Published online 12 April 2010

Nucleic Acids Research, 2010, Vol. 38, No. 15 5193-5205

doi:10.1093/nar/gkq216

Orientation of the central domains of KSRP and its
implications for the interaction with the RNA targets

Irene Diaz-Moreno'2, David Hollingworth', Geoff Kelly®, Stephen Martin?,
MariaFlor Garcia-Mayoral', Paola Briata®, Roberto Gherzi® and Andres Ramos'"*

"Molecular Structure Division, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London
NW?7 1AA, UK, 2Instituto de Bioquimica Vegetal y Fotosintesis, US-CSIC, Avda. Americo Vespucio 49, Sevilla
41092, Spain, *MRC Biomedical NMR Centre, “Physical Biochemistry Division, MRC National Institute for
Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Slstituto Nazionale per la Ricerca sul

Cancro, Largo R. Benzi 10, Genova, ltaly

Received September 29, 2009; Revised February 23, 2010; Accepted March 15, 2010

ABSTRACT

KSRP is a multi-domain RNA-binding protein
that recruits the exosome-containing mRNA deg-
radation complex to mRNAs coding for cellular pro-
liferation and inflammatory response factors. The
selectivity of this mRNA degradation mechanism
relies on KSRP recognition of AU-rich elements in
the mRNA 3'UTR, that is mediated by KSRP’s KH
domains. Our structural analysis shows that
the inter-domain linker orients the two central KH
domains of KSRP—and their RNA-binding
surfaces—creating a two-domain unit. We also
show that this inter-domain arrangement
is important to the interaction with KSRP’s
RNA targets.

INTRODUCTION

Gene regulation by adenosine-uridine-rich element
(ARE)-mediated mRNA decay (AMD) is important for
cellular proliferation, immune response and cardiovascu-
lar toning. AMD malfunction has been linked to cancer
(1) and to inflammatory diseases such as Crohn-like in-
flammatory bowel disease and inflammatory arthritis (2).
The effect of cis-acting AREs on the stability of specific
mRNAs is mediated by the binding of regulatory proteins
(ARE-binding proteins, ARE-BPs). Some of these
proteins (e.g. TTP, BRF1 and KSRP) promote mRNA
degradation while others (e.g. HuD and HuR) act as an-
tagonists, stabilizing the mRNA (3).

K-homology splicing regulator protein/fuse-binding
protein 2 (KSRP/FBP2) is a multi-functional protein of
the far upstream element (FUSE)-binding protein (FBP)
family that has been involved in several steps of transcrip-
tional and post-transcriptional gene control. In AMD,
KSRP binds to a subset of AREs, recruiting the

exosome and de-adenylation factors to the mRNA
targets (4,5), defining a functional model for
ARE-dependent mRNA degradation. The central part of
KSRP is organized in four single-stranded nucleic
acid-binding domains, the so-called K-homology
domains (Figure 1A, KH1-4) which are responsible for
its nucleic acid-binding activity. Using cross-linking and
mRNA decay assays, we have previously shown that a
minimum of two domains of KSRP are required for
mRNA binding and degradation (5). Furthermore,
in vitro studies (6-8) have confirmed that the isolated
domains bind to AU-rich sequences with low affinity
(Kq > 100 uM) and that simultaneous binding of at least
two domains is necessary to obtain Ky values in the
nanomolar-to-micromolar range.

The selectivity of KSRP action in promoting mRNA
degradation depends on its ability to recognize its ARE
targets. However, the protein interacts with a broad range
of AU-rich sequences. We dissected the sequence prefer-
ence of the single domains showing not only the presence
of both positive and negative sequence selectivity, but also
that only one of the four domains of KSRP has a prefer-
ence for AU-rich sequences (7). This hints that sequence
specificity is only one of several criteria involved in target
discrimination. KSRP-RNA  recognition is a
multi-domain event and inter-domain interactions, if
they take place, could play an important role. The
single-stranded regions recognized by the KH domains
of KSRP are embedded within different 3’ untranslated
regions (UTRs). Inter-domain contacts could modulate
RNA recognition by relating orientation/accessibility of
the RNA-binding surfaces of the domains to the
single-stranded regions of the RNA targets. Thus, we
need to understand if the four domains of KSRP act as
structurally independent binding units and we need to
evaluate the role of inter-domain linkers in protein—
RNA interaction.
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Figure 1. KSRP protein. (A) Domain organization of KSRP and constructs used in this study. (B) Sequence alignment of the inter-domain KH2-
KH3 linker. Top—sequence alignment of KSRP KHI1-KH2, KH2-KH3 and KH3-KH4 inter-domain linkers (red box). Bottom—sequence align-
ment of the KH2-KH3 linker of KSRP (Homo sapiens) with the ones of the MARTAL (Rattus norvegicus), ZBP2 (Gallus gallus) and VgRBP71
(Xenopus laevis) protein homologues and of the human FUSE-binding protein (FBP1) (red box). Residues conserved in two or more constructs are
coloured in green and blue, respectively; conservative substitutions of hydrophobic and polar residues are marked in grey. Yellow boxes highlight the
positions of the two F311 and Y317 residues; red boxes define the boundaries of the linker between KH2 and KH3. The KH2-KH3 linker is
conserved in the KSRP/FBP family and very different from the KH1-KH2 and KH3-KH4 linkers.

We have recently shown that the KHI-KH2 and KH3-
KH4 domains of KSRP are connected by long and flexible
linkers and that their relative orientation is not fixed (6,8).
Here we examine the relation between KH2 and KH3 and
show that the two domains interact and form the struc-
tural core of the KSRP protein. The structure of the
KH23 protein reveals that the two domains assume a
well-defined orientation with the linker playing an import-
ant role. We discuss the implication of this novel
inter-domain arrangement for RNA binding and test our
conclusions in the cellular environment.

MATERIALS AND METHODS
Protein and RNA oligonucleotides preparation

Recombinant KH domains shown in Figure 1 were con-
structed by PCR from a plasmid containing full-length
KSRP (5). The PCR products were ligated into Ncol
and HindIII sites of pETM-30 to be expressed with
TEV-cleavable His-GST tags. Unlabelled and isotopically
’N- and "C-labelled proteins were expressed in
Escherichia coli BL21 (DE3) (Invitrogen) in LB or
minimal (M9) medium supplemented with '"NH4CI or
"NH4Cl and '*C-D-glucose. All His-GST-fusion
proteins were initially purified by nickel affinity chroma-
tography. The bulky His-GST-fusion tags were then
cleaved with TEV protease and removed by using a
second nickel affinity step. The constructs were further
purified on a Superdex-75 (Pharmacia) gel filtration
column. Samples were concentrated to 0.3-1.5mM in
10mM Tris-HCI buffer (pH 7.4) with 50mM NaCl and

I mM TCEP. Protein concentration was determined by a
combination of spectrophotometry with predicted extinc-
tion coefficients and ninhydrin analysis of protein
hydrolysates.

All RNA oligonucleotides were chemically synthesized
(Curevac and Dharmacon).

Circular dichroism spectroscopy

All circular dichroism (CD) spectra were recorded on Jasco
J-715 spectropolarimeter equipped with a PTC-348 Peltier
temperature-control system. CD intensities are presented
as the CD absorption coefficient calculated by using the
molar concentrations of the proteins. Thermal unfolding
was monitored between 10 or 20°C and 90 or 95°C, de-
pending on the constructs. Temperature was increased at a
rate of 1°C/min and unfolding was monitored by recording
the signal at 220 nm. Reversibility of the unfolding was
assessed by cooling to 10 or 20°C at the same rate.
Protein concentrations were 1-2uM in 10 mM Tris—HCl
buffer (pH 7.4), 100mM NaCl, 1 mM TCEP. The data
were fit to a two-state native-denatured model, while two
independent unfolding transitions where used for the
KH23 didomain. Data fit was performed with in house
software as described in (9).

RNA binding was monitored by adding increasing
amounts of protein to 1-2uM AU-12mer RNA in
10mM Tris—=HCI pH 7.4, 100mM NaCl, I mM TCEP.
A temperature of 5°C was chosen to optimize the signal
change upon protein binding. The average signal between
255 and 265 nm was fitted against the protein concentra-
tion using in house software (9).



Nuclear magnetic resonance spectroscopy

The nuclear magnetic resonance (NMR) samples of
the different KH constructs were prepared in 90% H,O/
10% D50 solutions of 10 mM Tris-HCI buffer (pH 7.4),
100mM NaCl, ImM TCEP, 0.02% NaNj at concentra-
tions in the range 0.3—-1.5mM. NMR spectra were
recorded at 300K on Varian Inova and Bruker Avance
spectrometers operating at 800 and 600 MHz'H
frequencies. The spectra were processed with NMRPipe
(10) and analysed with Sparky (11).

Standard 3D NMR experiments (HNCACB, HNCA
and HNCO) were used to obtain sequence specific 'HN,
N, Bc, 13Cﬁ and '*C’ backbone assignments (12).
Side-chain aliphatic proton and carbon assignments were
achieved using data from a combination of 3D "N and
3C-edited TOCSY and NOESY-HSQC spectra (13) with
70 and 100ms mixing time for TOCSY and NOESY
experiments respectively, plus a HCCH-TOCSY experi-
ment (14). Water suppression was achieved by the
WATERGATE pulse sequence (15). 3unae  scalar
couplings were measured from HNHA experiment as
described previously (16).

I5SN relaxation parameters (T, T, and {'H}-'>N NOE)
were obtained from standard experiments (17) recorded at
600 MHz 'H frequency and 300K and analysed using
NMRPipe routines (10). The program TENSOR (18)
was used to determine amplitude and rhombicity for the
diffusion tensor of KH2, KH3 and KH4 in isolation and
in two-domain constructs. The same program was used to
estimate the reported rotational correlation times (t.).
Estimates of the rotational correlation times of wild-type
(8.5ns) and double mutant (7.3ns) were also obtained
using a fast method that relies on changes in the intensity
of the downfield region of 1D proton spectrum (Kelly
et al., manuscript in preparation).

ISN-"H amide residual dipolar coupling (RDCs) were
measured using a magnetically oriented binary mixture
of ~5% (v/v) alkyl-poly(ethylenglycol) C\,Es and 1%
(v/v) hexanol and IPAP experiments as described in (6).
The fit between the ""N—'"H amide RDCs predicted from
the KH23 structure and the ones measured experimentally
was calculated using the program Module (19).

The thermal stability of the domains was monitored by
recording '"N-HSQC spectra on 600 MHz (single
domains) and 800 MHz (KH23) Varian Inova spectrom-
eters on ~0.3mM protein samples in 10mM Tris—HCI
buffer (pH 7.4), 50mM NaCl, 1mM TCEP. Spectra
were recorded at 3°C intervals between 27 and 69°C. In
all cases, except for KH2 + linker (233-324), the protein
unfolding was fully reversible.

The effects of RNA complex formation on KH con-
structs were followed by acquiring 'N-HSQC spectra
during titrations of a 50 uM sample of '’N-labelled KH
domain(s) in 10mM Tris-HCI buffer (pH 7.4), 50 mM
NaCl, 1mM TCEP with the three (5-UAUUUAUU-3,
5Y-UAUUUAUUAU-3 and 5-UAUUUAUUAUUU-3')
RNA oligos. Titration curves were obtained by plotting
chemical shift perturbations (Adg;,q) against the molar
ratio of RNA/protein. Non-linear least squares fits to a
1:1 binding model (20) were performed in Origin 7.5
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(Microcal. Inc.). This model accounts for a dilution
effect of both molecules during the titration, with the
ratio RNA/protein and Adg;,q as the independent and
dependent variables, respectively. The dissociation
binding constant (Ky) and the maximum chemical shift
change (Adn.x) were the fitted parameters. A global fit
of the data was performed in which the curves from dif-
ferent amide resonances were fitted simultaneously to a
single Ky value, whereas the Ad,,., for each resonance
was allowed to vary. Weighted average values of '°N
and 'H chemical shift perturbations (Ad,ye) of each
amide was calculated as follows: Ad,y, = ([ASy]*+
[Adn | ST/

Structure calculation and analysis

Structure calculations for KH2 (221-305) and KH23 (233—
418) were performed with ARIA 1.2 (21) using distance
and dihedral angles restraints. Dihedral restraints were
obtained from experimentally measured scalar couplings
(d; (22)) or from the chemical shift-based TALOS
database (¢/@; (23)). Experimental distance restraints
(Table 1) were derived from the integration (XEASY; 24)
of Sparky (11)-derived NOE peak lists (6). H-bond con-
straints were added when unambiguously identified by the
structural analysis of preliminary structures.

Table 1. NMR and water refinement statistics

KH2 KH23
(221-305) (233-418)
NMR distance and dihedral constraints
Distance restraints 2149 3229
Intra-residue 886 1373
Inter-residue 1263 1856
Sequential (Ji —j| = 1) 428 551
Medium range (1 <|i —jl <4) 321 401
Long-range (|i — j| >4) 514 904
Experimental ¢ constraints 20 66
TALOS ¢ and ¢ constraints 52 107
Hydrogen bond constraints 28 51

Structure statistics (25 conformers) (20 conformers)

Mean total energy (kcal/mol) —3498 + 53 —6857 £ 132
NOE violations >0.3 A 02+04 0.9 +0.2
Mean NOE energy (kcal/mol) 33+7 81+ 9

RMSD from idealized covalent geometry
Bond lengths (A) 0.0036 + 0.0001 0.0039 + 0.0009

Bond angles (°) 0.483 + 0.019 0.542 + 0.015
RMSD from the mean structure (A)
Whole structured domain®®
Backbone atoms 0.79 £0.18 143 +£0.33
Heavy atoms 1.45 +0.25 2.08 + 0.37
Secondary structure®
Backbone atoms 0.49 = 0.10 0.95 +0.26
Heavy atoms 1.19 £0.22 1.52 +£0.29
Ramachandran plot analysis
Most favoured regions (%) 87.9 85.5
Additional allowed regions (%) 11.1 12.0
Generously allowed regions (%) 0.1 1.0
Disallowed regions (%) 0.9 1.5

“KH2 whole structured domain: 234-304.

PKH23 whole structured domain: 234-392.

°KH2 secondary structure: 234-249, 254-270, 281-304.

dKH23 secondary structure: 234-249, 254-270, 281-304, 325-338,
344-359, 368-392.
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Two hundred randomized conformers underwent
simulated annealing with a standard CNS protocol as
described in (25) and the 25/20 lowest energy structures
for KH2/KH23 were refined in water (21). Structural stat-
istics are shown in Table 1, structure quality was evaluated
by using the program PROCHECK-NMR (26). The
program MOLMOL (27) was used to visualize the con-
formers, and to create figures. Multiple sequence align-
ment was executed within the CLUSTALX program (28).

Cell transfections and ribonucleoprotein complexes
immunoprecipitation

HEK?293 cells were transfected (using Lipofectamine Plus,
Invitrogen) with empty pCMV-TAG2B vector (mock) or
the same vector expressing either wild-type KSRP (KSRP)
or KSRPFANITA qouble mutant (KSRPFIHA/NY3ITA)
ribonucleoprotein complexes immunoprecipitation (RIP)
assays were performed as previously described by (29)
with some modifications. Briefly, cells lysates were
immunoprecipitated with either Protein A- or ProteinA/
ProteinG-Sepharose-coupled antibodies at 4°C overnight.
Pellets were sequentially washed with the following
buffers: Buffer 1 (0.1% SDS, 1% Triton X-100, 2mM
EDTA, 20mM Tris—HCI, pH 8.1, 150 mM NaCl); Buffer
IT (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20 mM
Tris—HCI, pH 8.1, 500 mM NaCl) and Buffer III (0.25M
LiCl, 1% NP-40, 1% deoxycholate, ] mM EDTA, 10 mM
Tris—HCI, pH 8.1). Total RNA was prepared using Trizol
(Invitrogen, Carlsbad, CA, USA) retro-transcribed using
random primers and amplified by PCR.
The primer sequences are:

hsa.PP2ACA forward 55— GAT GGA GGG ATA TAA
CTG GTG CC—3%

hsa.PP2ACA reverse 5—ACG AGG TGC TGG GTC
AAA CT—3

hsa.CTNNBI forward 5—TTG GAA CCT TGT TTT
GGA CA—3%

hsa.CTNNBI1 reverse 5—ACC GCA TTT TCT CIT
GAA GC—3%

RESULTS
Characterization of the KH2-KH3 protein

We have used NMR data on chemical shift perturbation
(CSP), hydrodynamic behaviour and stability to define the
relation between the KH2 and KH3 domains. Our data
indicate that an interaction between KH2 and KH3 is
taking place in which the linker plays a pivotal role.

The superposition of the '"N-HSQC spectra
(Supplementary Figure SI1) of the isolated KH2
(233-305) and KH3 (317-418) domains on that of the
two-domain KH23 construct (233-418) shows significant
chemical shift differences (A8,y,>0.02ppm) for reson-
ances of both domains which are mapped in Figure 2A.
The largest chemical shift changes are observed for
residues of KH2’s o;/a3 and KH3’s B; (see the structure
of KH2 in the next paragraph and ref. 6), indicating
that the linker is likely to be sandwiched between the

two domains. Indeed, the addition of the linker to the
KH2 domain (KH2+linker construct) results in very sub-
stantial chemical shift changes in the KH2 resonances
(Supplementary Figure S1), while inclusion of KH3
causes only small additional chemical shift perturbations.
Furthermore, resonances of the last seven amino acids of
the linker (317-324), which are not visible when this short
stretch is attached to KH3 in the (317-418) construct,
become clearly visible in the KH23 construct, indicating
that further contacts are taking place in the full
two-domain construct. Importantly, no significant
chemical shift differences are observed between the
isolated KH23 and the two domains within the KH1234
construct (Figure 2B), which confirms that the features
of the KH23 interaction are conserved in the longer
protein.

105
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Figure 2. Interaction between KH2 and KH3 in the two- and four-
(KH1-KH4) domain constructs. (A) Mapping of the residues of KH2
and KH3 whose "N and 'H amide chemical shift changes in the two
domain construct on a space filling representation of KH23. Residues
of KH2 (233-305) and KH3 (317-418) whose amide resonances Ad,,
(ppm) is <0.2 are in light grey, while residues whose Ad,,,>0.2 are in
orange for KH2 and magenta for KH3. Residues in the linker are in
green, unassigned residues in dark grey. (B) The KH2-KH3 arrange-
ment is conserved in KH1234 Superimposition of "*"N-HSQC spectra of
KH23 (233-418), green, and KSRP KH1234, purple. Grey labels cor-
respond to KH2 signals which shift upon addition of the KH2-KH3
linker and/or KH3 binding. The absence of significant chemical shift
changes in the resonances of KH2, KH3 and the linker indicate that the
relative orientation of the KH2 and KH3 domains and their contacts
with the linker are conserved in the longer protein.



>N T1, T2, and heteronuclear NOE values recorded on
the KH2, KH3 and KH23 proteins indicate that KH23
encompasses two relatively rigid regions (corresponding
to the two KH domains) joined by a more mobile
18-residue long linker (Figure 3 and Supplementary
Figure S2). The intra-domain trends of >N T1, T2 and
heteronuclear NOE values for KH2 and KH3 are consist-
ent with what is observed for other KH domains and
do not change from the single to the di-domain constructs
(Figure 3). The linker comprises two distinct regions
corresponding to amino acids 306-310 and 311-324. The
trend and values of the relaxation parameters of amino
acids 306-310 are consistent with a fully flexible protein
chain (30), while the ones of residues 311-324 are
in between those of the structured KH domains and
those of the flexible 306-310 residues (Figure 3). This
second part of the linker is much more flexible in the
KH2+linker construct (Supplementary Figure S2) in
agreement with the linker being sandwiched between the
two KH domains. The KH23 construct has a rotational
correlation time (t.) of 8.92ns, in the range of t©./MW
reported by Dayie and co-workers (31) and significantly
larger than the one of the isolated KH2 and KH3 domains
(5.27and 6.36ns in the isolated domains), consistently
with the two domains interacting.

The rhombicity () values of KH2 and KH3 in solution
change very significantly between isolated domains and do-
mains within the two-domain construct (Supplementary
Table S1). This contrasts with what we observe for the
KH34 construct, where the non-interacting KH3 and
KH4 (6) have similar r values to the isolated KH3 and
KH4 domains (Supplementary Table S1).

Finally, significant changes in the stability of one of the
two domains confirm that an inter-domain interaction is
taking place (32). CD spectroscopy showed that the
isolated KH2 and KH3 domains have T, of 69.1 (Figure
4A) and 62°C (6), respectively. The unfolding curve for
KH23 (Figure 4A) cannot be reproduced by summation
of the curves for the individual domains, which should be
the case if no interaction between domains was present. It
is worth noting that addition of the KH2-KH3 linker to
KH2 does not change its 7,,. A change in KH2 stability in
the KH23 construct is confirmed by the NMR spectra
recorded during the thermal unfolding of KH2 and
KH23 (3°C intervals over the temperature range of 27—
69°C), where unfolding of KH2 and KH3 domains can
be followed separately. Comparison of the KH2 reson-
ances in the two experiments shows that the domain is
~10°C more stable when in isolation (Figure 4B).
Fittingly, no such change is observed in the unfolding of
KH1, KH2, KH3 and KH4 in isolation and in the KH12
and KH34 constructs (6,8)—where no inter-domain
contact is present.

Structure of KH2 and KH23 and role of the linker in
inter-domain arrangement

Next, we solved the structures of the KSRP KH2
(221-305) and KH23 (233-418) proteins using NMR spec-
troscopy. In KH23, KH2 and KH3 are positioned
at a~90° angle to form an L-shaped structure, in a

Nucleic Acids Research, 2010, Vol. 38, No. 15 5197

N T —
900 [ ]
800 | i
700 [ ]
600 [ i

500 [ ]
KH2 KH3

T, (ms)

400 |-«
300 | i ;
200 @ ) b § :

100 [ong s s w—J M.ﬂ‘#“'_

0 I.I.I.InInInI.I.I.I.I.I.I.I.I.IhI.I.P.I.I.I.I.I.I.I.I.I.I.I.I.I.I.

A L . Y

B 12T T T T T T T T T T T T T T T T T T

1.0 |« KH2 . KH3 g

08l 7_&{ PR __,V : _ %*E_-i,ﬁ ] _ilr-
0.6 ‘j“ %&’- t 2o 3 ;"\‘-%" °

(=
=

.'. - -I?\h'.' A
&

i =) L
04f . oivg "

02 . i ]
00 o A 4
02 oo el
04 . ]
asf I -'
08| S ]

HetNOE

-1.0 loop
-1.2

loop 1

Figure 3. Internal motions in KH2, KH3 and KH23. T, (A) and
Heteronuclear NOE (B) values of KH2 (233-305) and KH3 (317—
418) amide resonances, in grey (as reported in 8 and 6, respectively),
are compared with equivalent data on KH23 (233-418) in black. The
positions of the variable loop(s) and inter-domain linker in the
protein sequence are indicated at the bottom of the figure. The
arrows span the KH2 and KH3 domains and two vertical lines
define the boundaries of the more and less flexible parts of the
linker. Residues in the invariant loops of KH2 and KH3 are
characterized by T, and heteronuclear values shorter than the
average, suggesting conformational exchanges with rates nearps to
ms time scale (30) while residues in the variable loops displays a
behaviour consistent with motions in the nanosecond range.

KH-KH orientation never observed before
(Figure SA—C). The KH2-KH3 linker starts with a short
four-amino acid flexible turn followed by a partially
structured stretch that runs anti-parallel to KH2 o3 and
lies between by KH2 a1, a2 and o3. Then the linker turns
and makes contact with KH3. The conformation of the
section of the linker interacting with KH2 is not extended;
the polypeptide backbone forms one helical turn and a
broad double turn (Figure 5A). Subsequently, the
backbone is arranged in two kinks that form the joint of
the KH23 L-shaped structure and define domain—domain
orientation. The surface buried by the contacts between
KH2 and the linker is ~1500 A2 and the one between KH3
and the linker is ~800 A, This difference explains the
more extensive chemical shift changes for KH2 described
in the previous paragraph. The relative orientation of
KH2 and KH3 is defined mainly by domain(s)-linker
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temperatures above 51°C in the KH23 construct, but they are still visible at 63°C in the isolated domain.

contacts but also by a few domain-domain ones that bury
285A? of surface. Domain—-domain and domain-linker
interactions are mediated by side chain-side chain inter-
actions and do not rely on the formation of stable
H-bonds or any extension of the secondary structure of
the protein. In particular, two hydrophobic amino acids
from the linker (F311 and Y317) make extensive contacts
with KH2 (Figure 5C). The two aromatic side chains
sandwich the side chain of R314 creating two cation—n
interactions and stabilizing the relative position of the
three residues. The inter-domain arrangement is defined
by 151 linker-domain (KH2 o, o, and o3 and KH3 B,
and PB3), 83 linker—linker and 5 domain—domain NOEs
(Figure 5C, Supplementary Table S2). The orientation of
the two domains is also confirmed by residual dipolar
coupling (RDC) analysis. RDCs recorded on a sample
of KH23 fit to the values predicted from the KH23 struc-
ture (Supplementary Figure S4). It is interesting to note
that the relaxation measurements reported above indicate
that the backbone of residues in the linker shows a signifi-
cant flexibility. This flexibility could be related to the
observed lack of H-bonds involving backbone moieties

of the linker or/and could indicate the existence of
minor conformers with a less structured linker.

The comparison of the structures of the isolated KH2
(this article, Figure 5D) and KH3 (6) with the one of the
two domains in the KH23 construct shows no major
changes in the arrangements of the secondary structure
elements, with the most significant differences observed at
the C-end of KH2 a3 and the N-end of KH3 B, (Figure SE).
Differences were also observed in the average conformation
of the flexible (Figure 3) B>—B3 loops of both domains,
most likely reflecting the scarce structural information
available for these regions. The structures of the isolated
KH2 and KH3 domains (Figure 5D) are superimposable
to the ones of the domains within the KH23 construct
with an RMSD of 0.95 A (KH23-KH2, backbone atoms)
and 1.05A (KH23-KH3, backbone atoms). Both struc-
tures are well defined and the Ramachandran plots
indicate that the very few residues in the disallowed
regions (1.5% for KH23 and 0.9% for KH2) (Table 1)
belong to loops that are only partially assigned.
Importantly the orientation of the two domains is also
well defined (Figure 5A and B).
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Figure 5. Structure of KH2 and KH23. (A) 90° rotated ribbon representations of the solution structure of the KSRP KH23 (233-418) di-domain.
KH2 is displayed in orange, KH3 in pink. The backbone of the KH2-KH3 linker is coloured in light blue for the more flexible (306-310) residues
and in dark green for the less flexible (311-324) ones. The side-chains of F311 and Y317 are shown in light green. Domain-linker and domain—
domain contacts define the inter-domain orientation. (B) 90° rotated superpositions of the KH23 backbone (C* trace, in dark green) for the 20 lowest
energy conformers on the average structure. (C) 180° rotated close ups of the domain-linker and domain—-domain interactions within the KH23
structure. KH2 residues interacting with the linker and with KH3 are in orange, while linker residues are in green and KH3 residues interacting with
the linker and KH2 are in pink. A selection of long range NOEs between the linker and the two domains and between domains are represented as
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A

Flexible
linker,

PCBP

Flexible
linker

Figure 6. Comparison between the structure of KH23 and the ones of the other two-KH domain constructs available in the PDB. The ribbon
representation of the KH23 structure (grey) is compared with similar representations of the (A) NusA KH12 in magenta; (B) FMRP KHI12 in red;
(C) FBP1 KH34 in blue and (D) PCPB KHI2 in green, structures. As the topologies of the E.coli NusA KH domains are different from the
eukaryotic ones, this structure was displayed above KH23, while the amino terminal domains of FMRP KH12, FBP1 KH34 and PCBP KH12 were

superimposed to KH2 within KH23.

The structure presented here provides the first example
of an intra-molecular KH-KH interaction mediated by
the inter-domain linker. The high level of conservation
of the linker amino acids in the KSRP (and FBP) family
(Figure 1B)—especially of the two aromatic residues F311
and Y317—strongly suggests that the orientation of the
KH2 and KH3 domains is conserved in man, rat and
chicken.

Inter-domain arrangement and RNA binding

The structure of the KH23 construct shows that the
nucleic acid binding grooves of KH2 and KH3 are ~90°
rotated and non-contiguous, adopting an orientation very
different from the ones reported so far in KH-KH
di-domains (33-36) (Figure 6). To understand how the
KH2-KH3 orientation relates to RNA binding we tested

the interaction of KH23 with a 12mer RNA (UAUUUAU
UAUUU) that recapitulates the sequence of the TNFa
ARE in vitro. The same RNA had been previously used
to test the RNA binding of the KH3-KH4 domain pair,
while shorter oligos spanning the 12mer sequence had
been used to test the four isolated domains (6-8).

NMR CSP data obtained titrating '*N-labelled KH23
with the TNFa 12mer (Figure 7A) revealed not only that
both KH2 and KH3 bind RNA using the ‘classical’
nucleic acid-binding grooves (Figure 7B) (37), but also
that KH2- and KH3-binding surfaces do not coalesce.
The lack of significant chemical shift changes in the res-
onances of the KH2-KH3 linker indicate that the linker
is not directly involved in RNA binding and that no
significant structural rearrangement is taking place in the
domains interface. Smaller but clearly detectable chemical

Figure 5. Continued

blue lines, while yellow lines represent the intra linker NOEs connecting the side chains of the two F311 and Y317 aromatic residues with the
positively charged R314. (D) Left and middle—90° rotated ribbon representations of the solution structure of KH2 (221-305). Right—superposition
of the KH2 backbone (C* trace, in orange) for the 25 lowest energy conformers and the average structure. The KH2 structure is well defined and
shows that the domain assumes a typical KH fold. (E) 90° rotated superimpositions of the backbone traces of KH23 di-domain (green), KH2
(yellow) and KH3 (magenta) (lowest energy conformers). N- and C-termini are labelled.
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Figure 7. Binding of KH23 to the ¥ UAUUUAUUAUUU 3’ RNA. (A) Superposition of a series of '’N-HSQC spectra recorded during a titration
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(Ad4vg > 0.05 ppm) are labelled in black. (B) Left, top—KH23 (233-418) protein surface, coloured according to the chemical shift changes undergone
by the NH resonances upon RNA binding. Residues with Ad,,, (ppm) <0.05 are in blue, while residues with Ad,,, (ppm) >0.05 are in orange. Red
indicates residues whose resonances are broadened beyond detection. Left, bottom—90° rotated surface. Right—Molmol ribbon representation of the
KH23 (233-418) structure with an equivalent colour coding and orientation. The RNA binds in the classical nucleic acid-binding grooves of KH2
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shift perturbations involve residues V276, C280, E281,
M282, M284, 1286 and E288 on KH2 a3. These small
changes are also observed when short UAUUUA and U
AUUAU oligos bind to KH2 and KH3 (data not shown)
as well as in Nova-1 KH3-RNA binding (38) and they are
probably caused by minor conformational effects linked to
RNA interaction.

During the titration, signals in fast exchange regime on
the NMR timescale shifted linearly with concentration,
reaching saturation at a ~1:1 stoichiometry (Figure
7A). This suggests tight binding with a Ky in the low
micromolar range for the complex and is consistent with
the K4 obtained for the same complex by monitoring a
reverse titration (RNA into protein) by CD spectroscopy
(1.0 £ 0.1 uM, Supplementary Figure S3a). As a compari-
son, the isolated KH2 and KH3 bind to the two
UAUUAU and UAUUUA 6mers with K4 value ranging
from ~100 to ~400 uM (6,7), while the Ky value of the
complex between KH3-KH4 and the UAUUUAUUA
UUU RNA is 0.2 uM (6). These in vitro results indicated
that the RNA-binding surfaces of KH2 and KH3 are both
accessible and involved in RNA binding but they do not
form a continuous surface so that the RNA chain must
bend to interact with both binding grooves, as shown in
Figure 7C. However, the relation between KH2-KH3
orientation and the accessibility of single-stranded
regions within the RNA structure could be important in
defining the target in the context of the structured 3’UTR.

In order to assess if the KH2-KH3 orientation plays a
role in the discrimination of the ARE targets within the
large protein—RNA complexes assembled on the mRNA
3'UTR we have tested the effect of interfering with the
inter-domain arrangement on the capability of KSRP to
interact with its ARE targets in the HEK293 cell line.
Based on the structure of KH23, we designed a double
mutant (F311A/Y317A)—where removal of the two
aromatic side chains in the linker perturbs KH2-KH3
interaction. The chemical shift perturbations in the
SN-HSQC spectrum of the wild type upon mutating
F311 and Y317 indicate not only that substantial
changes have taken place in the interface, but also that
the domains maintain the correct fold (Figure 8A and
B). Furthermore, we have measured the effect of the
double mutation on the hydrodynamic properties of
the molecule and we showed that the correlation time
of the alanine double mutant is 1.2ns lower than the
one of the wild type, confirming a change in the
inter-domain arrangement.

We then assessed the capability of the full length
KSRPFANYSIA qouble mutant to (i) bind the UAUU
UAUUAUUU RNA in vitro and (ii) bind to two different
(Supplementary Figure S6) and well characterized KSRP
mRNA targets. Interestingly, the double mutation in the

linker affected the interaction of KSRP with the UAUUU
AUUAUUU RNA only to a very small degree
(Supplementary Figure S7) with the binding to the
double mutant being marginally higher (0.4 + 0.05
versus 1.0 £ 0.2 uM) than the wild type one. Instead, the
double mutation affected in vivo binding by two different
target mRNAs to a very different degree. The interaction
of the KSRP™M'AY3A doyble mutant to PP2ACA
mRNA was more than halved when compared to
wild-type KSRP, while the interaction with the B-catenin
mRNA decreased only 15% (Figure 8C). This indicates
that the role of the inter-domain orientation is mRNA
target-dependent, and presumably relates to the 3’UTR
context enclosing the ARE:s.

DISCUSSION

The structure of KH23 reveals that the two central
domains of the KSRP protein assume a novel inter-
domain arrangement (Figure 6). Key to the relative pos-
itioning of the KH2 and KH3 domains is the 18-amino
acid-long inter-domain linker that is sandwiched between
domains. Although the two domains make a few direct
contacts via KH2 o, and KH3 f,/variable loop, the
inter-domain interface is very small compared with the
one between the domains and the linker. The linker acts
as a pivot between the two domains and, indirectly,
provides a novel structural solution to the recognition of
low-sequence complexity RNA targets.

The role played by the linker in KH23 is different from
what is observed for the structures of other KH domain
pairs that have either very short linkers that constrain the
inter-domain orientation by simple tethering or very
flexible linkers that do not interact with the domains. In
NusA (33), the short 6-nt linker is used to position the two
domains and creates a continuous RNA-binding surface
(Figure 6A). Similarly, in FMRP KHI-KH2 (34) only a
few residues separate the two domains (Figure 6B). In
contrast, in FBP1 (Figure 6C), the KH3-KH4 linker is a
long and flexible 30-residue connector and this flexibility
allows KH4 to bind a DNA sequence 6nt 5 of the
sequence bound by KH3 (35). In PCBP (36) the long
KHI1-KH2 linker allows the domains to assume an
anti-parallel orientation and to form a six-stranded
inter-domain B-sheet (Figure 6D).

The simultaneous engagement of several RNA-binding
domains increases the RNA-binding affinity of a protein
whether or not the two domains make contact. Tethering
of two RNA-binding domains implies that binding of the
first domain increases the local concentration of the
second, facilitating RNA binding. A simple model, in
which the linker does not contact the RNA, was developed
to estimate the effect of the linker length on RNA binding

Figure 7. Continued

and KH3 defined by helices o; and o, and the GXXG loop on one side and the B, strand on the other. Resonances of the linker are not affected
upon binding. (C) Pymol ribbon representations of the KH23 (233-418) structure. KH2 is represented in orange, KH3 in magenta and the linker
follows a colour gradient between the domain colours. In these representations, two short nucleic acid molecules (pentamers) have been placed in the
KH2 and KH3 nucleic acid-binding grooves (cyan and green) based on existing structures (FBP KH34-DNA complex) and connected by a ribbon
that follows a colour gradient between the colours of the two RNAs. On the left, the shortest route for a connection allows a RNA 12mer to bind
both domains simultaneously and follows the route mapped by our CSP data. The alternative route, on the right panel, is significantly longer. In

both cases the RNA must undergo a change of direction.
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Figure 8. KH2-KH3 orientation regulates RNA binding in the cell. (A) Averaged chemical shift differences (Aday,) between the wild-type KH23
and the KH2371A/Y317A double mutant plotted against the protein sequence. The dashed line marks the Adaye = 0.02 cut-off used for the surface
representation in Figure 8b. (B) Top—surface representation of the KH23 (233-418) structure displaying the chemical shift changes of Figure 8a. In
blue are residues with Adsy, >0.02, in grey are residues with A8y, <0.02. F311 and Y317 are in yellow. Bottom — Ribbon representation of KH23
with the same orientation and colour coding. (C) HEK293 cells were transiently transfected with a control empty pCMV-TAG2B vector (mock) or a
vector expressing either wild-type KSRP (KSRP) or KSRPFAY3ITA qouble mutant (KSRPF311A/Y317A). Cells were lysed, total cell extracts were
immunoprecipitated with anti-FLAG antibody, RNA was purified from immunocomplexes and analysed by qPCR to detect PP2ACA and
beta-catenin (CTNNB1) mRNA. The values shown are averages (£SEM) of three independent experiments performed in triplicate (left panel).
Western blot analysis of FLAG-tagged proteins in total extracts of transfected HEK293 cells (right panel).

affinity (39) and demonstrates how a short linker results
in a stronger cooperative effect. However, a fixed
inter-domain orientation has further implications. By
using two domains in a well-defined orientation it is
possible to fix the distance between binding sites on the
RNA, elongating the binding sequence and increasing the
specificity. For example, NusA KHI1-KH?2 makes contacts
with 11 RNA nucleotides (33). Furthermore, although a
direct participation of the linker in the recognition of the
RNA has not been reported for KH domains this mech-
anism has been observed in RNA recognition by RRM
domains and zinc-fingers (40). There, functional groups of
the protein linker take part in the interaction and the
linker itself can become structured upon binding,
boosting the binding affinity. In KSRP KH23 instead
the KH2 and KH3, RNA-binding surfaces do not

coalesce in a continuous area and the linker is not
directly involved in the interaction.

Chemical shift perturbation data confirm that RNA
binding is mediated by the canonical RNA-binding
grooves of KH2 and KH3. The two RNA stretches
bound by these grooves could be connected on either
side of KH23 (Figure 7C), but these two putative connec-
tions would have very different length. Considering that at
least 4 nt are bound by each KH domain, the length of the
RNA target able to span two sites (~12 nt) argues that the
RNA is binding KH2 and KH3 in a 5-3’ orientation,
bridging the gap between binding surfaces by the
shortest possible route (Figure 7C). This model is con-
sistent with the lack of chemical shift changes on the
linker side of the molecule when both sites are bound.
It is interesting to consider that a 5-3" direction of
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protein-RNA binding would be similar to the one
observed for oriented the KHI and KH2 domains of
NusA and is the reverse than the one observed for the
KH3 and KH4 domains of FBP, that do not assume a
fixed inter-domain orientation.

The affinity of KSRP KH23 for the KSRP target UAU
UUAUUAUUU RNA is comparable (slightly lower in
fact) to the affinity of KH34 for the same RNA despite
the fact KH3 and KH4 do not contact each other. Here,
tethering of the KH2 and KH3 domains does not create a
protein—RNA  high-affinity binding wunit. Indeed,
perturbing the inter-domain orientation by mutating two
aromatic residues engaged in linker—-KH2 interactions
does result in only a very small increase in the capability
of the protein to bind the UAUUUAUUAUUU RNA—
that could be due to the two domain assuming a better
orientation—or to spurious contributions by the positively
charged residues present in the linker. Previous analysis of
the sequence preference of the KH domains of KSRP (7)
shows that the protein does not have specificity for
AU-rich sequences per se. Indeed, the ARE targets of
KSRP cover a broad range of sequences indicating that
recognition of a long sequence in a very specific fashion is
unlikely to be a major factor in target discrimination—a
likely scenario is a direct role of the KH23 architecture in
selecting KSRP ARE targets. The data reported in this
manuscript support this hypothesis. In our system,
binding of the two domains implies a bend in the
backbone of the RNA polymer (Figure 7C)—similarly
to what observed for the PTB protein (41)—regardless
in fact of their orientation. The AU-rich targets of
KSRP are located in highly structured 3’'UTRs and the
change in the direction of the RNA chain could contribute
to the general architecture of large KSRP-RNA—protein
complexes by stabilizing a suitable conformation. The
results of our in cell assays, indicate a target-dependent
role of the KH2-KH3 interaction confirming that
KSRP-RNA recognition is a multi-factorial process that
cannot be explained with a simple zip code recognition
model as we proposed earlier (7).

In this manuscript we show that the central KH
domains of KSRP interact, forming a single structural
unit. Purpose of this interaction is not to create a
high-affinity binding unit for AU-rich targets or to
elongate the sequence recognized by KSRP but rather to
relate the context of the 3’UTR to the domain arrange-
ment of the protein.
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The coordinates of the KH2 (221-305) and KH23
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the PDB with the accession identifiers 20PV and 2JVZ,
respectively.
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