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A B S T R A C T   

Coronavirus disease-19 (COVID-19) is a severe respiratory viral disease first reported in late 2019 that has spread 
worldwide. Although some wealthy countries have made significant progress in detecting and containing this 
disease, most underdeveloped countries are still struggling to identify COVID-19 cases in large populations. With 
the rising number of COVID-19 cases, there are often insufficient COVID-19 diagnostic kits and related resources 
in such countries. However, other basic diagnostic resources often do exist, which motivated us to develop Deep 
Learning models to assist clinicians and radiologists to provide prompt diagnostic support to the patients. In this 
study, we have developed a deep learning-based COVID-19 case detection model trained with a dataset con-
sisting of chest CT scans and X-ray images. A modified ResNet50V2 architecture was employed as deep learning 
architecture in the proposed model. The dataset utilized to train the model was collected from various publicly 
available sources and included four class labels: confirmed COVID-19, normal controls and confirmed viral and 
bacterial pneumonia cases. The aggregated dataset was preprocessed through a sharpening filter before feeding 
the dataset into the proposed model. This model attained an accuracy of 96.452% for four-class cases (COVID- 
19/Normal/Bacterial pneumonia/Viral pneumonia), 97.242% for three-class cases (COVID-19/Normal/Bacterial 
pneumonia) and 98.954% for two-class cases (COVID-19/Viral pneumonia) using chest X-ray images. The model 
acquired a comprehensive accuracy of 99.012% for three-class cases (COVID-19/Normal/Community-acquired 
pneumonia) and 99.99% for two-class cases (Normal/COVID-19) using CT-scan images of the chest. This high 
accuracy presents a new and potentially important resource to enable radiologists to identify and rapidly di-
agnose COVID-19 cases with only basic but widely available equipment.   

1. Introduction 

In 2019, the COVID-19 pandemic appeared as a dangerous infectious 
disease caused by the SARS-CoV-2 virus that can result in severe respi-
ratory distress. The disease has caused millions of fatalities around the 

world since it was reported in Wuhan, China [1,2]. COVID-19 has spread 
rapidly through human-to-human transmission since transmission of the 
virus can occur well before symptoms are evident. Over 130 million 
people worldwide have been infected at the time of writing [3], repre-
senting an enormous healthcare burden. 
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Infections by SARS-CoV cause symptoms broadly similar to those 
caused by the related severe acute respiratory syndrome coronavirus 
(SARS-CoV) and Middle East respiratory syndrome coronavirus 
(MERS-CoV), and range in severity from mild upper respiratory tract 
symptoms similar resembling a common cold to severe acute life- 
threatening illness [4]. Among the latter symptoms include fever, 
headache, dry coughing and sore throat, severe pneumonia and acute 
respiratory distress syndrome(ARDS) that can often include severe 
hypoxia, and serious exacerbation of existing chronic pulmonary and 
respiratory conditions are often seen [5]. This virus has caused major 
public health and economic problems and is particularly dangerous to 
people with certain comorbidities such as diabetes, cardiovascular dis-
ease and asthma [6–13]. 

Many early symptoms of COVID-19 are similar to those of the com-
mon cold and influenza making detection of early stage COVID-19 cases 
problematic. Vaccines specific for SARS-CoV-2 have been developed and 
have been widely employed, reducing infection rates and greatly 
improving patient survival, although many poorer countries have only 
recently begun to vaccinate in significant numbers, so waves or surges of 
infections are still being experienced. No other medication with high 
efficacy against COVID-19 has been developed, although a number of 
anti-inflammatory drugs and other re-purposed drugs have proved 
useful in reducing disease severity. Newly approved antivirals such as 
Merck’s Molnupiravir are showing promise but currently are very 
expensive. These factors mean that spread of SARS-CoV-2 is hard to 
monitor, detect and overcome in less developed countries, particularly 
with the emergence of newer more infectious strains. 

Reverse transcription-polymerase chain reaction(RT-PCR) is 
currently the most commonly used for diagnosing COVID-19 patients, 
and is the only fully reliable method for detecting early stage (pre- 
symptom) SARS-CoV-2 infections. Cheaper antibody-based rapid tests 
are not reliable for early stage infections or those in immunosuppressed 
people. SARS-CoV-2 RT-PCR-based tests respiratory swabs from naso-
pharyngeal or oropharyngeal. Although these may fail to identify 
COVID-19 cases in the early phases when viral load is low in the sampled 
tissues [14]. However, a more significant issue is that RT-PCR is 
expensive, requires highly developed facilities and technical expertise 
that in many countries there is limited accessibility outside of large 
towns. 

Several researchers have previously shown that deep learning 
models trained on standard chest radiography images yield good 

accuracy in COVID-19 predictions, an approach that may be able to 
complement RT-PCR tests and would be highly accessible. It may also be 
possible to detect early mild symptomatic cases that give false negative 
RT-PCR results due to low viral particle numbers in the upper respira-
tory tract. Two kinds of chest radiographic images have been used for 
this approach: X-ray & computed tomography (CT) [15,16]. CT scans 
provide very fine detail but require substantially more radiation expo-
sure than X-ray images and require high cost equipment [17]. X-ray 
images are more accessible to a wider population through widely 
available X-ray imaging facilities at low cost. CT scans can, however, 
provide finer image features in 3 dimensions and can feasibly be used to 
train a deep learning model to identify COVID-19 as they give very rich 
datasets. Therefore, we investigated deep learning models trained with 
datasets consisting of chest CT-scan and X-ray to determine whether this 
would be a viable alternative to RT-PCR in detecting or confirming 
COVID-19 cases. 

In this study, we review the literature related to chest image classi-
fications. We have also investigated how effective deep learning ap-
proaches that employ chest X-ray and CT-scan images can classify 
potential COVID-19 cases. The proposed architecture was able to 
distinguish cases of COVID-19 from pneumonia cases and normal con-
trols with a high level of accuracy. We propose that such deep CNN- 
based models trained on CT-scan and X-ray images could assist radiol-
ogists to make rapid, low cost and accessible diagnosis usefully early 
detection of infected patients at an early stage in the disease progression. 

The following is a summary of the main contributions:  

1. We employed a preprocessing technique on the image dataset to 
enable the dataset to be accurately and efficiently analysed by our 
deep learning model.  

2. We developing an extended ResNet50V2-based deep learning model 
where fine-tuning was performed to facilitate rapid detection and 
diagnosis of COVID-19 cases with high accuracy.  

3. Classifying COVID-19 patient images from normal and typical 
pneumonia cases by considering two, three and four class categories 
respectively.  

4. We conducted a comparative performance analysis of our proposed 
methodology with other state-of-the-art approaches and showed that 
our model can identify COVID-19 cases with high accuracy using 
chest CT-scan and X-ray image datasets. 

The rest of this article is arranged as follows: Section 2 provides a 
comprehensive overview of the studies in the field. The methodology of 
the proposed work is presented in Section 3. Experimental results with 
discussion and dataset description are presented in Section 4. In Section 
5, we present our conclusions and proposals for future development 
work. 

2. Related works 

COVID-19 testing kits give a significant number of FN (false nega-
tive) so ideally need supplementing with an alternative rapid method to 
detect lower respiratory tract issues. This can be based on chest x-ray 
and CT scan imaging. In addition, in locations where RT-PCR testing is 
not available due to cost and lack of expertise availability, chest x-ray 
imaging often is available [18]. This makes it appropriate to use in 
COVID-19 diagnosis if the patient has begun to progress with the disease 
and a differential diagnosis is needed to exclude other respiratory 
ailments. 

AI has proved effective for classifying a range of human activities 
[19] and AI use in the healthcare sector has risen dramatically in recent 
years, particularly in medical imaging technology. In imaging AI has 
particularly been used in the detection of cardiovascular diseases [20] 
and brain tumours [21]. In addition to these applications, there is now a 
move to use it in the diagnosis of COVID-19 cases, with CT scans and 
chest X-rays a common focus. 

Fig. 1. Ground Glass Opacity was identified in the left middle to lower lung 
opacity (shown by a white arrow inside the red circle) [33]. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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There have been a number of suggestions that COVID-19 testing 
should be performed using RT-PCR methods and a machine learning 
analysis of chest imaging to accurately confirm COVID-19 cases, 
although the latter approach is unlikely to be suitable for rapid mass 
screening [22–27]. Studies have identified key changes that can be seen 
in patient chest X-ray and CT-scan images after COVID-19 has developed 
[28]. Yoon et al. [29] stated that one in every three patients had a single 
nodular opacity on the left side of the lower lung. Kong et al. [30] re-
ported that opacities of infrahilar airways were detected in the right side 
in a COVID patient. However, most studies have found that ground glass 
opacity (GGO) is the most frequent finding in COVID-19 case lung im-
ages. Widespread inflammation, thrombi and vascular ischaemic lesions 
and other intrusive lung illnesses are associated with GGO [31]. GGO 
and blended GGO were discovered in the majority of patients, as well as 
vascular dilatation with consolidation in the affected area, according to 
Zhao et al. [22]. Kanne et al. [32] observed that 50–75% patients had 
multifocal GGO as well as peripheral focal impacts on both lungs. Fig. 1 
shows an example image of a GGO case. 

Researchers in this area have suggested a number of deep learning 
architectures that can be trained with radiographic images to extract 
COVID-19 status since radiography images are readily available. This is 
similar to recent work on skin cancer identification from images [34], 
pneumonia detection utilizing chest X-ray images [35], brain disorder 
classification [36], lung segmentation [37], detection of myocardial 
infarction [38]. These are just a few of the areas where Deep Learning 
methods have already been developed. 

Chen et al. [39] designed a VGG-16 deep transfer learning approach 
for identifying COVID-19 in chest X-ray images, which took into account 
two classes: COVID-19 and Non-COVID-19. Gupta et al. [40] proposed 
InstaCovNet-19 that is an integrated stacking model. They used a variety 
of transfer learning frameworks, such as Nasnet, InceptionV3, Xception, 

Resnet101 and MobilenetV2. These models are integrated to form a 
stack-like architecture. Furthermore, they used three separate classes for 
image classification and attained a higher accuracy. Jain et al. [41] 
employed an unbalanced database of three groups of 1345 normal cases, 
3632 pneumonia cases, and 490 COVID-19 cases. They tested three ar-
chitectures, including Xception net, ResNeXt and Inception net V3, and 
found that the Xception model had the highest accuracy of 97.97%. In 
Ref. [42], an AlexNet with a combination of SVM framework was pro-
vided, with fine-tuning on the proposed design to distinguish COVID-19 
instances from pneumonia and normal cases. Ouchicha et al. [43] pre-
sented a deep CNN model called CVDNet to distinguish COVID-19 in-
fections from pneumonia and normal cases. To validate their system, 
they utilized a 5-fold cross-validation technique. Ozturk et al. [33] 
presented an automated identification technique (DarkCovidNet) that 
worked on 2-class classification categories (COVID-19 cases vs. Normal) 
and a multi-class classification category (COVID-19 cases, Normal and 
Pneumonia cases) with a binary class accuracy of 98.08%. However, 
pre-processing actions on X-ray images were not considered in their 
study. 

For the detection of COVID-19, a framework based on the CNN 
technique was applied in Ref. [44]. Ghavami et al. [45] suggested a 
comprehensible artificial intelligent approach for identifying COVID-19 
patients by considering COVID-19 patients, healthy patients, and 
non-COVID-19 lung infections utilizing chest CT scan data. A combined 
deep transfer learning architecture was presented [46] where they used 
15 pre-trained convolutional neural networks (CNNs) models using 
chest CT-scan images. Li et al. [47] proposed a stacked auto-encoder 
based framework to classify covid-19 positive cases from the negative 
cases but they used a low amount of image data to train their model. 
Heidarian et al. [48] proposed a framework called COVID-fact that was 
trained with an unbalanced data set with three class categories, 

Fig. 2. Block Diagram of Proposed methodology.  
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including covid-19, pneumonia cases and normal cases. 
Using CT-scan images, Xu et al. [49] proposed an architecture called 

”ResNet18 + Location attention” for identifying COVID-19 cases. 
Despite their efficient architecture, their overall accuracy level was only 
86.7%, which was insufficient. 

Some studies have used a combination of chest CT scans and X-ray 
images to identify and treat COVID-19. Using a balanced dataset of chest 
CT-scan and X-ray images, Mukherjee et al. [50] suggested a CNN-based 
customized deep neural network (DNN) with extensive accuracy of 
96.13% for X-ray and 95.83% for CT-scan. For identifying and diag-
nosing COVID-19, a standard tuned VGG-19 model was reported in 
Ref. [51] utilizing chest CT-scan & X-ray images. Ahsan et al. [52] 
proposed a pre-trained method to distinguish COVID-19 cases from 
non-COVID-19 cases obtaining an accuracy of 82.94% for CT-scan 
sample data and 93.94 for chest x-ray sample data. 

To distinguish COVID-19 from streptococcus and SARS virus in-
fections, Dansana et al. [53] used an unbalanced dataset of x-ray and 
CT-scan images. They employed a tuned pre-trained VGG19 model, a 
pre-trained InceptionV3, and a decision tree classifier with the tuned 

VGG19 model. The model showed the highest accuracy (91%). Sedik 
et al. [54] combined machine learning and deep learning algorithms to 
identify and diagnose covid-19 cases from chest x-ray and ct-scan im-
ages. The authors applied two methods of data-augmentation that 
improve the learnability of the Convolutional Long Short-Term Memory 
and Convolutional Neural Networks based deep learning models. 
However, using machine learning (ML) methods has several limitations, 
including complexity, overfitting and poor performance while training 
with unbalanced datasets. 

The majority of the studies reviewed above used imbalanced datasets 
as well as a small database of COVID-19 cases to train various machine 
learning models. Datasets of small size are likely to result in a CNN- 
based framework overfitting. As a result, the model would not report 
genuine and reliable classification performance outside the training 
datasets. Furthermore, many existing methods are trained and tested 
with raw images without any type of pre-processing, and augmentation. 
Thus, the network’s generalization error is increased, and the training 
advantages are minimized. Moreover, the majority of the studies have 
used pre-trained approaches and trained their architectures using three 

Fig. 3. Illustration of different filters a. Generated mask b. Variant of Laplacian filter c. Sharpening filter.  

Fig. 4. Prepossessing operations on Chest CT-scan & X-ray images.  
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or two classes. To overcome these issues, we constructed a balanced 
dataset and performed pre-processing and augmentation operations on 
the collected images instead of using raw images. Furthermore, in our 
study, a traditional deep learning model was modified and developed by 
fine-tuning effectively and optimizing the hyper-parameters to improve 
model robustness. In addition, multi-class comparisons among the image 
classes, such as four-class, three-class, and two-class categories made the 
suggested study more effective. 

3. The proposed COVID-19 case detection model 

This section describes data preprocessing, the CNN model and the 
proposed architecture which was implemented before conducting ex-
periments to assess performance. The overview of the proposed meth-
odology is illustrated in Fig. 2. In this block diagram, chest CT-scan and 
X-ray images are used as input for the suggested COVID-19 case detec-
tion method. Next, the collected images are preprocessed by considering 
resizing, cropping and filtering techniques. After that, augmentation of 
the image data is performed. Finally, the model was trained and tested 
with the clinical datasets. The proposed model was built from the base 
deep learning model named ResNet50V2. In this study, this model was 
developed by adding extra layers to its base network. The added layers 
were modified by applying regularization and effective fine-tuning 
processes to make the experiment more robust and efficient. More-
over, this model can classify the images based on binary class, three class 
and four class categories. 

3.1. Data preprocessing 

The original size of the collected images had different pixels for 
different images. The inputs for the pre-trained models on ImageNet will 

Fig. 5. Samples of augmented images of Chest CT-scan & X-ray.  

Fig. 6. The overview of Residual connection.  

K.U. Ahamed et al.                                                                                                                                                                                                                             



ComputersinBiologyandMedicine139(2021)105014

6

Fig. 7. Proposed architecture.  
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be smaller or equal to 224*224. In the case of transfer learning, the 
inputs must be suited to the pre-trained model. Thus, for rigorous 
investigation purposes, all images were scaled down to 224*224 pixels 
to make the training model faster. 

3.1.1. Cropping and filtering of images 
In this study, cropping and sharpening filters of image processing 

techniques were applied to the collected datasets to enhance the images 
before feeding those images into the CNN model. However, cropping 
methods were only applied on the CT scan images in order to extract the 
main part of the lung image, i.e., removing the unwanted irrelevant 
parts of the images. The CT scan images were cropped by considering the 
proper height and width ratio. Fig. 4 shows the original and cropped 
image of the CT scan. 

A sharpening filter was then used to filter all of our collected images 
for enhancement. The concept of this filter comes from Laplacian filters 
picture or image highlights the regions of rapid intensity change and is 
an illustration of a 2nd order or 2nd a derivative system of enhancement 
[55]. This can be traditionally derived according to equation (1). 

▽2f =
∂2f (x, y)
∂x2 +

∂2f (x, y)
∂y2 (1)  

Here. 

∂2f(x,y)
∂x2 = f(x + 1,y)+ f(x − 1,y) − 2f(x,y)

∂2f(x,y)
∂y2 = f(x,y + 1)+ f(x,y − 1) − 2f(x,y)

Now, from equation (1) we get the following output presented in 
equation (2). 

▽2f = [f (x+ 1, y)+ f (x − 1, y)+ f (x, y+ 1)+ f (x, y − 1)] − 4f (x, y) (2) 

From equation (2), a mask can be generated. Hence, the desired mask 
is represented in Fig. 3 (a). Besides that mask, other types of Laplacian 
mask/filter also exist [56]. In this study, one of the variants of the 
Laplacian filter is used. The filter used in this study is shown in Fig. 3 (b). 
From the given Laplacian filter, the intensity value is measured as the 
sum of center point of the mask along with the rest of the point that is 
computed as follows: W5 + (W1 + W2 + W3 + W4 + W6 + W7 + W8 +

W9). Here, the intensity value “0” is found from the mask by adding the 

Fig. 8. Flattening operation..  

Fig. 9. A sample of dropout operation.  

Table 1 
Summary of the proposed model based on four-class classification.  

Layer (type) Output Shape Param # 

resnet50v2 (Functional) (None, 7, 7, 2048) 23564800 
flatten (Flatten) (None, 100352) 0 
dropout (Dropout) (None, 100352) 0 
dense (Dense) (None, 256) 25690368 
dense_1 (Dense) (None, 4) 1028 

Total parameters: 49,256,196 
Trainable parameters: 49,210,756 
Non-trainable parameters: 45,440  
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centre value and the other corresponding values. Again, when an orig-
inal image is filtered through this mask, this produces a dark image 
where only the edge of the image is found for the 0-intensity value. Fig. 4 

shows the changes of the original image after applying the Laplacian 
mask. The original image can then be generated using the following 
rules given in equations (3) and (4). 

Fig. 10. Sample images from the collected dataset a. Chest X-ray images of different types of cases of interest: COVID-19, normal (control), pneumonia with bacterial 
infection and Pneumonia with viral infection. b. Chest CT-scan images: COVID-19, normal (control) and community acquired pneumonia cases. 

Fig. 11. Schematic illustration of five -fold cross validation approach.  
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g(x, y) = f (x, y) − ▽2f ;W5 < 0 (3)  

g(x, y) = f (x, y) + ▽2f ;W5 > 0 (4) 

Here, g (x, y) represents the output filter after performing the ex-
pected operation. Therefore, if the center value of the Laplacian filter is 
less than zero then it follows equation (3) and equation (4) otherwise. 
Let us assume for the point f(x, y) → W5 and W1, W2………W9 for the 
other corresponding points. By considering the corresponding Laplacian 
mask, from equation (4), equation (5) can be written. 

g(x, y) = 9W5 − W1 − W2 − W3 − W4 − W6 − W7 − W8 − W9 (5) 

Now from equation (5), the generated mask or filter is presented in 
Fig. 3 (c). The generated filter is also called the sharpening filter. This 
filter is used to sharpen as well as highlight the edges of the images. 
Besides this, it makes a transition between features, more recognizable 
and obvious compared to smooth noisy and blurry images. 

3.2. Data augmentation 

Instead of gathering new data, practitioners can use data augmen-
tation to significantly boost the diversity of the data samples for the 

Table 2 
Performance of the proposed model on each fold using four, three and two class 
categories.  

Class Folds Precision Recall F1- 
Score 

Accuracy 
(%) 

Four (covid-19/ 
bacterial 
pneumonia/ 
normal/viral 
pneumonia) 

Fold1 0.9625 0.9625 0.9625 96.09 
Fold2 0.9725 0.97 0.97 96.96 
Fold3 0.97 0.9675 0.9675 96.85 
Fold4 0.9675 0.965 0.9625 96.52 
Fold5 0.9625 0.9575 0.96 95.84 
Average 0.967 0.9645 0.9645 96.452 

Three (covid-19/ 
bacterial 
pneumonia/ 
normal) 

Fold1 0.9767 0.9767 0.9767 97.54 
Fold2 0.9833 0.9833 0.9833 98.12 
Fold3 0.9767 0.98 0.9767 97.68 
Fold4 0.9467 0.9433 0.94 94.19 
Fold5 0.9867 0.9867 0.9867 98.68 
Average 0.97402 0.974 0.97268 97.242 

Two (covid-19/viral 
pneumonia) 

Fold1 0.98 0.98 0.98 98.26 
Fold2 0.995 0.995 0.99 99.35 
Fold3 0.985 0.985 0.99 98.70 
Fold4 1.00 1.00 1.00 99.78 
Fold5 0.985 0.985 0.99 98.68 
Average 0.989 0.989 0.99 98.954  

Fig. 12. Classification performance results of 4-class using fold-3 chest x-ray dataset.  
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training models. Image augmentation approaches may help to reduce 
network generalization errors, improve training amenities, and address 
data overfitting concerns. In this article, augmentation methods [57] on 
image data were used to create the diversity of images based on 
rescaling, zooming, horizontal flipping and shearing operations. These 
procedures were carried out using the functionality of the Image-
DataGenerator from TensorFlow, Keras framework. In the image data 
augmentation settings, the values of the above mentioned criteria 
following rescaling = 1./255, zoom_range = 0.2, shear_range = 0.2 and 
horizontal_flip = True. Some samples of augmented images are pre-
sented in Fig. 5. 

3.3. CNN based transfer learning 

The suggested model methodology is based on a deep transfer 
learning architecture. Researchers have recently become interested in 
using transfer learning-based CNN models to handle a variety of com-
puter vision problems. Over the previous few decades, these models 
have been widely employed in medical disease diagnostics [58], in-
dustry and agriculture [59,60]. A CNN-based transfer learning archi-
tecture was developed and applied for chest CT-scan and X-ray image 
classifications in this research. 

3.3.1. Convolutional layer 
The convolution layer is the main building block of a CNN (con-

volutional neural network). Rather than basic matrix multiplication, it 
performs a convolution operation, denoted by a*. Its parameters are 
constructed using a collection of learnable filters, often known as ker-
nels. The purpose of this layer is to find features in the native regions of 
input samples (here, the images) and produce a feature map that di-
minishes the presence of the observed features in the input data. The 
basic convolution operation can be written according to equation (6). 

F(i, j) = (I ∗ K)(i, j) =
∑

m

∑

n
I(i+m, j+ n)K(m, n) (6) 

Here, I refers to an input matrix (such as an image), m x n represents 
dimension, and K represents a 2D filter. The kernel is another name for 
K. The outcome of the 2D characteristic map is F. F is generated by 
convolving input I with K. Therefore, I*K specifies the convolution ac-
tion. Where * indicates a discrete convolution process. The matrix k 
scans over the input matrix while taking the stride parameter into ac-
count. Furthermore, for the construction of non-linearity, the results of 
each layer of the convolution are compiled utilizing a function called the 
activation function. Various types of activation functions have lately 
been used more commonly, with ReLU (rectified linear unit) being one 

Fig. 13. Classification performance results on 3-class using fold-3 chest x-ray datasets.  
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of the most well-known in the deep learning field. The activation func-
tion is usually calculated by normalizing the input to zero in ReLU. ReLU 
also produces 0 output if the input is less than 0 and the raw output if the 
input is more than 0. Equation (7) can be used to represent it 
mathematically. 

f (x) = max(0, x) (7) 

So, if the input value of the x is less than zero, then the function f(x) 
returns 0; if the input value of the x is larger than or equal to zero, the 
function f(x) returns 1. 

Fig. 14. Classification performance results on 2-class using fold-2 chest x-ray dataset.  

Table 3 
Class-wise performance results on three and two class categories.  

Class Task Precision Recall F1-Score Accuracy (%) 

Three COVID-19 1.00 0.98 0.99  
Normal 0.97 0.95 0.96 97.10 
Viral Pneumonia 0.94 0.99 0.96  

Two COVID-19 0.99 1.00 0.99 99.35 
Normal 1.00 0.99 0.99  

Two COVID-19 1.00 0.99 1.00 99.57 
Bacterial Pneumonia 0.99 1.00 1.00   

Fig. 15. Average precision, recall & f1-score of 4-class, 3-class (a. covid vs 
pneu_bac vs normal, b. covid vs pneu_vir vs normal), 2-class (a. covid vs 
pneu_vir, b. covid vs normal, c. covid vs pneu_bac). 
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3.4. Subsampling (pooling) layer 

Pooling layers are an important part of the convolution layer se-
quences in a CNN. These layers reduce spatial dimensions of the input 
data by collecting the outputs of the neuron bunches at one layer and 
turning them into a single neuron at the next layer. Pooling layers entail 
sliding a 2-D(dimensional) filter over each channel of the feature map 
and summarizing the features within the filter field of coverage. The 
dimensions of a feature map can be written as nhxnwxnc, and the output 
dimensions after a pooling layer operation can be derived using the 
given formula. 

(nh − f + 1)/sx(nw − f + 1)/sxnc (8) 

Here, nh signifies the feature map height, nw indicates the feature 
map width, and nc specifies the number of channels utilized in the 
feature map, where f is filter size and s is stride length. Max pooling, L2- 
norm pooling, global pooling layers and average pooling are some of the 
pooling layers utilized in convolutional neural networks. Compared to 
other pooling techniques, max pooling delivers the maximum value 
while being employed in the input zone. 

3.5. Fully connected layer 

The fully connected layer is a fundamental part of CNN where the 
entire neuron from the former layer is connected to the entire neuron in 
the following layer and then conveys to the vaticination of how nearly 
every value matches with every particular class. The final FC (fully 
connected) layer output is then coupled with a function called ”activa-
tion function”, which provides output class scores. CNN employs a va-
riety of classifiers, including Sigmoid, SVM (support vector machine), 
SoftMax etc. SoftMax, as indicated in equation (9), may calculate the 
probability distribution of n number of output categories. 

Zk =
exk

∑n
i=1ex

n (9) 

Here, the input vector is marked as x, n denotes the number of 
classification classes while the output vector is labelled as Z, here, k = 1, 
…,n. The sum of all outputs (Z) is equivalent to one. The Softmax clas-
sifier is used in this model to classify the input chest CT-scan and X-ray 
images. 

3.6. Model architecture and improvement 

A CNN-based transfer learning architecture was developed and used 
in this study. Transfer learning defines as a machine learning technique 
that takes previously learned knowledge (a pre-trained model) and ap-
plies it to a new problem that is related [61]. Using a traditional CNN 
model has some shortcomings, such as not working effectively with 
insufficient data, as well as being time-consuming and costly in data 
labelling and learning. Transfer learning methods can readily deal with 
insufficient data in these circumstances and alleviate model completion 
time. The proposed model of this study is created by extending and 
tuning the ResNet50V2 CNN architecture. ResNet50V2 [62] is an 
improved version of ResNet-50 that outperforms than ResNet50 and 
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Table 4 
Performance of the proposed model on each fold using three class categories.  

Class Folds Precision Recall F1- 
Score 

Accuracy 
(%) 

Four(covid-19/ 
CAP/normal) 

Fold1 0.9933 0.9933 0.99 99.00 
Fold2 0.985 0.985 0.99 98.78 
Fold3 0.995 0.995 0.99 99.25 
Fold4 0.985 0.985 0.99 98.68 
Fold5 0.995 0.995 0.99 99.35 
Average 0.99066 0.99066 0.99 99.012  
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ResNet101 on the ImageNet datasets. An adjustment or modification 
was conducted to the extended formulation of the links within blocks in 
ResNet50V2. Again, deeper models are better at extracting features in 
general. However, due to the characteristics or diversity of feed-forward 
(passing inputs to the architecture to obtain a forecasting result from 
complicated computations in the framework) and the back-propagation 
(weights of the parameter upgrade on the grounds of the prediction 
outcome), which is also the particle of testing deep learning models, 
heavily deep models are hard to train due to vanishing or exploding 
gradients. ResNets overcome this shortcoming by forming a residual 
link, which reduces the influence of vanishing or exploding gradients 

and hence improves the performance of very deep models. ResNet50V2 
has eliminated the very last non-linearity, resulting in an input-to-output 
path that resembles the identity connection depicted in Fig. 6. 

The suggested basic model ResNet50V2 has fifty deeper layers and 
25,613,800 parameters, according to Ref. [63]. The model receives 
input of the pre-processed dataset of images as 224*224 pixels and 
produces output like 7 × 7 × 2048 features map in its very last feature 
extractor layer. As shown in Fig. 7, several operations are conducted on 
the entire execution phase in the suggested core architecture of the 
ResNet50V2. These operations include Convolution, Batch Normaliza-
tion, Relu(rectified linear unit), Pooling and Padding. ReLU activation 
function and batch normalization are driven by ResNet50V2 in the input 
before the multiplication actions with weights matrix (operations of 
convolution). The Rectified Linear Unit (ReLU) is a form of activation 
function that is often employed in deep learning frameworks or models. 
ReLU assists in the recording of non-linear influences and prevents 
vanishing gradient problems. 

3.6.1. Batch normalization 
Batch Normalization is usually referred to as bn_norm (“Batch 

Norm”). Recently this has been utilized in the deep learning field 

Fig. 17. Classification performance results on 3-class using fold-1 chest ct-scan dataset.  

Table 5 
Class-wise performance results on two class categories.  

Class Task Precision Recall F1-Score Accuracy (%) 

Two COVID-19 1.00 1.00 1.00 99.99 
CAP 1.00 1.00 1.00  

Two COVID-19 1.00 1.00 1.00 99.99 
Normal 1.00 1.00 1.00   
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Fig. 18. a. Cross folding accuracy on each fold considering 3-class (covid vs cap vs normal) b. Average precision, recall & f1-score of 3-class (covid vs cap vs normal), 2-class (a.covid vs cap, b.covid vs normal).  
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broadly. Batch normalization (BN/bn_norm) is a method that transforms 
the inter-layer outputs of the neural networks into conventional ordi-
nation, and it’s called normalizing. This approach effectively ’resets’ the 
output distributions of the previous layer, allowing the current layer to 
be processed more efficiently. Batch normalization increases Neural 
Network performance during training, avoids overfitting, and provides 
regularization. 

3.6.2. Padding 
The term “padding” is associated with convolutional neural networks 

since it represents the number of pixel values that are added to a photo 
or image whenever it is created by the segment of a CNN. Padding works 
by expanding the measurement range of convolutional neural networks. 
“Kernel” is the general name for the neural networks filter. It scans over 
each pixel in the target image and transforms the data samples or values 
into a larger or smaller format. To facilitate the kernel in managing the 
photo or image, padding is assembled to the picture frame to give the 
kernel enough room to cover the image. Incorporating padding to a 
CNN-processed image allows for more obvious image analysis. 

3.6.3. Proposed transfer learning architecture 
In order to make the proposed model more feasible, effective and 

robust, we further developed the fundamental architecture of the pre- 
trained ResNet50V2 by adding extra four layers. Firstly, we modify 
the top layer of the original ResNet50V2 to set the custom input of the 
images. Secondly, several layers are concatenated with the pre-trained 
ResNet50V2 network. Finally, regularization and effective fine-tuning 
operations were performed on the additional layers. As illustrated in 
Fig. 7, one flatten layer, then one dropout, and after that two fc (Fully 
Connected) dense layers were assembled with the base architecture of 
ResNet50V2. The flatten layer receives data from the previous layer and 
converts the data into a 1-D (one-dimensional) array, which was fed to 
the next layer as input. The output of the preceding convolutional layer 
was flattened to produce a single feature vector. The proposed model 
was flattened to allow for rapid feedforward execution. Fig. 8 shows an 
example of a flattening procedure. 

The dropout layer was the second adding layer used in the suggested 
framework. Dropout is one of the most commonly used regularization 
techniques used in deep learning. This layer acts as a mask, preventing 
some neurons from contributing to the next layer while leaving the rest 
unconverted. The dropout layer was employed because this plays a vital 

role in controlling the overfitting issues of CNN based deep learning 
architecture. Fig. 9 depicts the basic operation of the dropout layer. 

The result was optimized and generated using two dense layers. Each 
neuron in the dense layer receives inputs from all the other neurons in 
the previous layers, making them densely connected. The fully con-
nected layer is another name for the dense layer. Again, direct usage of 
hyper-parameters in the model becomes critical because they control the 
behaviour of the model directly. Due to this circumstance, fine-tuning of 
the hyper-parameters were performed to improve the performance of 
the proposed model. The suggested model used the image size of 
(224x224) and ImageNet weights with the Adam optimizer [64], batch 
size with 32, learning rate with 1e-5, dropout ratio 0.5. In addition, the 
model utilized an activation function named SoftMax to classify the 
images into both two-class and multiclass categories. There were a total 
of 49,256,196 parameters in the suggested model, including 49,210,756 
trainable and 45,440 non-trainable parameters. Table 1 shows the 
output shape of the developed architecture along with a concise model 
summary. 

4. Results analysis 

4.1. Dataset description 

The dataset used for the study was collected from three separate 
publicly open and available sources. A total of 4593 chest X-rays and 
3000 chest CT-scan images are included in the dataset. Balanced data-
sets have been used in this study to avoid class imbalanced problems. To 
begin, the dataset of chest X-ray images contains 1143 X-ray images of 
COVID-19 cases, 1150 Normal, 1150 Viral Pneumonia images from 
Kaggle’s repository “COVID-19 Radiography Database” offered by 
Tawsifur Rahman [65] and 1150 Bacterial Pneumonia images from Paul 
Mooney’s repository “Chest X-Ray Images (Pneumonia)” offered by Paul 
Mooney [66]. Fig. 10 (a) depicts the sample chest X-ray images of four 
different cases. Again, in the dataset of CT-scan images, 1000 images of 
COVID-19 cases, 1000 normal images and 1000 CAP 
(community-acquired pneumonia) images are gathered from the Kag-
gle repository “Large COVID-19 CT scan slice dataset” offered by Maede 
Maftouni [67]. Fig. 10 (b) shows the sample chest CT-scan images of 
three different cases. From these datasets of chest CT and X-ray images, 
80% of available dataset samples were used for training purposes, with 
the remaining 20% of samples used for testing. 

Table 6 
Comparison of the proposed model with the other pretrained models.  

Models Dataset Number of classes Preprocessing on image data Precision Recall F1-score Accuracy (%) 

VGG19 chest x-ray 4 No 0.90 0.89 0.885 88.98 
Yes 0.9425 0.93 0.945 94.56 

ResNet50 chest x-ray 4 No 0.88 0.875 0.8725 87.50 
Yes .0.93 0.9275 0.925 93.04 

InceptionV3 chest x-ray 4 No 0.875 0.875 0.8725 87.39 
Yes 0.94 0.9325 0.93 94.35 

VGG19 chest x-ray 3 No 0.9325 0.94 0.93 94.35 
Yes 0.96 0.955 0.9525 96.16 

ResNet50 chest x-ray 3 No 0.95 0.94 0.935 94.88 
Yes 0.9525 0.94 0.945 96.47 

InceptionV3 chest x-ray 3 No 0.93 0.9275 0.9225 93.27 
Yes 0.945 0.95 0.94 95.02 

VGG19 chest ct-scan 3 No 0.82 0.815 0.8125 81.75 
Yes 0.9625 0.96 0.955 96.18 

ResNet50 chest ct-scan 3 No 0.78 0.775 0.7725 78.05 
Yes 0.88 0.885 0.87 89.08 

InceptionV3 chest ct-scan 3 No 0.83 0.82 0.83 83.55 
Yes 0.955 0.96 0.9575 96.35 

Propoosed model chest x-ray 4 without preprocessing 0.9015 0.8991 0.89706 89.902 
chest x-ray 3 0.9525 0.95 0.9505 95.105 
chest ct-scan 3 0.8375 0.8305 0.8335 83.605 

Propoosed model chest x-ray 4 with preprocessing 0.967 0.9645 0.9645 96.452 
chest x-ray 3 0.97402 0.974 0.97268 97.242 
chest ct-scan 3 0.99066 0.99066 0.99 99.012  
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4.2. Experimental setup and implementation 

The proposed framework was implemented in Keras with the Tensor 
flow GPU support. The entire experiment, training, as well as testing, 
was carried out in the Google Colaboratory environment, which includes 
a Tesla T4 graphics card, 12.75 GB RAM, & 68.50 GB of disk space. The 
proposed architecture used Adam Optimizer which is an optimization 
technique for gradient descent. This method is quite efficient when 
dealing with problems involving a lot of data samples or parameters. 
Adam is not the same as the traditional stochastic gradient descent. For 
all weight updates, stochastic gradient descent used the same learning 
rate (called alpha), which remains constant during training. On the 
other hand, during training, Adam was utilizing the characteristics of 
AdaGrad and the RMSProp algorithm to update weights iteratively in-
side a network. Adam configuration parameters include alpha, beta1, 
beta2, epsilon and others. Here, alpha was regarded as the step size or 
learning rate. Therefore, the proposed model used an adaptive learning 
rate with 1e-5 from the Adam Optimizer. The proposed model was 
implemented to classify COVID-19 cases from normal as well as regular 

pneumonia cases by considering four, three, and binary classes on the 
chest X-ray images dataset. The dataset containing CT-scan images was 
used to classify COVID-19 cases, normal controls and CAP cases 
considering three and two class categories respectively. 

4.3. Evaluation of performance metrics 

Four metrics were utilized in this study to evaluate the performance 
of the proposed architecture. The evaluation was performed with respect 
to the accuracy, sensitivity(recall), precision and f1-score. The mathe-
matical formulae for these metrics are presented in the equations below 
10,11,12 and 13 respectively. 

Accuracy =
(TP+ TN)

(TP+ FP+ FN + TN)
(10)  

Precision =
TP

(TP+ FP)
(11)  

Recall =
TP

(TP+ FN)
(12)  

F1 − Score =
(2 ∗ Precision ∗ Recall)
(Precision+ Recall)

(13)  

where TN, FN, TP, FP and represent true-negative, false-negative, true- 
positive and false-positive respectively. 

Furthermore, the loss function was applied in this study to assess the 
effectiveness of the predicted model. The model was trained using a 
categorical cross-entropy loss. The loss function was also utilized to 
reduce the cost of the model parameters. The loss function will be 
reduced by increasing the number of epochs. Equation (14) expresses 
the mathematical interpretation of the loss function. 

L(Y, Ŷ ) = −
(∑

Y ∗ log(Ŷ ) + (1 − Y) ∗ log log(1 − Ŷ )
)

(14) 

Here, Y = True label, Ŷ = Predicted Labels & L(Y, Ŷ) = Loss function. 

4.4. Evaluation of the model 

A five-fold cross-validation technique was applied on four, three and 
binary class classifications. For each of the cases, 80% of the data is 
allotted for training and 20% for validation. As shown in Fig. 11, the 
operations are repeated five times. 

4.4.1. Performance results on chest X-ray image dataset 
The performance results on the chest x-ray image dataset were 

evaluated for four, three and two class categories using a five-fold cross- 
validation approach based on the given performance metrics in 4.3. As 
demonstrated in Table 2, the overall performance was obtained by 
averaging the values of each fold. The classification performance results 
of fold-3 using 4-class and 3-class classification are presented in Figs. 12 
and 13. Again, the performance results of fold-2 using 2-class classifi-
cation are presented in Fig. 14. 

The fivefold cross-validation approach was not applied on some sub- 
class categories. The sub-classes are experimented with just once, where 
we classify 2-class COVID-19 vs pneumonia with bacterial infection 
cases and COVID-19 vs normal control cases) and 3-class (COVID-19 vs 
pneumonia with viral infection vs normal control cases). The class-wise 
performance results are presented in Table 3. 

The performance analysis presented in Table 2 shows that the pro-
posed model achieved an average accuracy of 96.452% for 4-class, 
97.242% for 3-class and 98.954% for 2-class with a comprehensive 
number of average precision, recall and f1-score of 96.7%, 96.45% and 
96.45% for 4-class, 97.402%, 97.4% & 97.268% for 3-class and 98.9%, 
98.9% and 99.0% for 2-class respectively. Table 3 shows that the pro-
posed model achieved an accuracy of 97.10% for 3-class and with a high 

Table 7 
Comparison of the proposed model with previously published state-of-art 
models.  

Study Architecture Amount of chest CT or 
X-ray images 

Class Accuracy 
(%) 

Khan et al. 
[68] 

CoroNet 284 covid-19, 327 viral 
pneumonia, 

4 89.6 

310 normal, 330 
bacterial pneumonia 

3 95 

X-ray images. 2 99 
Mahmud 

et al. [69] 
CovXNet 305 covid-19, 305 viral 

pneumonia, 
4 90.3 

305 normal, 305 
bacterial pneumonia 

3 89.6 

X-ray images. 2 94.7 
Ozturk et al. 

[33] 
DarkCovidNet 125 covid-19, 500 

pneumonia, 500 
3 98.08 

no-findings X-ray 
images. 

2 87.02 

Arsenovic 
et al. [70] 

ResNetCOVID19 434 covid-19, 1100 
bacterial pneumonia, 
1100 normal X-ray 
images. 

3 94.1 

Sethy et al. 
[71] 

ResNet50 plus 25 covid-19 & 25 non- 
covid-19 

2 95.38 

Heidarian 
et al. [48] 

COVID-FACT 171 COVID-19, 60 
Pneumonia, 76 normal 
CT-scan images. 

3 90.82 

Xu et al. [49] ResNet + Loc- 
ation Attention 

224 Influenza-A, 175 
Normal, 219 covid-19 
CT-scan images. 

3 86.7 

Shalbaf et al. 
[46] 

15 Pre-Trained 
(CNNs) models 

349 covid-19 (+) & 397 
covid-19(− ) 
CT-scan images. 

2 85.0 

Mukherjee 
et al. [50] 

CNNs-tailored 
Deep NN 

168 covid-19 & 168 
non-covid-19 
X-ray images. 
+

168 covid-19 & 168 
non-covid-19 
CT-scan images 

2 96.13 
2 95.83 

Proposed 
model 

Modified 
& Tuned 
ResNet50V2 

1143 covid-19,1150 
normal, 1150 
viral pneiumonia, 1150 
bacterial 
pneumonia X-ray 
images. 
+

1000 covid-19,1000 
normal, 1000 
CAP(community 
acquired pneumonia) 
CT-scan images. 

4 96.452 
3 97.242 
2 99.35 
3 99.012 
2 99.99  
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level of accuracy of 99.35% and 99.57% while categorizing COVID-19 
cases, normal cases and COVID-19 cases with bacterial pneumonia. 
The average precision, recall and f1-score of all category classes are 
illustrated in Fig. 15 where the red bar represents precision, green and 
blue represent recall or sensitivity and f1-score respectively. The cross- 
validation approach is applied for some classes including 4-class, 3- 
class (COVID19 vs pneumonia with bacterial infection vs normal control 
cases) and 2-class (COVID19 vs pneumonia with viral infection cases). 
The accuracy of each fold for the mentioned classes is presented in 
Fig. 16 (a) where the blue line represents the 4-class, orange line and 
green line represent the 3-class and 2-class respectively. The average 
accuracy of these classes is plotted in Fig. 16 (b). 

4.4.2. Performance results on chest CT-scan image dataset 
Using a five-fold cross-validation approach based on the stated per-

formance metrics in 4.3, the performance results on the chest CT-scan 
image dataset were evaluated on three class categories. As demon-
strated in Table 4, the overall performance was obtained by averaging 
the values of each fold. The classification performance results of fold-1 
using 3-class classification are presented in Fig. 17. 

The fivefold cross-validation approach was not applied on some sub- 
class categories. The sub-classes are experimented with just once, where 
we classify 2-class classifications including COVID-19 vs CAP and 
COVID-19 vs normal control cases. The class-wise performance results 
are presented in Table 5. 

The classification performance analysis reported in Table 4 shows 
that the proposed model achieved an overall average accuracy of 
99.012% on 3-class with high levels of average precision, recall and f1- 
score of 99.066%, 99.066% and 99.00% on 3-class respectively, while 
categorizing COVID-19, cases with CAP and normal images. Again from 
Table 5 shows the proposed model achieved comprehensively high ac-
curacy of 99.99% and 99.99% while categorizing COVID-19 & normal 
control cases and COVID-19 & CAP cases with almost a hundred percent 
precision, recall, and f1-score value for both classifications. Fig. 18 (b) 
depicts the average precision, recall, and f1-score of all category classes, 
where the red bar represents precision, the green and blue bars represent 
recall or sensitivity, and the f1-score, respectively. As the cross- 
validation approach is applied on the 3-class, so in this case, the accu-
racy of each fold on that class is presented in Fig. 18 (a) where the indigo 
line represents the 3-class category. 

4.4.3. Discussion 
In this study, the results of the proposed model were compared with 

other pre-trained models and some recent state-of-the-art studies from 
this field. The proposed model was first compared with other pre-trained 
models that included VGG19, ResNet50 and InceptionV3. In these cases, 
comparisons were performed by considering both the two datasets of 
chest CT-scan and X-ray images with four class and three class classifi-
cations. In four class classifications, the classifications were performed 
on images of COVID-19, viral pneumonia, bacterial pneumonia and 
uninfected (normal) control cases. Three-class classifications compared 
COVID-19, pneumonia and normal cases, while another 3three-class 
classification category compared COVID-19, community-acquired 
pneumonia and normal control cases. The comparisons between the 
proposed model and the other pre-trained models are demonstrated in 
Table 6. Thus, it is shown from Table 6 that, when the models are trained 
without using preprocessed data they produce low accuracy as well as 
low precision, recall and f1-score value, compared to models trained 
with preprocessed data. On the other hand, the proposed model ach-
ieved comprehensively high accuracy, specifically 96.452% for four 
class categories, 97.242% for three class categories using chest x-ray 
images and 99.012% for three class categories using chest CT-scan im-
ages. Moreover, the precision, recall and f1-score values achieved using 
the proposed model were also very high, as shown in Table 6. Thus, it is 
evident that effective preprocessing on image data and development of 
the pre-trained “ResNet50V2” model can result in the proposed 

architecture being far more effective and robust. 
The evaluation results of the proposed study were also compared 

with examples of similar previous state-of-the-art work. The proposed 
study obtained 96.452% accuracy for four class categories comprising 
COVID-19, pneumonia (bacterial and viral) cases and normal control 
cases; these achieved 97.242% for three class categories considering 
normal, COVID-19 cases and bacterial pneumonia cases, 99.35% for two 
class categories consisting of normal cases and COVID-19 cases using 
chest x-ray images as presented in Table 7. Besides this the proposed 
model achieved an accuracy of 97.10% for three class categories 
considering viral pneumonia cases, normal cases and COVID-19 cases, 
99.57% for two class categories comprising COVID-19 cases and pneu-
monia bacterial cases using x-ray images as presented in 4.4.1, Table 3. 
However, Mahmud et al. [69] proposed a multi-dilation convolutional 
neural network termed CovXNet for the identification and classification 
of COVID-19 cases from other cases using chest x-ray images. This model 
had a 90.3% accuracy for four different classes, including COVID-19 
cases, bacterial pneumonia cases, normal cases and viral Pneumonia 
cases, and 89.6% for three classes considering COVID-19 cases, viral 
pneumonia cases and bacterial pneumonia cases and 94.7% while 
classifying just COVID-19 cases and bacterial pneumonia cases. Khan 
et al. [68] suggested a model CoroNet for COVID-19 identification using 
chest x-ray images, which obtained 89.6% accuracy in four-class clas-
sification, comprising COVID-19, normal controls, viral and bacterial 
pneumonia cases, 95% accuracy for three classes while comprising 
COVID-19, cases with pneumonia and normal controls and 99.6% ac-
curacy achieved for the binary class considering normal controls and 
COVID-19 cases. The aforementioned research did not employ further 
patient data. However, our proposed model employed larger amounts of 
patient data and a balanced dataset of chest x-ray images for the 
experiment, and we obtained accuracy comparable to or greater than 
these studies, as shown in Table 7. Arsenovic et al. reported [70] a model 
ResNetCOVID19 to identify COVID-19 using X-ray images that achieved 
94.1% accuracy for three class incidents comprising pneumonia bacte-
rial cases, normal control cases & COVID-19 cases. They did not include 
data containing viral pneumonia but our proposed model did (Table 7) 
not only considering data that included viral pneumonia but also 
comparing data from other different categories and achieved superior 
accuracy when compared to their work on the three classes. Ozturk et al. 
[33] proposed DarkCovidNet, an automated COVID-19 identification 
system using x-ray images of the chest that attained 98.08% for binary 
classes considering normal cases and COVID-19 cases and 87.02% ac-
curacy for three classes combining pneumonia cases with the other 
cases. For their raw data, they did not use any augmentation procedures. 
As data augmentation improves the robustness of the deep learning 
model, the proposed model in this study applied augmentation tech-
niques on the raw images and obtained better results as demonstrated in 
Table 7. Sethy et al. [71] established a model that coupled a transfer 
learning architecture ResNet50 with SVM to accurately distinguish 
select COVID-19 positive cases from COVID-19 negative cases using 
x-ray images of the chest with a 95.38% accuracy. They employed an old 
transfer learning architecture and SVM (support vector machine) clas-
sifiers for case classification, whereas the proposed model utilized an 
upgraded version of ResNet50 and extended and tuned it for improved 
performance in this study. Furthermore, instead of employing the SVM 
classifier, the proposed model employed SoftMax classifier and obtained 
better results from their model as shown in Table 7. 

Our proposed study obtained 99.012% accuracy for three classes 
comprising COVID-19, CAP cases, normal cases, 99.99% for two classes 
considering normal cases and COVID-19 cases using chest CT-scan im-
ages as presented in Table 7. Besides this, our model achieved an ac-
curacy of 99.99% for two classes considering COVID-19 cases and CAP 
cases using CT-scan images as presented in 4.4.2, Table 5. Heidarian 
et al. [48] proposed a model named COVID-FACT to identify COVID-19 
using CT-scan images where they achieved an accuracy of 90.82% for 
three-class classification. A combined architecture ResNet + Location 
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attention was built by Xu et al. [49] to identify COVID-19 patients using 
chest CT-images. They worked on three-class classifications and ob-
tained a lower accuracy of 86.7% due to using the old architecture of 
ResNet. Shalbaf et al. [46] worked on 15 pre-trained models to identify 
COVID-19 cases from non-COVID-19 cases and achieved a lower accu-
racy of 85.0% using CT-scan images. Mukherjee et al. [50] proposed 
CNNs-tailored deep neural networks to identify COVID-19 cases from 
non-COVID cases by using both the ct and x-ray images of the chest. The 
aforementioned studies did not deal with more patient data. Moreover, 
using pre-trained models did not make their model more robust. 
Therefore, our proposed model employed more patient data with a 
balanced dataset of CT-scan images for the experiment and developed a 
pre-trained model to make the model more robust and obtain better 
accuracy compared to these studies, as demonstrated in Table 7. 

In sum, the encouraging and promising results of our proposed model 
in the identification of COVID-19 cases from CT-scan and X-ray images 
suggest that deep learning could play an important role in combating the 
current pandemic in the near future. 

Although we collected a large number of X-ray and CT-scan images 
to train our model, the model needs to be evaluated with a large number 
of patient images from different countries to ensure its robustness. To 
enhance the collected images, we sharped the images through a sharp-
ening filter. To improve the accuracy and robustness of the model, 
advanced image processing techniques such as hybrid filtering (combi-
nation of several filters) need to be incorporated. We used ResNet50V2 
as our base model and also added some extra layers to it. Generally, 
ResNet50V2 is a deeper model, and by adding some new layers to the 
existing layers, the proposed architecture becomes more deep and 
complex. Although deeper models perform well in feature extraction, 
training the model with a large dataset is time-consuming. Hence, in 
future, we intend to build a deep learning model that might have low 
complexity and be more feasible and robust. 

5. Conclusion 

SARS-CoV-2 is a serious continuing threat to human health, but the 
shortage of testing resources in many countries limits patient testing. 
Thus, alternative strategies may be needed to aid the rapid diagnosis of 
COVID-19 patients. Hence, we examined a deep learning framework 
based on the ResNet50V2 architecture and effective preprocessing 
techniques identification and classification of COVID-19 cases using CT- 
scan and X-ray images. The architecture was examined using a balanced 
and updated dataset collected from different open sources. The model 
was capable of working with both the binary class and the multiclass 
classifications. Performance analysis shows that this model performed 
well on the prepared datasets. This raises the possibility that this or a 
similar image analysis approach can assist radiologists and clinicians in 
the diagnosis of COVID-19, and provide timely services to patients and 
thereby help to limit community transmission. Future research will 
focus on federated learning and Blockchain technology to establish a 
distributed trust-less COVID-19 detection protocol. 
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