP3 toxins after trypsin digestion was performed
essentially in the same way as described above for IP3-1. For Superdex 200 column chromatography,
25 mM Tris-HCl buffer, pH8 was used as those variants remained soluble during and after the
trypsin digestion. For the bioassay, Tris buffer was replaced with 25 mM HEPES-NaOH buffer, pH8.
Concentrations of MBP-removed Cry toxins were determined by scanning the SDS-PAGE gel by
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Un-Scan-It-gel™ analysis software (Silk Scientific, Orem, UT, USA) using a known concentration of
bovine serum albumin as a standard.

4.7. 3D Structural Analysis of IP3 Proteins

Several structural metrics of IP3-specific amino-acid residues were collected from a molecular
property table of Cry3Aa generated by Discovery Studio software suite (Accelrys, San Diego, CA,
USA). Hydrophobicity and pKa metrics of IP3-specific residues were based on those defined by Kyte
and Doolittle [22] and by Creighton [23], respectively. The solvent accessibility subroutine calculated
percent sidechain solvent accessibility with parameters of 240 grid points per atom and 1.4-Å probe
radius. Space-filling protein structure models of Cry3Aa (1dlc) [12] and E. coli MBP (3hpi) [24] shown
in Figure 5 were generated by RasMol Molecular Graphics [25].

4.8. Digestion of a Shuffled IP3 Protein in WCRW Midgut Fluid

Digestion of the shuffled IP3-7 protein in WCRW midgut fluid was observed in vitro. The gut fluid
was obtained from gut samples dissected out from the third-instar WCRW larvae fed on germinating
corn roots grown in the absence of soil under laboratory conditions. The dissected gut samples from
20 larvae were pooled in a single tube and centrifuged at 20,000× g at 4 ◦C for 20 min. The resulting
supernatant was transferred to separate tubes in aliquots to use immediately or to be stored at −80 ◦C
after they were flash-frozen in liquid nitrogen. The shuffled IP3 protein was diluted to 0.5 mg/mL
in phosphate buffer saline containing 20% of the midgut fluid and incubated at 25 ◦C to observe the
digestion in vitro. Two µL of this mixture were taken at predetermined time intervals and mixed
with 20 µL of NuPAGE® LDS sample buffer (Life Technologies, Carlsbad, CA, USA) that contained
a reducing agent and Roche cOmplete™ Protease Inhibitor Cocktail obtained from Sigma-Aldrich
(St Louis, MO, USA) at 2.5-fold higher concentration than the manufacturer’s suggested dilution.
The samples mixed with LDS were heated immediately at 100 ◦C for 5 min and then analyzed by
SDS-PAGE using NuPAGE® 4-12% Bis-Tris precast gel (Life Technologies, Carlsbad, CA, USA).
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