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Abstract

Maximum likelihood and maximum parsimony are two key methods for phylogenetic tree reconstruction. Under certain
conditions, each of these two methods can perform more or less efficiently, resulting in unresolved or disputed phylog-
enies. We show that a neural network can distinguish between four-taxon alignments that were evolved under conditions
susceptible to either long-branch attraction or long-branch repulsion. When likelihood and parsimony methods are
discordant, the neural network can provide insight as to which tree reconstruction method is best suited to the align-
ment. When applied to the contentious case of Strepsiptera evolution, our method shows robust support for the current
scientific view, that is, it places Strepsiptera with beetles, distant from flies.

Key words: phylogenetic inference, maximum likelihood, parsimony, long-branch attraction, neural networks,
Felsenstein zone.

Introduction
The phylogenetic artifact known as long-branch attraction
(LBA) was first brought to attention in Felsenstein’s seminal
paper (Felsenstein 1978), and subsequently elaborated on by
Hendy and Penny (1989). They describe LBA succinctly, as the
phenomena whereby “two long-branched, nonsister taxa are
grouped together, rather than with their shorter branched
sister taxa” when performing inference by maximum parsi-
mony (MP). In recent years, LBA has, to some extent, lost its
precise meaning (Sanderson et al. 2000; Bergsten 2005), but
for the sake of clarity we will use the term LBA sensu stricto.
The simplest form of LBA occurs in a four-taxon tree, with
two long branches and three short branches as displayed in
the upper left area of figure 1A. When the long branches are
substantially larger than the short branches, MP is statistically
inconsistent. That is, it will fail to reconstruct the true
evolutionary history, instead grouping the taxa with the
long branches in one clade, even with infinite sequence
length. On the other hand, in the same scenario, maximum
likelihood (ML) inference is statistically consistent. Given in-
finite sequence length, ML will recover the true tree, assuming
the correct model of sequence evolution. Huelsenbeck and
Hillis (1993) coined the term “Felsenstein zone” to refer to

parameter combinations for which MP was inconsistent (see
fig. 1).

However, the asymptotic behavior of the reconstruction
methods is of limited relevance, given the finite sequence
lengths of biological data. In practice, the principal concerns
relate to whether LBA is a relevant issue with biological data
sets; and if so, the efficiency of tree reconstruction methods
(Hillis et al. 1994) in the presence of LBA.

Although LBA was conclusively demonstrated using sim-
ulations by the late 1980s, considerable debate centered on
whether this artifact was only of theoretical interest or could
actually manifest in biological data sets. The first biological
example of LBA was introduced by Carmean and Crespi
(1995), arguing that the LBA artifact was responsible for the
placement of Strepsiptera as sister to Diptera among insects.
Their conclusion was challenged by Huelsenbeck (1997), who
discussed the lack of evidence for LBA and suggested a
simulation-based method to detect whether branches are
long enough to be attracted by parsimony. He also pointed
out the need for an unbiased reconstruction method that
was not affected by LBA. Subsequently, Siddall (1998) asserted
that LBA was not a significant issue in practice, showing that a
similar effect in the opposite direction could also be demon-
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strated through simulation on four taxa. By constructing the
true tree such that the long branches were in fact sisters,
Siddall showed that parsimony was more efficient than like-
lihood in reconstructing the phylogeny (although likelihood
methods remained consistent). He coined the parameter
combinations for which parsimony was more efficient than
likelihood, the “Farris zone.” Further, he reasoned that since
the truth was unknowable in real data sets, when faced with
discordance between parsimony and likelihood methods, it
would be impossible to tell whether two long branches
grouped together had been resolved correctly or not. This
argument has held firm ever since.

The application of machine learning to evolutionary biol-
ogy has primarily focused on the area of population genetics
(Schrider and Kern 2018). The only machine learning contri-
butions to phylogenetic tree reconstruction were recently
made by Suvorov et al. (2020), who trained a network to infer
four-taxon trees based on DNA sequences, whereas Zou et al.
(2020) trained networks to do the same for amino acid align-
ments. Rather than attempting to design a single network
that can infer tree topologies from empirical data sets gener-
ally, we opt for a different approach. We focus on resolving
the topology of contentious data sets, specifically those for
which MP and ML are discordant. To do so, we design and
train neural networks specific to a single problem or empirical
data set.

With our first network, F-zoneNN, we demonstrate that a
simple, feedforward neural network can distinguish between
alignments derived from a Felsenstein-type tree (two long
branches in a four-taxon tree separated by a short internal
edge; see fig. 1A) and a Farris-type tree (two long branches
forming a cherry; fig. 1B). Feedback from the network can
then be used to inform reconstruction method selection.
With our second network, StrepsipteraNN, we show that,
contrary to Sidall’s contention, a neural network can provide
a robust conclusion as to the presence or absence of LBA in
empirical data sets.

New Approaches

Neural Network
Neural networks are computing systems that attempt to em-
ulate particular features of the biological brain of sentient
beings, namely the ability to learn from experience. A neural
network is trained by inputting large amounts of data with
known output values. The network is then exposed to new
data, which it classifies based on its training. Inspired by recent
advances in the application of neural networks to a wide
range of problems, in particular its strength in pattern recog-
nition (Goodfellow et al. 2016 and references therein), we
designed F-zoneNN, a feedforward neural network (e.g.,
Nielsen 2015), to classify multiple sequence alignments
according to their generating tree types (i.e., whether they
are Felsenstein-type or Farris-type). A detailed overview of F-
zoneNN’s architecture can be found in table 2. To arrive at
the architecture of F-zoneNN, we experimented with a range
of different hyperparameters (Goodfellow et al. 2016), such as
number and size of hidden layers.

Data Preprocessing
To encode multiple sequence alignments into a suitable for-
mat for F-zoneNN, we computed the site-pattern frequencies
of each alignment. For four taxa, 256 unique site-patterns
exist for the four-letter DNA alphabet. When using the JC
model (Jukes and Cantor 1969), the 256 site-patterns collapse
to 15 distinct pattern-categories, due to the symmetries in the
substitution model. These are xxxx, xxxy, xxyx, xyxx, xxyy,
xxyz, xyxy, xyyx, xyyy, xyxz, xyyz, xyzx, xyzy, xyzz, xyzw, where
x, y, z, and w denote different nucleotides. For each branch
length combination (p, q) the probabilities of the 15 patterns
can be computed analytically (Felsenstein 2004, p. 111), thus
generating a 15-dimensional multinomial distribution MD(p,
q). The parameters p and q describe the probabilities of ob-
serving a substitution at a particular site along that branch
(fig. 1).
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FIG. 1. Visualization of Felsenstein-type (A) and Farris-type tree topologies (B) for varying p and q, which describe the probabilities of observing a
substitution at a particular site. The shaded area depicts the “Felsenstein zone.” At the dashed diagonal p equals q.
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Data Simulation
To keep everything simple and well defined, we assumed the
JC model of sequence evolution for our initial experimental
setup. Figure 1 shows the two trees that have a parameter p
for two branches and a parameter q for three branches, for
different (p, q) combinations.

We distinguish between Felsenstein/Farris zone and
Felsenstein-/Farris-type trees. The Felsenstein zone is defined
by the classical definition following Felsenstein (1978), the
area of the parameter space where MP is statistically incon-
sistent, indicated by the shaded area in figure 1A. However,
the Farris zone is not unambiguously defined for ML inference
as its boundary depends on the length of the sequence align-
ment. To avoid this ambiguity, we simulate four-taxon trees
for the full range of parameter (p, q) combinations. It should
therefore be noted that the trees are indistinguishable if p¼ q
and will switch from two long branches to three long
branches when p is smaller than q (fig. 1).

We independently varied p and q over their entire range,
from a minimum of 0.005 to a maximum of 0.745 at incre-
ments of 0.01. This created a total of 75�75¼ 5,625 different
parameter combinations. For each combination of p and q,
1,000 training alignments were generated. Each alignment
was created by sampling 1,000 pattern-categories from the
multinomial distribution MD(p, q). When carrying out the
simulation-based training of F-zoneNN, we are aware which
taxon belongs to which branch (i.e., which are from short
branches and which are from the long branches). When an-
alyzing test alignments, we do not have this luxury, and so F-
zoneNN must be able to accurately classify alignments inde-
pendent of the order of the taxa. To achieve this, we per-
muted the training data such that each simulated alignment
was presented to F-zoneNN 24 times, once for each different
ordering of the four taxa.

Test alignments were generated for a more sparsely pop-
ulated grid of p and q combinations. The parameters varied
between 0.025 and 0.725 at increments of 0.05, creating a
total of 15�15¼ 225 parameter combinations. For each
combination of p and q, we used the program Seq-Gen
(Rambaut and Grassly 1997) to simulate 200 different multi-
ple sequence alignments of length 1,000 nucleotides. The
training and test alignments were converted into vectors
containing the relative pattern-category frequencies. The

pattern-category frequencies served as input for F-zoneNN
and the classical unweighted MP analysis, whereas the align-
ments served as input for phylogenetic inference using ML
with IQ-TREE (Nguyen et al. 2015).

Analysis of Biological Data
We revisited the well-known problem of placing Strepsiptera
in the phylogenetic tree of insects (Carmean and Crespi 1995;
Huelsenbeck 1997; Whiting et al. 1997). The historical discus-
sion considered two different placements: one where
Strepsiptera groups with flies and the other one where
Strepsiptera groups with beetles. The two competing hypoth-
eses are depicted in figure 2. The alignment comprises 18S
ribosomal DNA sequences of 13 Holometabola insect species:
(a) Strepsiptera (twisted-wing parasites: 1 sequence), (b) 2
Coleoptera (beetles: Tenebrio and Meloe), (c) 2 Diptera (flies:
Aedes and Drosophila), and (d) 6 other Holometabola (Flea,
Scorpionfly, Lacewing, Antlion, Sawfly, Polistes) and two out-
group Hemipteran sequences (Cercopidae and Cicada).
Following Huelsenbeck (1997), we removed all sites with
gaps and unknown DNA characters.

We sampled groups of four taxa from the original 13-taxon
alignment, such that each sampled quartet contained one
taxon from each of the four groups (excluding the outgroup
taxa). This resulted in 24 different quartets (1 Strepsiptera�2
beetles�2 flies�6 others). For each quartet, we constructed a
Felsenstein-type (Strepsiptera grouped with beetles) and
Farris-type (Strepsiptera grouped with flies) quartet tree.
We then estimated the five branch lengths for all quartet
trees using IQ-TREE, assuming the following substitution
models: JC (Jukes and Cantor 1969), K2P (Kimura 1980),
F81 (Felsenstein 1981), HKY (Hasegawa et al. 1985), TN
(Tamura and Nei 1993), GTR (Tavar�e 1986), and their respec-
tive Gamma-variants (þG; Yang 1994). Since a (the rate het-
erogeneity parameter of the Gamma distribution) is more
reliably estimated from more taxa, we estimated a and the
substitution model parameters from the original 13-taxon
alignment. To control for the potential effect of the out-
groups on the parameter estimates, we obtained a second
estimate of these parameters from the 11-taxon alignment
obtained by removing the two Hemipteran taxa. This resulted
in 24�2�12�2¼ 1,152 different tree/model/parameter
combinations (24 quartets, 2 tree types, 12 substitution

a: Strepsiptera (1)

b: beetles (2)

c: flies (2)

d: other (6)

a: Strepsiptera (1)

b: beetles (2)

c: flies (2)

A BFarris-type tree Felsenstein-type tree

d: other (6)

FIG. 2. The two competing phylogenies discussed in Huelsenbeck (1997): Strepsiptera placed with (A) flies and (B) beetles relative to the other
Holometabola. The number of sequences per group is indicated in parentheses.
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models, and 2 sets of a and substitution model parameter
estimates based on the 13- and 11-taxon alignment).

Similarly to the F-zoneNN approach, we again experi-
mented with a range of hyperparameters, and identified the
best performing network. The architecture of the resulting
network, StrepsipteraNN, is shown in table 2. StrepsipteraNN
is a feedforward neural network, which takes 256 site-pattern
frequencies as input.

For each unique tree/model/parameter combination, we
used Seq-Gen to simulate 20,000 alignments of 1,000 bp. For
each of these alignments, the order of taxa were permuted as
before, resulting in a total of 1,152�20,000�24¼ 552,960,000
training alignments.

In addition, we generated a test data set in order to assess
the performance of StrepsipteraNN. Using Seq-Gen, we sim-
ulated 10 alignments of 1,000 bp for each of the above used
1,152 tree/model/parameter combinations. Again for each of
those alignments the order of taxa was permuted, creating a
total of 1,152�10�24¼ 276,480 alignments.

Results and Discussion

Simulation Study
Inferring Tree Type
We define the notation AMETHOD

tree type to refer to the accuracy of a
given method for a particular tree type. Method will be one of
MP, ML, NN, nogap300k (a network of Suvorov et al. [2020]),
or Mix (abbreviation of Mixed strategy, to be defined later).
Tree type will be either “Fel” or “Far” to indicate Felsenstein-
or Farris-type trees, respectively. If no tree type is stipulated
then the accuracy refers to all tree types. Figure 3 shows the
accuracy of F-zoneNN to infer the correct Felsenstein-/Farris-
type tree. For the largest fraction of the parameter space, F-
zoneNN was able to distinguish whether an alignment orig-
inated from Felsenstein-type or Farris-type trees. Felsenstein-
type alignments were successfully identified to a high degree
of accuracy (97.41%) outside of the Felsenstein zone. The few

misclassifications occurred primarily on the diagonal, where
the two tree types are not distinguishable. Within the
Felsenstein zone, F-zoneNN identified Felsenstein-type trees
with 68.58% accuracy. However, the majority of misclassifica-
tions occur at biologically unrealistically high values of p.
Farris-type alignments are successfully classified over the en-
tire parameter space, except along the main diagonal, and
when both p and q are unrealistically high.

F-zoneNN cannot distinguish the data if p¼ q as the trees
are identical (cf. the diagonal in fig. 3B), but we notice that in
this region it tends to label these trees as Felsenstein-type.
This is of no real consequence, as the two tree types are
identical in this circumstance, and therefore no classification
can reasonably be considered correct or incorrect.

Inferring Tree Topology
Given a sequence alignment, F-zoneNN does not output a
tree topology, it simply classifies the alignment as being either
Felsenstein- or Farris-type. In order to reconstruct the topol-
ogy for a given alignment, we must rely on one of the tradi-
tional methods, MP or ML. The decision to use MP or ML is
entirely dependent on the output of F-zoneNN. For a given
test alignment, if F-zoneNN classifies it as a Felsenstein-type
tree, then the Mixed strategy will return the tree inferred by
ML. This follows from the fact that, in the absence of prior
information about p and q, we know that ML is more likely to
infer the correct topology than MP, for a Felsenstein-type
tree. Similarly, if F-zoneNN indicates a Farris-type tree then
the Mixed strategy will return the tree inferred by MP, as for
Farris-type trees MP is more likely to infer the correct topol-
ogy than ML. It must be made explicit that the accuracies
reported in figure 3 refer only to the success of F-zoneNN in
inferring the correct tree type. They do not represent the
accuracy of F-zoneNN inferring the correct topology. To avoid
confusion, we refer to the process of topological inference

A B

FIG. 3. Accuracy of F-zoneNN to infer the correct tree type under a Felsenstein-type tree (A) and Farris-type tree (B) for sequence alignments of
length 1,000 bp. In each plot, the region above the curve reflects the Felsenstein zone, and the region below reflects the (p, q)-combinations where
MP is consistent. Accordingly, the percentage above the curve denotes the accuracy of F-zoneNN in the Felsenstein zone and the number below
the accuracy outside the Felsenstein zone. For detailed accuracy values see supplementary figure S1, SupplementaryMaterial online.
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using F-zoneNN to inform reconstruction method selection
as the “Mixed” strategy.

Figure 4 shows the accuracy of ML (first row) and MP
(second row) assuming a Felsenstein-type tree (first column),
a Farris-type tree (third column), and the average accuracy
(middle column) independent of the tree type. The third row
of figure 4 shows the accuracies for nogap300k, a convolu-
tional neural network that reconstructs four-taxon trees
based on a multiple sequence alignment. nogap300k was
the best performing network for our test data among the
networks trained by Suvorov et al. (2020). The fourth row of
figure 4 shows the results for the Mixed strategy. A summary
of the accuracy of the four methods across the tree types and
within the Felsenstein zone is provided in table 1.

The accuracies of ML and MP as depicted in figure 4A, C, D,
and F reflect the well-known behavior of these reconstruction
methods. Suvorov et al. appear to have trained a network that
closely mimics (although improves upon) the performance of
MP (fig. 4F and I). Consequently, their network performs
poorly (33%) in the Felsenstein zone, as opposed to ML
(71%). The Mixed strategy is indeed a mix between MP and
ML. Although it is closer to MP for Farris-type trees, it per-
forms better (and closer to ML) for Felsenstein-type trees.
F-zoneNN’s output has no practical consequences for the
Mixed strategy for the indistinguishable trees where p¼ q,
since MP and ML both perform well in this area. Among all
reconstruction methods, the average accuracy of the Mixed
strategy is highest, albeit only marginally better than
nogap300k. The Mixed strategy outperforms nogap300k for
Felsenstein-type trees, but is outperformed by nogap300k for
Farris-type trees. In the Felsenstein zone, which is of specific
interest for our task, the Mixed strategy outperformed
nogap300k as well as the standard approaches (fig. 4, middle
column). Therefore, the Mixed strategy is more suitable for
the problem of distinguishing Farris-type and Felsenstein-type
trees.

Resolving Disputed Topologies
Recalling that the primary goal of the research is to resolve
disputed topologies, it makes sense to pay particular atten-
tion to alignments for which MP and ML infer conflicting tree
topologies. We therefore restricted our interest to alignments
whereby, owing to their presence in either the Felsenstein or
Farris zone, MP and ML return conflicting topologies. Further,
it is elementary to realize that in cases where MP and ML
agree, then the output of F-zoneNN is not relevant to the
performance of the Mixed strategy. Figure 5 shows the results
of the Mixed strategy and nogap300k within the Felsenstein/
Farris zone, for alignments in which MP and ML reconstruct
different topologies. The tendency for the nogap300k net-
work to emulate MP is stark here. For contentious Farris-
type trees, nogap300k infers the correct tree almost 99% of
the time. Its performance for contentious Felsenstein-type
trees is much less reliable, only inferring the correct topology
�33% of the time. This illustrates the susceptibility of
nogap300k to the LBA artifact, much like MP.

Conversely, the Mixed strategy provides more balanced
results. Whether the true tree is Felsenstein- or Farris-type,
the Mixed strategy reconstructs the correct topology at sim-
ilar rates (71.46% and 68.29%, respectively). Furthermore, the
heatmap in figure 5A shows that the accuracy of the Mixed
strategy is excellent in all areas of the Felsenstein zone, except
for very high values of p. It might be argued that the clear
superior performance of the Mixed strategy over nogap300k
for Felsenstein-type trees, is offset by its inferior performance
for Farris-type trees. However, we would argue that when
considering empirical data sets Felsenstein-type trees are
much more likely to be observed. This follows from the simple
logic that, given two long branches, there are many more
ways for them to be placed apart on a tree (Felsenstein-
type), than together (Farris-type). Additionally, figure 5E
and F illustrates that there is significant disparity between
tree types, in the proportion of alignments that are conten-
tious. For Felsenstein-type trees in the Felsenstein zone, only
34.4% resulted in concurrence between MP and ML. The
methods concurred for nearly twice as many, 67.95%, of
Farris-type trees. Furthermore, the p, q combinations where
MP and ML are least likely to concur (dark red in fig. 5E)
correspond to areas within the Felsenstein zone for which the
Mixed strategy performs very well (light areas of fig. 5A).

The Impact of Alignment Length
To assess the impact of the alignment length, l, we computed
AMix for alignments of various lengths up to 10,000 bp. With
increasing sequence length, the accuracy of F-zoneNN
improves (see fig. 6). More precisely for alignments of length
10,000 bp AMix is 92.98%, whereas AML is only 88.48% and AMP

is 89.04%. The networks of Suvorov et al. cannot process
alignments of length 10,000 bp because the input alignments
of the convolutional neural networks used by Suvorov et al.
(2020) are fixed to specific lengths. Conversely, F-zoneNN has
the flexibility to accept alignments of any length.

Analysis of Biological Data
We tested the StrepsipteraNN on the simulated test data. We
then used StrepsipteraNN to classify the 576 empirical quar-
tet alignments (24 distinct alignments, each with the order of
taxa permuted in all 24 possible ways).

The StrepsipteraNN was able to successfully distinguish
between Felsenstein-type and Farris-type trees on the simu-
lated test data. It correctly classified 87.30% of the Felsenstein-
type trees and 90.91% of the Farris-type trees (89.11% of all
trees).

Of the 24�24¼ 576 empirical quartet alignments (24
quartets and 24 permutations of each), StrepsipteraNN infers
a Felsenstein-type tree 574 times. Only for two permutations
of a specific quartet did StrepsipteraNN infer a Farris-type
tree. Therefore, it supports the placement of Strepsiptera as
sister to beetles (cf. fig. 2B), as opposed to flies. In light of the
high level of accuracy achieved on classifying test data, the
concurrent classification of 99.7% of the empirical alignments
is compelling. Furthermore, the grouping of Strepsiptera with
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FIG. 4. Accuracies of phylogenetic reconstruction using ML (A–C), MP (D–F), and nogap300k (Suvorov et al. 2020) (G–I), as well as the accuracy to
reconstruct the tree using the Mixed strategy involving F-zoneNN, MP, and ML (J–L). In each plot, the region above the curve reflects the
Felsenstein zone and the region below reflects the (p, q)-combinations, where MP is consistent. Accordingly, the percentage above the curve
denotes the accuracy of the respective method in the Felsenstein zone, and the percentage below the curve denotes the accuracy outside the
Felsenstein zone. For detailed accuracy values see supplementary figures S2–S5, SupplementaryMaterial online.
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beetles is in concordance with the conclusions of the most
recent literature on the topic (Niehuis et al. 2012; Boussau
et al. 2014).

We demonstrate here that it is possible, through the ap-
plication of machine learning technology to phylogenetic
questions, to challenge Siddall’s (1998) reasoning that the
truth was unknowable when MP and ML conflict. Although
we cannot claim to “know” with certainty the true placement
of Strepsiptera, we can train a neural network to find patterns
in the data that offer strong support to one hypothesis over
the other.

We expect that the method we demonstrate here can be
easily adapted to other empirical data sets in which MP and
ML prove inconclusive. However, we see no reason that our
approach would be limited to the presence/absence of LBA.
The increasing prevalence of phylogenomic data sets, in
which alignments consist of many genes/loci, has led to the
development of increasingly complex models of sequence
evolution. The presence of heterotachy as described by
Lopez et al. (2002) (sites that evolve at different rates on
different lineages) is all but assured in such data sets, because
genes are subject to different functional constraints in differ-
ent species. As such, models of sequence evolution that can
account for heterotachy, for example, partition models
(Lanfear et al. 2017) or mixture models such as GHOST
(Crotty et al. 2020), are recommended for phylogenomic anal-
yses. However, such analyses can result in discordance among
topologies inferred under different models/methods. We see
no reason that the method outlined here could not be easily
adapted to such situations. One could train a network using
data simulated from the parameters inferred under each of
the competing models/methods, validate that the network
can accurately classify testing data simulated under the same

models, and then feed the network all informative quartets
(those that induce different quartet trees under the two com-
peting models) from the empirical data and see if a conclusive
result is returned.

Conclusion
We have explored a well-known Achilles heel of phylogenetic
inference, LBA, and demonstrated that neural networks can
be employed to inform the choice of phylogenetic inference
method, potentially improving accuracy and increasing effi-
ciency. Moreover, our results show that our relatively simple
neural network outperforms the complex convolutional neu-
ral network. Further, we show that the application of our
method to a data set that has been contentious in the liter-
ature, with some considering it an example of LBA and others
not, yields results consistent with the currently accepted phy-
logeny. This initial study illustrates the potential of neural
networks to be applied to the tree inference problem. Our
approach suggests that in the face of topological discordance
among competing inference methods, machine learning
techniques may be able to point toward the underlying bio-
logical truth.

In this study, we have only scratched the surface of the
potential of deep learning approaches to be utilized in the
field of phylogenetic inference. We also note that our and
Suvorov’s et al. (2020) applications, although in spirit similar,
show distinguished differences. Our approach accepts align-
ments of any length but strictly without gaps, whereas the
approach of Suvorov et al. (2020) requires a fixed alignment
length but can accept gaps. More work is needed for under-
standing neural networks and their applications or limitations
in this field. Certainly, a single neural network that can be
used generally on a wide variety of empirical data is a lofty

Table 1. Accuracies of Phylogenetic Reconstruction Using ML, MP, nogap300k and the Mixed Strategy over All Felsenstein-Type Trees and All
Farris-Type Trees of the Test Data Set As Well As the Average Accuracies Computed from the Second and Third Table Column.

Method Felsenstein Zone Outside Felsenstein Zone Felsenstein-Type Trees Farris-Type Trees Average Accuracy

Maximum likelihood 69.55% 87.00% 87.03% 80.14% 83.58%
Maximum parsimony 53.89% 94.07% 74.97% 97.46% 86.21%
nogap300k 65.83% 95.03% 81.12% 97.52% 89.32%
Mixed strategy 74.79% 92.96% 84.84% 93.99% 89.41%

Table 2. Architecture and Hyperparameters of F-zoneNN for Simulated Alignments Using the Jukes–Cantor model and StrepsipteraNN Data
Based on Strepsiptera Data of Carmean and Crespi (1995).

F-ZoneNN StrepsipteraNN

Number of nodes in layers 15, 64, 128, 256, 512, 1,024, 408, 208, 96, 1 256, 382, 512, 892, 1,024, 2,048, 808, 408, 324, 208, 96, 1
Transfer function (hidden layers) ReLU ReLU
Activation function (output layer) Sigmoid Sigmoid
Weight initialization Xavier initialization (Glorot and Bengio 2010) Xavier initialization (Glorot and Bengio 2010)
Bias initialization Zero initialization Zero initialization
Learning rate 0.0001 0.00001
Batch size 32 32
Cost function Sigmoid cross-entropy Sigmoid cross-entropy
Optimizer Adam (Kingma and Ba 2015) Adam (Kingma and Ba 2015)
Data set size per epoch 270,000,000 frequency vectors 552,960,000 frequency vectors
Epochs trained 2 3
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ambition. However, we have shown here that specialized neu-
ral networks can be designed and trained to address specific
phylogenetic questions. Given there is no shortage of open
problems in the field, phylogenetic inference seems to be
fertile ground for the application of machine learning
techniques.

Materials and Methods

Neural Network Architectures
F-ZoneNN and StrepsipteraNN as well as the used training
and test data can be found at GitHub (https://github.com/
Cibiv/zone-net). An overview of the networks’ architectures
and hyperparameters is presented in table 2.

A B

C D

E F

FIG. 5. Summary of accuracies within the Felsenstein zone, on simulated test alignments for which MP and ML inferred conflicting trees. Accuracies
of phylogenetic reconstruction are compared using the Mixed strategy (A and B) and nogap300k (Suvorov et al. 2020) (C and D). The proportion of
test alignments for which MP and ML agree is also shown (E and F). Felsenstein-type alignments are shown in the first column, whereas Farris-type
alignments are shown in the second column.
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Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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