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Abstract: Systemic sclerosis (SSc) is a multi-system autoimmune disease with tissue fibrosis prominent
in the skin and lung. In this review, we briefly describe the autoimmune features (mainly autoantibody
production and cytokine profiles) and the potential pathogenic contributors including genetic/epigenetic
predisposition, and environmental factors. We look in detail at the cellular and molecular bases
underlying tissue-fibrosis which include trans-differentiation of fibroblasts (FBs) to myofibroblasts
(MFBs). We also state comprehensively the pro-inflammatory and pro-fibrotic cytokines relevant to MFB
trans-differentiation, vasculopathy-associated autoantibodies, and fibrosis-regulating microRNAs in
SSc. It is conceivable that tissue fibrosis is mainly mediated by an excessive production of
TGF-β, the master regulator, from the skewed Th2 cells, macrophages, fibroblasts, myofibroblasts,
and keratinocytes. After binding with TGF-β receptors on MFB, the downstream Wnt/β-catenin
triggers canonical Smad 2/3 and non-canonical Smad 4 signaling pathways to transcribe collagen
genes. Subsequently, excessive collagen fiber synthesis and accumulation as well as tissue fibrosis
ensue. In the later part of this review, we discuss limited data relevant to the role of long
non-coding RNAs (lncRNAs) in tissue-fibrosis in SSc. It is expected that these lncRNAs may become
the useful biomarkers and therapeutic targets for SSc in the future. The prospective investigations in
the development of novel epigenetic modifiers are also suggested.

Keywords: non-coding RNA; microRNA; long non-coding RNA; Wnt/catenin signal pathway; tissue
fibrosis; myofibroblast trans-differentiation; pro-fibrogenic cytokines; TGF-β; systemic sclerosis

1. Introduction

Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by the presence of a broad
spectrum of autoantibodies, vascular endothelial damage, non-infective inflammation, and tissue
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fibrosis in the skin and internal organs, especially the lungs [1–8]. Clinically, endothelial dysfunction
presenting as Raynaud’s phenomenon is a starting manifestation in patients with SSc, which is
originated from damage to capillary lumens. Subsequently, tissue fibrosis ensues in the skin of hands
and extends to internal organs [3,9–12]. Presumably, both innate [7] and adaptive immune cells [1–4,8]
participate in the eccentric immune responses that skew naïve T cells toward Th2 responses in SSc
patients. High levels of Th2 cytokines such as IL-13 and TGF-β have been found in the tissues of
SSc patients [3,4,9–12]. Moreover, these polarized Th2 cells are found adjacent to the fibroblasts (FBs)
in connective tissues, causing them to trans-differentiate to myofibroblasts (MFBs). The MFBs are major
cells to produce extra-cellular matrix including collagen fibers and fibronectins [4]. In the meantime,
B lymphocytes are activated by Th2-derived cytokines, IL-4 and IL-5, as well as macrophage-derived
IL-6 to produce diverse autoantibodies that result in vascular endothelial cell damage, tissue ischemia,
and chronic inflammation, and eventually tissue fibrosis [8]. Manetti et al. [13] have reported an increase
in phenotypic CD3+CD31+CXCR4+ angiogenic T cells (Tang) in the peripheral blood and skin tissues
of SSc patients with digital ulcers. The increase in this particular Tang phenotype in patients with
SSc may reflect an ineffective compensation for angiogenesis and diminished replenishment of
CD34+CD133+VEGFR-2+ endothelial progenitor cells in patients with SSc. Trucketet et al. [14] have
demonstrated that activated platelets can stimulate endothelial cells and dermal FBs to produce
a pro-fibrotic mediator, thymic stromal lymphopoietin (TSLP), in an IL-1β dependent manner in
patients with SSc. Benyamine et al. [15] have found that SSc-derived natural killer (NK) cells with
a particular phenotype of low expression of CXCR4, NKG2D, and CD69 are the potent inducer of
endothelial microparticle release by the activated endothelial cells. On the other hand, the classic
innate immune cells such as monocytes and dendritic cells can potently secrete both pro-fibrogenic
and pro-inflammatory cytokines to induce tissue inflammation and fibrosis. A scheme demonstrating
autoimmune-mediated vasculopathy, tissue inflammation, tissue ischemia, and finally tissue fibrosis
in SSc patients is depicted in Figure 1. The autoantibody profiles relevant to respective clinical
manifestations and pathological processes in SSc patients are listed in Table 1 [16–43]. Among these
autoantibodies, anti-scleroderma 70 (anti-Scl-70) or anti-double-stranded DNA topoisomerase 1
(anti-TOPO-1), and anti-centromere proteins (anti-CENPs) are the marker autoantibodies of the patients
with SSc and its variant, CREST syndrome (acronymed from calcinosis, Raynaud’s phenomenon,
esophageal dysmotility, sclerodactidy, and telangiectasis). To clarify the cause-effect relationship of
autoantibodies and SSc pathogenesis, Henault et al. [17] have reported that anti-TOPO-1 can directly
bind to the surface of FBs. Shen et al. [44] have directly incubated human umbilical vascular endothelial
cell line (HUVEC) with the heat-inactivated sera containing anti-CENP-B and anti-TOPO-1 antibodies
obtained from SSc patients with Raynaud’s phenomenon and found that the two autoantibodies could
induce vascular endothelial cell senescence via a mechanism other than the classic p53-p21 pathway.
Nevertheless, the real cause-effect relationship of autoantibodies in the development of specific clinical
manifestations particularly the tissue fibrosis in SSc remains to be elucidated.
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Figure 1. Autoimmune-mediated fibroblast-to-myofibroblast trans-differentiation, vascular 
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Table 1. Autoantibody-related clinical manifestations in patients with systemic sclerosis (SSc). 

Autoantibody Clinical Manifestation References 

Anti-topoisomerase 1 (anti-Scl-70) 

Pulmonary fibrosis 

Cardiac involvement 

Malignancy 

Raynaud’s phenomenon 

[16–18] 

Anti-centromere proteins B and C 
Raynaud’s phenomenon 

Ischemic digital loss 
[18–20] 

Figure 1. Autoimmune-mediated fibroblast-to-myofibroblast trans-differentiation, vascular endothelial
cell (EC) damage, tissue ischemia, tissue inflammation, and finally tissue fibrosis in patients with
systemic sclerosis.
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Table 1. Autoantibody-related clinical manifestations in patients with systemic sclerosis (SSc).

Autoantibody Clinical Manifestation References

Anti-topoisomerase 1 (anti-Scl-70)

Pulmonary fibrosis
Cardiac involvement

Malignancy
Raynaud’s phenomenon

[16–18]

Anti-centromere proteins B and C
Raynaud’s phenomenon

Ischemic digital loss
Sicca syndrome

[18–20]

Anti-RNA polymerase III Skin fibrosis
Renal crisis [21,22]

Anti-U3-RNP (fibrillarin)
Pulmonary arterial hypertension

Cardiac involvement
Skeletal muscle involvement

[23–26]

Anti-U11/U12-RNP Pulmonary fibrosis [27,28]

Anti-B23
Pulmonary hypertension

Lung diseases [29,30]

Anti-Ku Muscle and joint involvement [31,32]

Anti-Th/To-RNP
Lung diseases

Renal crisis
Small-bowel involvement

[33,34]

Anti-endothelial cells Skin and lung fibrosis [35]

Anti-fibroblast Skin and lung fibrosis [36]

Anti-metalloproteinase 1 Extracellular matrix deposition [37]

Anti-M3-muscarinic receptor Gastrointestinal dysmotility
Sicca [38]

Anti-PDGFR Tissue fibrosis [39]

Anti-cardiolipin/phospholipid Vasculopathy [40]

Anti-ICAM-1 Endothelial dysfunction [41]

Anti-fibrillin-1 Tissue fibrosis [42,43]

2. The Pathogenic Factors Contributing to the Development of SSc

2.1. Genetic Predisposition in Patients with SSc

Recent investigations on SSc have identified more than 30 genetic loci largely belonging to
immunity-associated genes including human leukocyte antigen (HLA)-DRB1, DQB1, DQA1, and DPB1,
non-HLA (such as STAT4, IRF5, CD247) [45–49] and cancer-associated genes including Ras, Jak/STATs,
EGFR [46,50,51]. However, these genetic loci are found only modestly associated in strength with
the disease susceptibility. The non-HLA genes associated with SSc are implicated in a wide range of
functions including innate and adaptive immune responses, extracellular matrix deposition, cytokine
production, and autophagy [42–49]. Thus, these genes are considered related to tissue inflammation,
fibrosis, and vasculopathy in patients with SSc [49]. Interestingly, 10% of SSc patients have been observed
to produce anti-RNA polymerase III autoantibodies, which are demonstrated significantly relevant
to carcinogenesis [52–54]. The cancers closely related to these antibodies encompass lungs, breasts,
esophagus, urinary bladder, and hematopoietic systems [51]. These data imply that part of the SSc
patients probably belong to the category of paraneoplastic syndrome with autoimmune manifestations.
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2.2. Environmental Risk Factors and Their Modes of Action Associated with SSc

Until recently, a growing body of evidence has suggested that environmental factors play
an initiating role in the alterations/modulations of epigenetic determinants for the onset and progression
of genetically predisposed SSc. These environmental risk factors include silica, inorganic compounds,
organic solvents, drugs, white spirits, vaccination [55–60], rapeseed oil [61], and heavy metals [62].
These environmental risks interact with genetic or epigenetic factors to breakdown the immune
tolerance to self-antigens. Consequently, the autoantibodies are induced and tissue damage ensues in
patients with SSc [62].

2.3. Aberrant Epigenetic Regulations in SSc

Epigenetics refers to reversible and stable hereditable modifications of gene expression and function
but without alterations in DNA sequence [63]. The epigenetic regulation of gene expression includes
DNA methylation, histone modification, and post-transcriptional mRNA regulation by non-coding
RNAs [64]. DNA methylation is a biochemical process involving the transfer of a methyl group onto
the C5 position of cytosine to form 5-methylcytosine at the position of a repeated CpG dinucleotides
(CpG island) in the promoter region of a gene for repressing its expression [65]. The methylation
of DNA is mediated by DNA methyltransferase (DNMT) 1, 3a, and 3b [66]. Conversely, gene
transcription is achieved only after DNA demethylation which is activated by ten-eleven translocation
(TET) enzymes, TET1, TET2, and TET3 [67]. On the other hand, post-transcriptional modifications
of amino acid residues in histone may also alter chromatin structure. The enzymes involved in
histone acetylation are histone acetyltransferases (HATs) and histone deacetylases (HDACs) which may
regulate histone acetylation and up or downregulation of gene expression. Another two groups of
enzymes involved in keeping histone methylation status, histone methyltranferases (HMTs) and histone
demethylases (HDMs), may also down or upregulate the gene transcriptions. Besides, phosphorylation,
ubiquitylation, and sumonylation can also modify histones for modulating DNA transcription [68–70].

In addition to DNA methylation/demethylation and histone modifications, recent investigations
have focused on the discovery of the regulatory functions of a group of “non-coding RNAs”,
which cannot be translated to proteins. These RNA molecules have been categorized into two
groups. The small molecules with nucleotide residues ranging between 20 and 24 nt are classified
as microRNAs (miRs), whereas those with nucleotide residues more than 300 nt are classified as long
non-coding RNAs (lncRNAs). miRs regulate gene expression by inducing transcription degradation or
retarding RNA transferase activity through binding to a 3′-untranslated region (3′-UTR) of target mRNA,
modulation of methylation in the DNA promoter regions, or modification of histone [71]. On the other
hand, lncRNAs regulate gene expression by different mechanisms including epigenetic, transcriptional,
post-transcriptional, translational, and peptide localization modifications [72–75]. Another unique
feature of lncRNAs depends on their biochemical properties interacting with a wide range of molecules
to form RNA-RNA, RNA-DNA, and RNA-protein complexes, indicating their vast functional diversities.
Interestingly, interactions between lncRNAs and miRs have also been reported, i.e., lncRNAs can serve
as sponge-like molecules to inhibit miR-mediated functions [76,77]. The functional classification of
non-coding RNAs and their interactions for modulating mRNA expression and cell functions are
illustrated in Figure 2. The different epigenetic modulations of immune-related cells in patients with
SSc are discussed in detail in the following sections.

2.3.1. Abnormal DNA Methylation in the Immune-Related Cells of Patients with SSc

Lei et al. [78] have measured the total methylation of CD4+ T cells in patients with SSc and found
global hypomethylation due to decrease in DNMT1 and methyl-CpG-binding domain proteins
(MBD), MBD3 and MBD4, together with their mRNAs expression in these immune cells. In addition,
Wang et al. [79] and Almanzar et al. [80] have found DNA hyper-methylation in the FOXP3 promoter
of CD4+T cells with decreased FOXP3 mRNA expression that subsequently led to Treg cell functional
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defect and hyperactivity of CCR6+Th cells. These results indicate that Th17/Treg imbalance predisposes
inflammatory diathesis in patients with SSc. Zhu et al. [81] have unveiled that aberrant methylation
regulation can potentially lead to differential expression of genes in peripheral blood mononuclear cells
and be involved in the abnormal migration, proliferation, activation, and increased pro-inflammatory
diathesis of immune-related cells in patients with SSc.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 25 

 

 

Figure 2. Different types of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) with their 

mutual interactions on the post-transcriptional regulation of mRNA expression and cell functions 

including proliferation, differentiation, apoptosis, and development of immune responses. 

2.3.1. Abnormal DNA Methylation in the Immune-Related Cells of Patients with SSc 

Lei et al. [78] have measured the total methylation of CD4+ T cells in patients with SSc and 

found global hypomethylation due to decrease in DNMT1 and methyl-CpG-binding domain 

proteins (MBD), MBD3 and MBD4, together with their mRNAs expression in these immune cells. In 

addition, Wang et al. [79] and Almanzar et al. [80] have found DNA hyper-methylation in the 

FOXP3 promoter of CD4+T cells with decreased FOXP3 mRNA expression that subsequently led to 

Treg cell functional defect and hyperactivity of CCR6+Th cells. These results indicate that Th17/Treg 

imbalance predisposes inflammatory diathesis in patients with SSc. Zhu et al. [81] have unveiled 

that aberrant methylation regulation can potentially lead to differential expression of genes in 

Figure 2. Different types of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) with their
mutual interactions on the post-transcriptional regulation of mRNA expression and cell functions
including proliferation, differentiation, apoptosis, and development of immune responses.



Int. J. Mol. Sci. 2020, 21, 3069 7 of 25

2.3.2. Abnormal Histone Modifications in the Immune-Related Cells of Patients with SSc

Wang et al. [82] have reported the occurrence of global histone H4 hyperacetylation as well
as global histone hypomethylation in the B cells of SSc patients. Moreover, they noted that the global
histone H4 acetylation and HDAC2 expression were negatively correlated whereas global histone
H3K9 methylation was positively correlated with SUV39 H2 protein expression. They concluded
that the altered histone modifications in B cells of SSc patients were associated with skin thickness
as well as increased disease activity in SSc. It is thus inferred that a number of autoantibodies
produced by hyperactive B cells can cause different clinical manifestations and pathological changes
including vasculopathy and tissue fibrosis in patients with SSc, which originate from abnormal histone
modifications (Table 1). Ciechomska et al. [83] have further demonstrated that histone demethylation in
conjunction with Toll-like receptor (TLR)-8 activation in monocytes could promote trans-differentiation
of FBs to MFBs via an activator protein 1 family member, Fra-2. The increased trans-differentiation from
FBs to MFBs inevitably enhances the extracellular matrix synthesis and accumulation, and finally tissue
fibrosis. Current investigations have also suggested that the proliferation-boosting cytokines may
trigger epigenetic changes and persistently activate the phenotypic trans-differentiation of FBs [84].

2.3.3. Enhanced DNA Hypomethylation in the Dermal Fibroblasts of SSc Patients

Hattori et al. [85] have found the expression level of TET1 mRNA in SSc-dermal FBs is 1.68-fold
higher than in normal dermal FBs. The expression levels of DNMT1 and DNMT3B mRNA also
show an increased tendency in SSc-FBs. Moreover, the TET1 expression in these dermal FBs is
abnormally regulated in hypoxic environment and accompanied by a global DNA hypomethylation.
Altorok et al. [86] conducted a genome-wide DNA methylation study of dermal FBs obtained from SSc
patients. They found only 203 CpG loci in 485,000 methylation sites across the whole genome were
differentially methylated in both diffuse and localized SSc patients. The common hypomethylated
genes include ITGA9 (encoding an α integrin), ADAM12, COL23A1, COL4A2, and MYO1E, together
with their transcriptional factor genes, RUNX1, RUNX2, and RUNX3. Further analyses unfolded
that the genes involved in the extracellular matrix–receptor interaction and focal adhesion were all
enriched in the dermal FBs of patients with SSc. These data may suggest a concept that SSc patients
with a genetic predisposition in their FBs can spontaneously exhibit abnormal epigenetic regulation in
their collagen fiber producing cells.

In short conclusion, aberrant genetic and epigenetic regulations in patients with SSc facilitate
the immune-related cells and dermal FBs to move toward a fibrinogenetic diathesis after stimulations
by environmental factors.

3. Cellular and Molecular Mechanisms for Tissue Fibrosis in Patients with SSc

3.1. Pathophysiology of Myofibroblasts and Other Connective Tissue Cell Lineages in Patients with SSc

Tissue fibrosis is the most lethal condition in patients with SSc. Persistent activation of MFBs
is responsible for the overproduction and accumulation of extracellular matrix and fibronectin in
different tissues and organs of the patients [87,88]. Many investigators have also found that a variety
of connective tissue cell lineages including resident FBs/fibrocytes, keratinocytes, endothelial cells,
pericytes, pre-adipocytes/adipocytes, and resident tissue stromal cells are implicated in the fibrosis of
SSc patients [89,90]. Many different immune-related cells such as M2 macrophages [91,92], dendritic
cells (DCs) [92,93], mast cells [94], neutrophils [95], B lymphocytes [96,97], T lymphocytes [98,99], innate
lymphoid cells [100], endothelial cells [101], platelets [14,102], adipocytes [103], and keratinocytes [104]
are involved in the modulation of tissue fibrosis in SSc. The caspases released from the activated
NLRP-3 inflammasomes of innate immune cells can facilitate FB-MFB trans-differentiation. In addition,
the inflammatory cytokines such as IL-1 and IL-18 released from activated macrophages stimulate
tissue inflammation and MFB trans-differentiation, and further increase collagen fiber syntheses.
The skewed Th2 and Th17 populations produce pro-fibrotic cytokines (TGF-β, IL-4, IL-13, IL-17,
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IL-22, etc.), which further stimulate MFBs and tissue inflammation. These events subsequently facilitate
extracellular matrix synthesis and deposition. The autoantibodies produced by B cells may destroy
vascular endothelial cells and enhance vascular smooth muscle hypertrophy as well as ultimate
vasculopathy. These intriguing interactions among immune-related cells, cytokines, and connective
tissue cells are shown in Figure 3.
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Figure 3. The underlying cellular and molecular bases of vasculopathy, chronic inflammation,
and tissue fibrosis in patients with systemic sclerosis via pro-inflammatory cytokines, pro-fibrogenic
cytokines, autoantibodies, caspases, and oxidative stresses to elicit trans-differentiation of fibroblasts to
myofibroblasts and finally tissue fibrosis in the patients. Mϕ: macrophage, MSC: bone marrow-derived
mesenchymal stem cell, FB: fibroblast, MFB: myofibroblast, VSMC: vascular smooth muscle cell.

3.1.1. Aberrant Ontogenesis of Mesenchymal Stem Cells (MSCs) and Abnormal Cellular Physiology
of Their Descendant Vascular Smooth Muscle and Endothelial Cells in Patients with SSc

Di Benedetto et al. [105] assessed the miR expression profiles of the bone marrow-derived MSCs
(BM-MSCs) and adipose tissue-derived MSCs (A-MSCs) from patients with SSc. They have found
that both lineages from SSc patients express extraordinarily high levels of miRs associated with
senescence and pro-fibrotic tendency. Their results have suggested the pro-fibrotic properties of
stem cells in SSc. Hegner et al. [106] further demonstrated that disturbed endogenous regeneration
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capacity in SSc-MSCs skewed vascular smooth muscle cell (VSMC) differentiation toward MFB
lineage. Moreover, Mendoza et al. [101] have reported that the CD31+/CD102+ endothelial cells
obtained from lung tissues of SSc patients with interstitial lung disease (ILD) expressed high levels
of MSC specific genes (COL-I, COL-III, and fibronectin), EC-specific genes (COL-IV and vascular
endothelial cadherin), pro-fibrotic genes (TGF-β and CTGF), and genes encoding transcription factors
for the transition from endothelial-to-mesenchymal cells (EndoMT), as well as the related transcription
factors, TWIST1 and SNAI2. EndoMT refers to a trans-differentiation by which ECs lose their specific
morphology/markers to acquire MFB-like properties. Following this line of discovery, Manetti et al. [107]
reported that dermal microvascular EC obtained from SSc patients (SSc-dMVECs) exhibited not only
a spindle-shaped appearance but also an existence of low levels of CD31 and VE-cadherin with abundant
MFB markers (α-SMA+ stress fibers, S100A4, and type 1 collagen). They concluded that EndoMT
in SSc may potentially become a crucial process linking endothelial dysfunction and development
of dermal fibrosis. Furthermore, Zhao et al. [108] demonstrated that overexpression of lncRNA,
HIFα-anti-sense RNA1 (HIFα-AS1), enhanced the expression of caspase 3, caspase 8, and Bcl-2 in
VSMC of SSc patients. These factors increased proliferation and decreased apoptosis of VSMCs in SSc
patients complicated with thoraco-abdominal aortic aneurysm. The detailed dissection of the cellular
and molecular mechanisms underlying the pathogenesis of tissue fibrosis in patients with SSc is
illustrated in Figures 1 and 3.

3.1.2. Histological Characteristics and the Biochemical Constituents in Tissue Fibrosis of Patients
with SSc

The specific histological findings and biochemical constituents of SSc-skin are the deposition of
collagen (COL) I, III, and V, which are co-assembled into a unique macromolecule to form heterotypical
fibers [109,110]. COL-V is the minor component bridging between COL-I and COL-III where it
contributes to the development of functional connective tissues [111,112]. Parra et al. [113,114]
and Martin et al. [115] have observed an increased COL-V expression in SSc-lung associated with reduced
vital capacity and diffusion capacity for carbon monoxide. In addition to collagens, fibronectin expression
is also enhanced by oxidative stress-activated FBs. The anti-oxidant such as epigallocatechin-3-gallate can
modulate COL I, fibronectin, and dermal FB activity in SSc as reported by Dooley et al. [116]. Imbalance
between matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP) might also
contribute to excessive accumulation of collagen fibers in SSc-dermis as reported by Verrechia et al. [117].

3.2. Tissue Fibrosis-Related Cytokines and Their Signaling Pathways in SSc

A number of autoimmune-related cytokines and growth factors are supposed to be implicated in
the tissue fibrosis in SSc patients. Among which, transforming growth factor-β (TGF-β) is regarded
as the master regulator in the development of tissue fibrosis in these patients [117–120]. The increased
expression of TGF-β by Th2 cells, macrophages, fibroblasts, myofibroblasts, and keratinocytes
can enhance a synthesis and deposition of extracellular matrix in situ via both canonical
(Smad 2/3) and non-canonical (Smad 4) adaptor proteins of Wnt/β-catenin signaling pathways.
Despite the profibrosis-inducing effect of TGF-β, the cytokine may also inhibit transcription factor,
GATA-3, to suppress IL-13 and IL-5 expression from Th2 cells, acting as an anti-inflammation
process in a negative feedback loop. Tang et al. [119] and Hu et al. [120] have reported that TGF-β
can enhance Smad 2 and Smad 3, but suppress Smad 7 in MFBs. Recent studies have further
revealed that TGF-β can exert an additional effect on the regulation of TGF-β1-Smad signaling
pathway via ncRNA modulations as well as epigenetic modifications of DNA and histones [118,119].
Meng et al. [118] further demonstrated that both Wnt/β-catenin signaling pathway and lipid metabolism
were concomitantly transduced by TGF-β1. In addition, Trojanowska M [121] reported that cross-talk
between TGF-β and platelet derived growth factor (PDGF) signaling pathways could regulate chronic
tissue fibrosis in SSc. In addition to TGF-β, Artlett et al. [122] have reported that IL-1 cytokine
family including IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ, and IL-38 can also contribute
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to the skin inflammation and fibrosis in patients with SSc. Kotsiou et al. [123] and Xu et al. [124]
have further demonstrated that the IL-33/ST2 axis signaling pathway is involved in SSc and other
fibrotic diseases. O’Reilly et al. [125] and Nquyen et al. [126] reported that Th2 polarization by
overexpression of IL-4/IL-13 axis contributes to the initiation and perpetuation of collagen deposition
in fibrotic skin and scarring diseases of SSc patients via STAT6 signaling and miR-135b modulation.
Wang et al. [127] found that tissue hypoxia accelerated multifunctional reprogram of FBs to produce
IL-6 via an upregulation of the TGF-β1 signaling pathway. Robak et al. [128] found that higher
levels of IL-17B and IL-17E were associated with both localized and diffuse SSc whereas high IL-17F
was associated only with localized SSc. On the contrary, Nakashima et al. [129] have demonstrated
that IL-17A exerts an anti-fibrotic effect via upregulation of miR-129-5p and downregulation of
connective tissue growth factor (CTGF) and α1 collagen. In SSc FBs, IL-17A signaling is suppressed
due to downregulation of its receptor by the intrinsic TGF-β1 activation. To further explore the IL-17
downstream signaling pathway in SSc, Ahmed et al. [130] have demonstrated that PD-1, SHP2, STAT3,
Ras/Erk, mTOR and complement components are all involved in this particular signaling pathway.
Another important cytokine associated with SSc fibrosis is IL-22. It is a member of the IL-10 cytokine
family mainly produced by CD4+T cells and innate lymphoid cells. Sawamura et al. [131] have
demonstrated that IL-22 expression in SSc skin infiltrated with lymphocytes, can potently upregulate
COL I production by dermal FB via let-7a downregulation. On the contrary, IL-35, a heterodimeric
cytokine belonging to the IL-12 family, exhibits an anti-fibrotic activity and has been found suppressed
in SSc by Luo et al. [132].

Besides the above-mentioned cytokines, certain growth factors, miRs, and biomolecules have been
found able to modulate tissue fibrosis in SSc patients. These may include endoglin, a co-receptor for
TFG-β reported by Maring et al. [133], extracellular secreted protein acidic and rich in cysteine (SPARC)
reported by Carvallieiro et al. [134], and intracellular E3 ubiquitin ligase reported by Huang et al. [135].
All of the three molecules can stimulate the pro-fibrotic activity of dermal FBs obtained from SSc.
In contrast, sirtuins (SIRTs), a group of histone deacetylases with anti-fibrotic activity, are decreased in
SSc as demonstrated by Wyman et al. [136].

Table 2 summarizes the fibrosis-related cytokines, growth factors, and molecules, and their major
signaling/modes of action in patients with SSc.

3.3. Tissue Fibrosis-Related ncRNAs and Their Signaling Pathways in Patients with SSc

3.3.1. Tissue Fibrosis-Related miRs in SSc

It is conceivable that approximately 50% miRs are expressed from non-protein coding transcripts.
The rest are located in the introns of the coding genes and are co-transcribed with their host genes, but are
separately processed for intracellular modulation of gene expression. Besides, miRs are also contained
in the extracellular small vesicles such as exosomes. Exosomes are micro-vesicles encapsulated by
lipid bilayer, containing insides various biomolecules such as proteins, lipoproteins, carbohydrates,
DNAs, mRNAs and miRs, to act as vehicles for inter-cellular or inter-tissue communications.
Previous investigators have demonstrated that many miRs are involved in the fibrinogenesis in
SSc. These fibrosis-related miRs can be classified into pro-fibrotic and anti-fibrotic miRs detected in
the dermal FBs [137,138] or circulating exosomes [139,140] in patients with SSc. Once the imbalance
between pro-fibrotic and anti-fibrotic miRs in Th2 cells of SSc patients occurs toward profibrotic end,
some mechanisms would trigger TGF precursors toward active form of TGF-β in Th2 cells. The released
active form of TGF-β then binds to TGF-β receptors on MFBs, initiating a transcription and synthesis
of collagen fibers through Wnt/β-catenin signaling pathways [49,141–145] as mentioned in the above
(Section 3.2). Figure 4 illustrates the imbalance between pro- and anti-fibrotic miRs with a skewing
toward fibrinogenesis, which transduces fibrosis signaling in patients with SSc.
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Table 2. The fibrosis-related cytokines/growth factors/molecules, and their signaling/modes of action in
patients with systemic sclerosis.

Fibrosis-Related Cytokines/Molecules Signaling/Modes of Action

[I] Pro-fibrogenic cytokines:

TGF-β [117–120]
Smad 2/3, Wnt/β-cateninPDGF [121]

IL-1 family (IL-1, IL-33, IL-36) [122–124]

IL-4/IL-13 [125,126]

STAT6, miR-135bIL-6 [127]
IL-17B, IL-17E, IL-17F [128–130]

IL-18 [122]

IL-22 [131] let-7a ↓→ collagen I ↑

IL-33 [122] ST2 (suppressor of tumorigenicity 2 receptor)

[II] Fibrosis-related molecules:

Endoglin (co-receptor for TGF-β signaling) [133] Smad 2/3, Wnt/β-catenin

SPARC (secreted protein acidic and rich in cysteine) [134] Smad 2/3, Wnt/β-catenin

E3 ubiquitin ligase [135]
Ubiquitin-mediated degradation of

TGF-β/Smad signaling pathway

[III] Anti-fibrinogenic cytokines:

IL-17A [129] miR-129-5p↑→CTGF *↓
IL-35 [132]

[IV] Anti-fibrogenic molecules:

Sirtuins (histone deacetylase) [126]

TGF-β inducing signaling↓
mTOR signaling↓
Oxidative stress↓

Cell senescence marker p-21↓

* CTGF: connective tissue growth factor; ↑: upregulation; ↓: downregulation.

3.3.2. Tissue Fibrosis Relevant Long Non-Coding RNA in SSc

Thanks to the development of next generation sequencing (NGS) technology, particularly
RNA sequencing, various investigations have revealed that there are 92,343 lncRNA genes in
a whole human genome, which is twice as many as the human protein coding genes [146].
These large numbers of lncRNA can be functionally classified into seven groups including intergenic,
enhancer, promoter-associated, sense-overlapping, natural anti-sense, intronic, and untranslated-region
overlapping lncRNAs [147]. These functional lncRNAs can serve as important epigenetic regulatory
factors for gene expression, genetic imprinting, histone modifications, chromatin dynamics,
and interactions with other molecules such as miRs and proteins in the somatic and immune-related
cells [73,148–150]. Aberrant expression of lncRNAs has been explored in many autoimmune
diseases such as systemic lupus erythematosus, rheumatoid arthritis, type I diabetes, autoimmune
thyroid diseases, multiple sclerosis, polymyositis/dermatomyositis, psoriasis, and Crohn’s disease in
the literature [43,151]. As investigated in immunology/rheumatology realm, overactive Th17 cells play
important roles in the pathogenesis of many autoimmune/inflammatory diseases. Teimuri et al. [152]
have identified the expression of lncRNAs, AL450992.2, AC009948.5, and RP11-98D18.3, as Th17
cell-lineage specific lncRNAs and their levels can serve as new potential biomarkers in autoimmune
and inflammatory diseases.
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Figure 4. Imbalance between pro-fibrotic- and anti-fibrotic-related microRNAs skews the naïve helper
T cell toward Th2 subpopulation. The TGF-β secreted from Th2 cell binds to TGF-β receptors on
myofibroblasts. The binding transduces signals via both canonical (Smad 2/3) and non-canonical
(Smad 4) Wnt/β-catenin pathways to transcribe the expression of collagen genes, COL-I, COL-II,
and COL-IV. Finally, excessive collagen fiber synthesis and tissue fibrosis ensue. ↑: upregulation,
↓: downregulation.

In contrast to many studies on miRs-related tissue fibrosis in patients with SSc as shown in
Section 3.3.1 and Figure 4, the reports on the lncRNA-associated tissue fibrosis in SSc are relatively
rare in the literature. Wang et al. [153] have discovered that increased serum level of TSIX represents
an lncRNA biomarker with stabilization activity on collagen mRNA. The upregulation of TSIX seen
in dermal FBs of SSc patients may originate from activation of endogenous TGF-β signaling with
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eventual enhancement of collagen synthesis by these cells. Mariotti et al. [154] have demonstrated
that lncRNA NRIR (a negative regulator of interferon response), is significantly upregulated in
monocytes of SSc patients. This may account for the increased interferon (IFN) signature, autoimmunity,
and auto-inflammatory nature of patients with SSc. Recently, Dolcino et al. [155] have identified a unique
lncRNA 00201 that regulates genes involved in four main features of SSc, i.e., fibrosis, vasculopathy,
autoimmunity, and carcinogenesis. Messemaker and colleagues [156], by using skin biopsy-derived
RNAs from SSc patients, have discovered a number of elevated anti-sense lncRNA expression in
SSc skin. They identified three dysregulated lncRNAs, CTBP1-AS2, OTUD6B-AS1, and AGPP2-AS1,
which were relevant to skin fibrosis. Takata et al. [157] further confirmed a downregulation of
OTUD6B-AS1 expression in SSc-FBs and human pulmonary artery smooth muscle cells (HPASMC)
after PDGF stimulation. Silencing of this particular lncRNA could significantly enhance cyclin D
expression. Knockdown of OTUD6B-AS1 significantly reduced proliferation of and suppressed
apoptosis of both dermal FBs and HPASMC. These results have suggested that OTUD6B-AS1
regulates cell proliferation and apoptosis via cyclin D1 expression in a sense gene-independent
manner and the apoptosis-resistance mechanism in FBs and vascular smooth muscle cells is relevant to
OTUD6B-AS1 function and the development of tissue fibrosis in patients with SSc.

The lncRNAs-related tissue fibrosis, hypertrophy of vascular smooth muscle cells,
autoimmunity/inflammation, and their respective target mRNAs in patients with SSc are listed
in Table 3. However, the downstream signaling pathways and relationships to the fibrosis-related
cytokines need further investigation.

Putting all of the SSc-related pathogenic factors together, a scheme depicting the potential
contributing factors for tissue and paraneoplastic syndrome is shown in Figure 5.

Table 3. Involvement of aberrant lncRNA expression, the target mRNA, and pathological changes in
patients with systemic sclerosis.

lncRNA Expression Level Tissue or Cell Type Target mRNA Pathology

TSIX [149] ↑
Dermal fibroblast, skin

tissue and serum
Type I collagen

mRNA stabilization Fibrosis

NRIR [150] ↓
Peripheral blood

monocytes
Type 1 IFN and its
stimulated mRNA

Autoimmuity,
Inflammation

ncRNA00201 [151] ↓
Peripheral blood

mononuclear cells

EGFR
Enb B1
S1P1

ALK1
Endothelins

RhoA
MAPK

Class I-PI3K
mTOR

TGF-βR
MyD88
TLRs
RAC

Autoimmunity,
Vasculopathy,

Fibrosis, &
Carcinogenesis

OTUD6B-AS1
[49,152,153] ↓

Skin tissue,
Fibroblast *,
HPASMC

Cyclin D1 Fibrosis,
Vasculopathy

CTBP1-AS2
[49,152] ↑ Skin tissue ND ND

AGAP2-AS1 [49] ↑ Skin tissue ND ND

HIFA-AS1 [108] ↑
Vascular smooth

muscle cells
Bcl-2

Caspase 3 and 8 Vasculopathy

* HPASMC: human pulmonary arterial smooth muscle cell; ↑: upregulation; ↓: downregulation.
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Figure 5. A scheme depicting in detail the contributing factors including genetics/epigenetics
predispositions, environmental factors, and the undefined stochastic stresses in inducing aberrant
immune responses. These factors may cause vascular endothelial cell damage, vascular smooth muscle
hypertrophy, chronic inflammation, autoantibody productions, excessive oxidative stress, and aberrant
non-coding RNA expression. These pathological modalities lead to increased trans-differentiation of
fibroblasts to myofibroblasts. Finally, tissue fibrosis occurs in the patients with systemic sclerosis.
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4. Potential Biomarkers and New Therapeutic Strategy for Patients with SSc

In addition to the intracellular ncRNA regulation in mRNA expression, extracellular vesicles (EV)
released from all cell types also play a role in the intercellular communications such as regulation
of chronic inflammation or immune responses [158]. Transcriptional and proteomic analyses of EVs
purified from patients with SSc can be expected to become the useful tools for finding biomarkers to
help diagnosis, classification, assessment of disease activity, providing prognosis and evaluation of
therapeutic effectiveness in patients with SSc [143]. Stypinska et al. [159] have reported miR expression
profiles in cell-free serum from patients with different autoimmune diseases including SLE, RA,
mixed connective disease (MCTD), and SSc. Moreover, Chouri et al. [160] have demonstrated serum
miR-483-5p as a potential driver of fibrosis in SSc, and Rusek et al. [161] have reported an upregulation
of novel serum miR-4484 associated with increased MMP-21 expression in SSc. This evidence may
indicate some unique circulatory miRs are not only useful biomarkers but pathogenic indicators for
SSc. Up to the present, there is no report regarding the expression profile of exosomal lncRNAs in
the serum of SSc patients. It is expected that certain exosomal miRs and lncRNAs identified in serum
will become useful biomarkers for pathological manifestations in SSc patients in the future.

In the cellular level, Manetti et al. [13] have demonstrated circulatory Tang cell expansion in SSc
patients with severe peripheral vascular damage. This may imply that the level of peripheral blood
Tang population can become a potential cellular biomarker in these patients.

Since the revealing of epigenetic regulations of gene expression including DNA
methylation/acetylation, histone modifications, and ncRNA in SSc pathogenesis, many authors have
reported that the epigenetic modifications can also be achieved by chemical and epigenetic editing
technology. Wang et al. [162] and Hemmantazad et al. [163] have reported that trichostatin A, an HDAC
inhibitor, could silence HDAC-7 of SSc-FBs. Chan et al. [164] have found that 5-aza-2′- deoxycytidine,
a DNMT inhibitor, could induce hypomethylation of FL11, DKK1, and SFRP1 in SSc-FBs. Dees et al. [165]
have demonstrated that azacytidine could inhibit the Wnt pathway by targeting DNMT1 in SSc-FBs.

An miR targeting strategy has also been designed by using miR-targeting anti-sense oligonucleotide
(anti-miRs), which are highly complementary to the target miR [166]. These anti-miRs could suppress
target miR function, blocking their inhibitory effect on the expression of endogenous target genes
after delivery by lentiviral vector. Furthermore, miR-masking technologies (miR-mask) have become
another strategy for anti-sense oligonucleotide approaches [167]. On the other hand, over the past years,
a cutting-edge epigenetic engineering called epigenetic editing, by use of CRISPR/Cas9 system, has
been developed. This tool, acting as a highly efficient site-specific DNA binding domain, would become
a novel epigenetic editing module for inhibiting aberrant ncRNAs regulation [168,169].

Wang et al. [149] and O’Reilly et al. [170] have reported that silencing lncRNA, TSIX, can result
in a reduction in COL 1 level in SSc FBs. In addition, Li et al. [171] have demonstrated that lncRNA,
CIR, can promote extracellular matrix degradation in chondrocytes of patients with osteoarthritis by
acting as a sponge for miR-276. Speculatively, it is also possible that a modulation of TGF-β signaling
pathway by sense or anti-sense lncRNAs can control the pro-fibrotic processes in SSc-FBs and may
serve as a new therapeutic strategy for treating SSc fibrosis in the future.

5. Conclusions and Prospects

SSc is a systemic autoimmune disease constellated with multi-organ fibrosis, vasculopathy,
and autoimmunity, which are characterized by the presence of pro-inflammatory/pro-fibrotic/anti-fibrotic
cytokines, autoantibodies, and carcinogenesis. Overexpression of β-catenin signaling pathways play
a master regulatory role in the tissue fibrosis of patients with SSc. Evidence supports that TGF-β and its
downstream signaling are regulated by genetic, epigenetic, and environmental factors. A number
of miRs have been found closely related to tissue fibrosis in patients with SSc. However, only a few
lncRNAs have been reported relevant to tissue fibrosis in patients with SSc. It is expected that some
epigenetic regulatory molecules, particularly the serum exosomal fibrosis-related lncRNAs, may not only
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become useful biomarkers for monitoring, diagnosing, and predicting prognosis, but serve as potential
therapeutic targets in SSc patients in the future.

To accomplish the aforementioned unmet needs, we propose the following issues may become
future foci for investigations: (1) identification of more specific fibrosis-related lncRNAs in
SSc-FBs; (2) development of more specific biochemical routes for epigenetic modification of SSc-FBs;
(3) development of ncRNA modulators such as miR-mask or anti-miR to aim against pathogenic
pre-miRs in SSc-FBs; and (4) development of new epigenetic editing technologies i.e., CRISPR/Cas9
system, for the future intervention in patients with SSc.
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Abbreviations

anti-CENP anti-centromere protein antibody
anti-ICAM-1 anti-intercellular adhesion molecule-1 antibody
anti-PDGFR anti-platelet derived growth factor receptor antibody
anti-TOPO-1 anti-topoisomerase-1 antibody (anti-Scl-70)
A-MSC adipocyte derived mesenchymal stem cell
AS anti-sense non-coding RNA
BM-MSC bone marrow derived mesenchymal stem cell
CIR cartilage injury related long non-coding RNA
COL collagen
CTGF connective tissue growth factor
DC dendritic cell
EC endothelial cell
ECM extracellular matrix
EndoMT trans-differentiation from endothelial cell to mesenchymal cell
EV extracellular vesicle
FB fibroblast
HIF hypoxia-induced factors
HPASMC human pulmonary arterial smooth muscle cell
IL interleukin
ILD interstitial lung disease
lncRNA long non-coding RNA
MFB myofibroblast
miR microRNA
MMP matrix metalloproteinase
mRNA messenger RNA
MSC mesenchymal stem cell
NLRP-3 neuronal apoptosis inhibitor protein, leucine-rich repeat, pyrin domain containing protein 3
NRIR a negative regulator of interferon response
PDGF platelet derived growth factor
S100A4 S100 calcium-binding protein A4
SNAI2 Snail superfamily of C2H2-type zinc finger transcription factor 2
SPARC secreted protein and rich in cysteine
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SSc systemic sclerosis
SSc-dMVEC dermal microvascular endothelial cell obtained from systemic sclerosis
Tang angiogenic T cell
TIMP tissue inhibitor of metalloproteinase
TGF-β transforming growth factor-β
Th helper T cell
TWIST1 Twist related protein 1 or class A basic helix–loop–helix protein 38 (bHLHa38)
VE vascular endothelium
VSMC vascular smooth muscle cell
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