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Hair follicles are mini organs that repeat the growth and regression cycle continuously.
These dynamic changes are driven by the regulation of stem cells via their multiple niche
components. To build the complex structure of hair follicles and surrounding niches,
sophisticated morphogenesis is required during embryonic development. This review will
explore how hair follicles are formed andmaintained through dynamic cellular changes and
diverse signaling pathways. In addition, comparison of differences in stem cells and
surrounding niche components during embryogenesis, neogenesis, and organogenesis
will provide a comprehensive understanding of mechanisms for hair follicle generation and
insights into skin regeneration.

Keywords: hair follicle stem cells (HFSCs), stem cell niche, wound-induced hair neogenesis (WIHN), hair follicle
organoid, hair follicle (HF)

INTRODUCTION

The skin is the largest and outermost organ of our body. The major role of the skin is to protect
our body from external insults, such as temperature changes, radiation, pathogens, and physical
and chemical damages. The skin performs these barrier functions along with appendages
including hair follicles, sebaceous glands, sweat glands, and nails. Among them, the hair
follicle is the most studied appendage in the skin. Majority of the skin area has hair follicles
except for palms, soles, and lips. Hair has various functions of protection. First, hair helps to
control body temperature. Hair traps warm air on the skin surface and creates an insulating layer
from the cold temperatures outside. Conversely, hair blocks direct sunlight on the skin surface
and prevents the skin temperature from rising rapidly. Second, hairs protect our bodies from
damage. Hair prevents dangerous substances from coming into direct contact with the skin and
acts as a cushioning material from a physical strike. Third, hairs feel a sense of touch. Several
mechanosensory receptors form specialized terminals by surrounding hair follicles in the dermis
(Zimmerman et al., 2014). These sensory receptors enable the detection of movement of hair
shafts and extend the sense of touch beyond the skin surface. Although hair plays such an
important protective role, destroyed hair follicles cannot be repaired in adults. However,
recently, several studies have reported methods for generating hair follicles in adult mice as
well as in culture dishes. This review will compare hair follicle morphogenesis under different
conditions with respect to morphology, signaling pathways, and surrounding niches for hair
follicle stem cells (HFSCs). These comparisons from various angles will provide insights into
hair follicle genesis and skin regeneration.
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HAIR FOLLICLE MORPHOGENESIS
DURING EMBRYONIC DEVELOPMENT

Morphogenesis of hair follicles has been well-characterized
during embryonic development using mouse models (Xin
et al., 2016; Paus et al., 1999). The hair follicle is composed of
epithelial cells that are continuous with the interfollicular
epidermis. Therefore, the morphogenesis of hair follicles
occurs along with the development of the epidermis (Park,
2022). The epidermis originated from the surface ectoderm at
embryonic day (E) 8.5 in mice and stratified into four different
types of layers: basal, spinous, granular, and cornified layers,
through differentiation during development (Koster and Roop,
2007). Cells in the upper dermis activate Wnt/β-catenin signaling
broadly by receiving Wnt ligands from the epithelial cells at
E12.5–14.5 for the hair follicle morphogenesis (Zhang et al., 2009;
Chen et al., 2012). Epithelial cells, which receive the first signal

from the dermis, have activatedWnt/β-catenin and ectodysplasin
(Eda)/nuclear factor-κB (NF-κB) signaling for thickening of
epithelial cells, known as placode, and they secrete fibroblast
growth factor (FGF) 20 for the specification of dermal
condensates (DCs), which is the clustering group of
mesenchymal cells (Zhang et al., 2009; Mok et al., 2019).
FGF20 is required to modulate the timing and level of Wnt
and Sonic hedgehog (Shh) signaling which mediate DC
specification. However, FGF20 is not absolutely required
because DCs can be formed in FGF20 knockout, although
these DCs are delayed and smaller (Qu et al., 2022).
(Figure 1A). Surrounding interfollicular cells activate
inhibitory signals, such as Dickkopf (Dkk) and bone
morphogenetic protein (BMP), to block hair follicle formation
(Mou et al., 2006; Sick et al., 2006; Gupta et al., 2019). These
inhibitory signals determine the pattern of the hair follicle array
(Xin et al., 2016). Live imaging of embryonic skin explants during

FIGURE 1 | Development and cycling of hair follicles. (A) During embryonic development, the skin epithelium differentiates and generates hair follicles. Epithelial
cells in the epidermis are thickening to build a placode, and mesenchymal cells in the dermis gather to form a dermal condensate (DC) just below the placode. The
placode and DC exchange growth signals, such as Wnt/β-catenin and Shh, with each other and grow downward. Around the placodes, inhibitory signals, such as Dkk
and BMP, suppress the expression of the hair follicles, thereby expressing the pattern of hair follicle arrays. Placode continuously develops into hair germ and hair
peg structures. DC becomes dermal papilla (DP) right below the hair follicles and acts as niches for HFSCs. Eventually, mature hair follicles are formed prenatally. (B)
Mature hair follicles undergo cycles of growth (anagen), regression (catagen), and resting (telogen). During the anagen, stem cells become activated by the surrounding
niche components. Activated stem cells grow by repeating division, and their progenies differentiate to produce hair. When the anagen stops, the hair follicles enter the
catagen phase. Through apoptosis of the outer root sheath (ORS) and extrusion of the inner root sheath (IRS), hair follicles become short in a few days. During the
telogen, stem cells in the hair follicles are maintained in quiescence by inhibitory signals. When telogen is finished, stem cells are activated and the anagen starts again.
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the skin placode formation revealed that placode formation is
driven by cell motility, such as intercalation, condensation, and
directional migration, rather than proliferation. Activated Wnt/
β-catenin and Eda/NF-κB signaling increase cell motility and
suppress proliferation (Ahtiainen et al., 2014). In contrast to the
placode, proliferation is necessary to generate dermal
condensation. Recent single-cell RNA-seq analysis revealed
that DC progenitors are initially highly proliferative. However,
Shh signaling causes a rapid transition to quiescent and mature
DC within a short time frame (Qu et al., 2022). Once the placode
and DC are formed, the placode develops into hair germ and hair
peg by growing downward, and DCs surrounded by epithelial
cells develop into dermal papilla (DP) (Millar, 2002) (Figure 1A).
Although Shh signaling does not impact hair morphogenesis until
stage placode formation, activation of Shh signaling via
interactions between placode and DC plays a critical role in
growing placode to the hair peg (St-Jacques et al., 1998; Chiang
et al., 1999; Ouspenskaia et al., 2016). Further
epithelial–mesenchymal interactions lead to proliferation and
differentiation of epithelial cells in the hair peg and to the
fully matured hair follicle (Schneider et al., 2009) (Figure 1A).

From placode formation to mature hair follicle development,
the skin epithelium underwent dramatic shape changes.
However, it was still unclear how each cell in the placode
changes its lineage during hair follicle morphogenesis.
Recently, live imaging of ex vivo skin culture followed the
development of embryonic whisker hair follicles up to 11 days
(Morita et al., 2021). The long-term lineage tracing data revealed
that cell fate is predetermined, based on initial position in the
placode. Cells in the center become lower hair bulb cells and in
the peripheral ring of the placode become future HFSCs in the
hair bulge (Morita et al., 2021). These results revealed that the
spatial arrangement is also an important factor in cell lineage and
resembles adult hair follicle growth (Rompolas et al., 2013; Xin
et al., 2018). Additional studies will be needed to interrogate
further cellular mechanisms in hair follicle morphogenesis,
driven by the spatial organization, such as the early formation
of concentric ring structure and flexibility of cell fates like adult
epithelial stem cells (Blanpain and Fuchs, 2014).

CYCLING OF ADULT HAIR FOLLICLES
DURING HOMEOSTASIS

Mature hair follicles undergo growth cycles by interactions
between stem cells and surrounding niches (Xin et al., 2016).
The hair cycle has three phases: anagen, catagen, and telogen. The
anagen is the growth phase (Figure 1B). During the anagen, the
dermis and hypodermis become thicker and hair follicles grow
down into the fat layer. To initiate hair follicle growth,
interactions between the hair germ and DP are essential. The
DP works as a signaling center for hair growth via Noggin and
FGF7 (Greco et al., 2009; Hsu et al., 2011; Hsu et al., 2014).
Depletion of DPs by laser ablation during the telogen blocks the
hair follicles from entering the growth phase, and the hair follicles
stay as telogen (Rompolas et al., 2012). Once hair follicle growth is
initiated, cell division of hair follicle bulge stem cells and their

progenies are dramatically increased. As the hair follicle grows,
the hair germ surrounds the lower DP, and this process
undergoes a dynamic structural change like embryonic
morphogenesis. This morphological change is highly
organized. The initial position of stem cells is predetermined
where they are located after shape changes, and spatial location
determines the fates of their progenies after differentiation
eventually (Xin et al., 2018). As the hair follicle grows
downward, the cells of the outer root sheath (ORS) are
constantly dividing and moving downward. In addition, inner
root sheath (IRS) cells, adjacent to the DP, generate a hair
upwards through robust differentiation (Xin et al., 2018).
Once the anagen is finished, hair growth stops and enters the
catagen phase. The catagen is a regression phase and usually
shorter than other phases (Figure 1B). IRS and ORS are removed
in different ways. IRS cells are released upward like in the anagen
phase, but ORS cells undergo apoptosis (Martino et al., 2021).
The DP also plays an important role in the catagen. If the DP is
removed, IRS cells are removed normally, but cell death of ORS
cells is decreased. Therefore, hair follicles maintain long epithelial
strands for a long time after DP ablation (Mesa et al., 2015). This
niche-induced cell death is regulated by TGF-ß signaling from the
DP during the early catagen (Foitzik et al., 2000). Once the
catagen is finished, the hair follicles enter the telogen phase
for resting (Figure 1B). HFSCs remain quiescent during the
telogen and the DP contributes to this silent state of stem cells
by regulating high BMP and lowWnt signaling (Quist and Quist,
2021). When telogen is finished, stem cells are activated and enter
anagen again. Hair follicles repeat this growth/regression/resting
cycle several times during their lifetime.

In addition to the DP, additional niches surround hair follicles
and regulate the homeostasis of hair follicles (Figure 2A). The
dermal sheath (DS) is composed of mesenchymal cells
surrounding hair follicles. DS cells are directly attached
outside hair follicles and separated from ORS by the basement
membrane (Martino et al., 2021). A lineage tracing study
discovered that hair follicle dermal stem cells (hfDSCs) exist
within the DS and self-renew. As hair cycles, the hfDSCs and the
DP exchange their cell populations. Progenies of the hfDSCs
enter the DP to contribute to the maintenance of the DP over
cycling, and some progenies exit to the DS during catagen
(Rahmani et al., 2014). These dynamic cellular exchanges
cause fluctuation of DP cell numbers and eventually impact
the hair type changes (Tobin et al., 2003; Rahmani et al.,
2014). In addition to the DP regulation, DS cells also
contribute catagen by providing contractile force, like smooth
muscles. Intravital imaging of catagen hair follicles shows that
contraction of the DS pushes IRS cells and hair shafts, like
squeezing toothpaste. Blocking contraction abrogates upward
movement of hair shafts (Heitman et al., 2020).

Immune cells also act as niches for HFSCs. Regulatory T
(Treg) cells are generally well-known for their role in immune
tolerance, but these cells also play an important role in the
initiation of anagen (Sakaguchi et al., 2008). Activated
forkhead box P3 (FOXP3)-expressing Treg cells are
accumulated near the telogen follicles. These Treg cells control
hair regeneration by activating the HFSCs via notch signaling and
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activated stem cells initiate new hair growth (Ali et al., 2017). Skin
resident macrophages also impact HFSCs by regulating their
number for hair cycling like the FOXP3-expressing Treg.
Perifollicular macrophages decrease in number before anagen
via apoptosis. Apoptotic macrophages activate HFSCs with
Wnt7b and Wnt10a production and initiate anagen
(Castellana et al., 2014).

Subcutaneous adipocytes are another niche component for
hair follicles (Zwick et al., 2018). When the hair follicles begin the
growth cycle, the adipose layer at the bottom also gets thicker
(Rivera-Gonzalez et al., 2014). The growth of the adipose layer
occurs when preadipocytes differentiate into mature adipocytes.
These preadipocytes secrete platelet-derived growth factor
subunit A (PDGFA), which activates HFSC to initiate anagen
(Festa et al., 2011). In contrast, mature adipocytes maintain
telogen by expressing BMP2 to keep HFSCs in quiescence
(Plikus et al., 2008).

As mentioned previously, sensory nerves are wrapped around
hair follicles. The sensory nerves not only perform
mechanosensory functions but also regulate the fate of HFSCs.
Innervation of sensory neurons maintains Gli1 or Lgr6 positive
stem cells in the hair follicle by releasing Shh or by physically
contacting them, respectively. These stem cells functionally
contribute to re-epithelialization after skin injury (Brownell
et al., 2011; Huang et al., 2021). Arrector pili muscle (APM) is
a thin muscle that is responsible for piloerection when people are
cold or scared (Fujiwara et al., 2011). The APM is directly in
contact with the hair bulge because HFSCs create a niche for these
muscle cells by expressing nephronectin (Fujiwara et al., 2011). In

contrast, APM acts as a niche for HFSCs by maintaining
sympathetic nerve innervation to stem cells. Through this
connection, cold stimulates the activation of HFSCs and hair
growth (Shwartz et al., 2020).

Lymphatic vessels have been recently identified as a niche
component. Lymphatic capillaries are closely associated with
HFSCs. During the telogen phase, adjacent lymphatics
maintain the quiescence of stem cells. However, once anagen
is initiated, the secretome from activated stem cells, such as
Ntn4 and Angpt4, remodels the lymphatic niches by
dissociation of lymphatics from the HFSCs and allows hair
growth (Gur-Cohen et al., 2019).

In addition to these cellular niches, non-cellular components,
such as hormones and extracellular matrix, also become part of
the niches for stem cells (Fujiwara et al., 2011; Morgner et al.,
2015; Choi et al., 2021; de Groot et al., 2021). Altogether, complex
regulations between stem cells and various niches are essential to
maintain the homeostasis of mature hair follicles in adults.
Therefore, correct hair follicle development should be
accompanied by the formation of proper niche components,
not just simply forming hair follicles.

HAIR FOLLICLE NEOGENESIS IN ADULT

Mammals have limited regeneration capacity as compared to
regeneration of lower organisms, such as heart regeneration of
zebrafish, limb regeneration of axolotl, and body regeneration of
planarian (Mokalled and Poss, 2018). Although some species

FIGURE 2 | Niches of hair follicles. (A) Mature hair follicles have many niche components around them. In addition to DP, there are dermal sheath (DS) cells,
regulatory T (Treg) cells, macrophages, preadipocytes, adipocytes, and arrector pili muscle (APM). These components of the niches regulate the homeostasis of hair
follicles, cooperatively. (B) In terms of hair follicles fromwound-induced hair neogenesis (WIHN), Wnt2 and FGF9 form a positive feedback loop and enhance the new hair
generation. Most of the niches are composed, but melanocytes and APM are absent. Therefore, functional differences exist, such as being able to create only gray
hairs. (C) In the case of hair follicles made by organoids, the structures of hair follicles and DPs are similar to those of general hair follicles. Due to the limitations of the
organoid culture methods, circulatory systems, including blood and lymphatic vessels, do not exist. In addition, other cellular and non-cellular components are not
perfect, such as immune cells and extracellular matrix (ECM). However, unlike the WIHN-derived hair follicles, melanocytes exist and hair follicles from the organoid can
produce pigmented hairs.
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show dramatic regeneration capacity of the skin, such as African
spiny mice, majority of mammals cannot fully regenerate skin to
its original form that includes skin appendages (Seifert et al.,
2012). After severe injuries, the skin forms a scar and loses normal
skin architecture, including hair follicles and sweat glands
(desJardins- Park et al., 2019). Therefore, healed skin cannot
properly perform functions, like temperature control after wound
healing (Lin et al., 2021). Hair follicle de novo generation in adult
mammals has been rarely observed in rabbits and sheep, but
underlying mechanisms were unknown because of the limitation
of the tools and model system (Billingham and Russell, 1956;
Brook et al., 1960). However, Ito et al. demonstrated hair follicle
regeneration during wound repair in mouse models. They found
that wound-induced hair neogenesis (WIHN) occurs at the center
of large wounds (>1 cm2) (Figure 2B) (Ito et al., 2005; Ito et al.,
2007), and not in small wounds. The WIHN recapitulates
embryonic development of hair follicles, including formation
of placode, hair germ, and DP, and shares the same signaling
including Wnt/ß-catenin and Shh (Ito et al., 2007; Rognoni et al.,
2016; Lim et al., 2018; Sun et al., 2020). Although the
morphogenesis and signaling pathways of hair follicles are the
same, their surrounding niche environments are different. The
Wnt2 expression of fibroblasts is initiated by FGF9, secreted from
dermal γδ T cells. Wnt2 and FGF9 form a positive feedback loop
and enhance Wnt signaling activation (Gay et al., 2013).
Therefore, a robust population of dermal γδ T cells is one of
the reasons that mice can generate hair follicles after injury in
contrast to humans. Interestingly, transient Wnt signaling
activation is better for hair follicle neogenesis than continuous
high Wnt until late wound healing (Gay et al., 2013). If the
number of phagocytic macrophages is high, macrophages are
phagocytizing dermal Wnt inhibitor secreted frizzled-related
protein (SFRP) 4. Therefore, Wnt signaling is consistently
high and the scar is formed in the wounded area rather than
the hair follicles (Gay et al., 2020). The scar is formed by the
excess fibrous connective tissue due to the abnormal proliferation
of myofibroblasts during wound healing. Through lineage tracing
experiments, it has been shown that a distinct fibroblast lineage
(Engrailed-1 lineage-positive fibroblasts, EPFs) plays a major role
in scar formation (Rinkevich et al., 2015). However, some
Engrailed-1 lineage-negative fibroblasts (ENFs) also newly
express Engrailed-1 during wound repair. This Engrailed-1
activation is triggered by the yes-associated protein (YAP)
pathway, which is a well-known mechano-transduction
signaling (Rinkevich et al., 2015; Mascharak et al., 2021).
Treatment of verteporfin, a YAP inhibitor, inhibited
Engrailed-1 activation in ENPs and effectively prevented scar
formation. In addition, inhibition of YAP signaling also
regenerates new hair follicle regeneration by activating Trps1,
a Wnt pathway regulator (Mascharak et al., 2022). Surprisingly,
the area of skin, where the hair follicles are newly formed, is
completely regenerated up to the subcutaneous fat layer (Plikus
et al., 2017). This is because high BMP signaling in the
corresponding region makes myofibroblasts differentiate into
adipocytes (Shook et al., 2020). All these studies suggest that
the regeneration of new hair follicles is not just simply making
new epithelial appendages, but the complete restoration of the

surrounding niche components. Much investigation is still
needed for perfect reproduction, including insufficient
regeneration of melanocytes or arrector pili muscles
(Figure 2B) (Wier and Garz a, 2019; Ankawa and Fuchs, 2022).

Although morphogenesis of hair follicles does not occur
naturally without injury, experimental approaches can produce
new hair follicles in adult mice. Several studies have demonstrated
that transplantation of isolated epithelial stem cells and/or DP
cells into nude mice can generate new hair follicles in vivo
(Kishimoto et al., 2000; Blanpain et al., 2004; Ehama et al.,
2007; Zhang et al., 2020). In addition to the isolated cells,
implanted reprogrammed cells with induced pluripotent stem
cells (iPSCs) also generate hair follicles in live mice (Veraitch
et al., 2013). These transplantation experiments are basically
methods of inducing the epithelial-mesenchymal interaction
similar to the development of hair follicle placode by
implanting primed cells into the skin of live mice. In most
cases, immune rejection is avoided by implanting into
immunodeficient nude mice. There is an additional way to
induce new hair follicle generation without cell
transplantation. Wnt and Shh signaling are one of the key
pathways for hair follicle development. However, activation of
these signaling in adult skin causes tumor formation (Gat et al.,
1998; Kasper et al., 2011; Brown et al., 2017). A recent study,
which combined genetic and pharmacological approaches,
revealed that temporal activation of Shh signaling can generate
new hair follicles in adult mice. Genetic deletion of Ptch1, the
inhibitory receptor gene of Shh in both epithelial and stromal
cells, generates basal cell carcinoma (BCC)–like tumor growth as
expected. However, subsequent Shh pathway inhibitor,
vismodegib, and treatment restricted the tumor growth and
kept the intact structure of hair follicles (Sun et al., 2020).
Transplantation and signaling activation experiments suggest
that adult skin may already have an environment for hair
follicle morphogenesis. If epithelial and stromal cells can be
properly activated, it is possible to regenerate hair follicles
even in adult animals. However, there are still many obstacles
to applying this approach to humans, such as tumor formation. If
the appropriate signal can be controlled spatially and temporally,
it will be possible to induce hair regeneration in humans without
hair implants.

HAIR FOLLICLE ORGANOID

Many technological advances have been made since Howard
Green succeeded in culturing skin epithelial stem cells in vitro
(Rheinwald and Green, 1975). A 3D culture system, based on the
growth of stratified squamous epithelium grown at an air-liquid
interface enables the formation of the same structure of epidermis
in culture dishes (Carlson et al., 2008). However, the development
of complex appendage structures, such as hair follicles and sweat
glands, has not been achieved for a long time. Due to the rapid
progress in an organoid culture system, various types of tissues
can be made in vitro while maintaining structures similar to real
tissue (Hofer and Lutolf, 2021). Hair follicle organoids are also
successfully made with mouse and human-derived induced
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pluripotent stem cells (Figure 2C) (Lee et al., 2018; Lee et al.,
2020). The hair follicle organoids mimic the actual hair follicle
development process and matured hair follicles in the organoid
can make the hair shafts functional (Lee et al., 2022).
Interestingly, in a spherical organoid, hair follicles grow
outward and hair shafts grow inward. As a result, hair shafts
and cornified cells that have been shed are accumulated at the
core of the organoid (Lee and Koehler, 2021). Unlike the WIHN,
melanocytes are present and can produce pigmented hair.
Although adipocytes, sensory neurons, and Schwann cells are
present, the organoids still lack other cell populations, including
sweat glands, blood vessels, arrector pili muscle (rarely observed),
and immune cells (Lee et al., 2022). Therefore, advances in
protocols will be needed to generate fully mature skin
organoids comprising entire niche components.

CONCLUSION

Tissue-specific stem cells are responsible for regeneration during
adulthood. One of the most important functions of regeneration
is to maintain and repair the intact function and structure of the

tissue. However, humans have limited regenerative ability after
birth, and this may be to prevent the occurrence of tumor
formation due to excessive regeneration. In the case of the
adult skin, injuries can cause irreversible tissue damages, such
as scar formation and loss of skin appendages. However, recent
studies have demonstrated the mechanisms that reduce scar
formation and regenerate hair follicles through interactions
between stem cells and their surrounding niches. Although
there are still difficulties in the full regeneration of skin like
sweat glands, an advanced understanding of adult stem cells and
niches will provide a better direction for skin regeneration in the
future.
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