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MicroRNAs are a class of small RNAs involved in post-transcriptional gene silencing with
roles in disease and development. Many computational tools have been developed to
identify novel microRNAs. However, there have been no attempts to predict cleavage sites
for Drosha from primary sequence, or to identify cleavage sites using deep neural
networks. Here, we present DeepMirCut, a recurrent neural network-based software
that predicts both Dicer and Drosha cleavage sites. We built a microRNA primary
sequence database including flanking genomic sequences for 34,713 microRNA
annotations. We compare models trained on sequence data, sequence and secondary
structure data, as well as input data with annotated structures. Our best model is able to
predict cuts within closer average proximity than results reported for other methods. We
show that a guanine nucleotide before and a uracil nucleotide after Dicer cleavage sites on
the 3′ arm of the microRNA precursor had a positive effect on predictions while the
opposite order (U before, G after) had a negative effect. Our analysis was also able to
predict several positions where bulges had either positive or negative effects on the score.
We expect that our approach and the data we have curated will enable several future
studies.

Keywords: microRNA, microRNA biogenesis, machine learning, deep learning, genomics, long short-term memory
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INTRODUCTION

MicroRNAs (miRs) are a conserved class of endogenous small RNAs around 22 nucleotides (nt) in
length. Mature microRNAs modulate a variety of different processes through post-transcriptional
gene silencing, which results in either transcript degradation or translational inhibition (Liu, 2008).
MicroRNAs are involved in a wide range of functions including cancer (both tumor-suppressor and
oncogenic) (Zhang et al., 2007), development (Carrington and Ambros, 2003), stress response
(Leung and Sharp, 2010), aging (Smith-Vikos and Slack, 2012), and circadian rhythms (Na et al.,
2009). Nucleotide positions 2 through 8 on the mature microRNA, called the seed sequence, help
direct the sequence-specific activity of the RNA-induced silencing complex (RISC), where it binds
to a complementary strand on the 3′ UTR of an mRNA transcript. In some cases, microRNA may
bind to target sites along CDS of RNA (Schnall-Levin et al., 2010; Zhang et al., 2018). Several CDS
target-sites are known to suppress MicroRNA regulatory activity by acting as microRNA sponges
(Ebert et al., 2007), including circular RNAs (Hansen et al., 2013), and long noncoding RNAs
(Cheng and Lin, 2013). Other target-sites such as those found on a lncRNA called Cyrano can lead
to target-directed miRNA degradation (TDMD) (Kleaveland et al., 2018; Han et al., 2020; Shi et al.,
2020). ZSWIM8 ubiquitin ligase plays a role in TDMD by polyubiquinating Argonaut, which
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results in its proteolysis, thereby exposing the miRNA to
degradation (Han et al., 2020; Shi et al., 2020).

The biogenesis of mature microRNAs (Figure 1A) begins with
the transcription of a primary miRNA (pri-miRNA) transcript by
RNA Polymerase II (Lee et al., 2004; Zhou et al., 2007), or in rare
cases RNA Polymerase III (Borchert et al., 2006). The
microprocessor complex associates with the hairpin, whereby
the action of the component enzyme Drosha produces a double-
stranded cleavage that results in the microRNA precursor (pre-
miR), leaving a 2-nt overhang on the 3′ end (Lee et al., 2003;
Gregory et al., 2004). Exportin-5 associates with the 3′ overhang
and transports the precursor from the nucleus to the cytoplasm
(Yi et al., 2003). In the cytoplasm, Dicer removes the hairpin loop
through an additional double-stranded cleavage. Taken together,
the activity of these enzymes results in four distinct cleavage sites
(here also called “cut sites”) of the pri-miRNA transcript and
produce a double-stranded duplex consisting of a 5 and 3′mature
product (Figure 1A). Dicer passes the duplex to Argonaut, a core
enzyme of RISC, which binds to only one of the strands while the
other is typically degraded.

Several tools have been developed for the analysis of
microRNAs, but these approaches are limited by two
challenges. First, these methods focus on microRNA discovery,
but very little has been done to predict the locations of the cut
sites resulting from microRNA biogenesis, especially in the
absence of deep sequencing data. Second, these microRNA

discovery tools, such as miRWoods (Bell et al., 2019),
miRTRAP (Hendrix et al., 2010), miReNA (Mathelier and
Carbone, 2010), miRDeep (Friedländer et al., 2008), miRDeep2
(Friedländer et al., 2012), miReap (Chen et al., 2009), and
miRAnalyzer (Hackenberg et al., 2009), use score-based or
machine learning approaches to classify loci as microRNAs,
and therefore rely heavily on feature engineering. Although
the tools benefit from features that are easily interpretable,
feature engineering can be laborious.

Deep learning approaches overcome the need for feature
engineering by learning the features from more basic input
data. Several deep learning approaches such as convolutional
neural networks (CNNs) (Do et al., 2018) and recurrent neural
networks (RNNs) (Park et al., 2016; Cao et al., 2018) have been
used for microRNA classification. While these approaches have
addressed the limitations of feature engineering, they only predict
loci and do not perform cleavage-site prediction. RNNs, such as
Long Short-Term Memory (LSTM) networks, have been used in
natural language processing applications such as named-entity
recognition (Lample et al., 2016) and part-of-speech tagging
(Wang et al., 2015), which are similar tasks to cleavage site
recognition. Motivated by the challenges of microRNA
analysis and the success of deep learning applications for NLP,
we created DeepMirCut, an LSTM-based algorithm that predicts
Dicer and Drosha cleavage sites within microRNAs. DeepMirCut
predicts the locations of the four cut sites of Drosha and Dicer

FIGURE 1 | Data Processing and Architecture. (A). A schematic of microRNA biogenesis showing that two cleavages of double-stranded RNA results in four cut
sites to produce two mature products. (B). Flowchart describing the generation of the train, validation, and test sets. (C). The architecture of DeepMirCut consists of two
bidirectional LSTMs, and a time-distributed dense layer.
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from an input RNA sequence. Moreover, because most
microRNA annotations stop at Drosha cleavage sites and do
not include the larger flanking genomic sequence, we curated a
new enhanced microRNA sequence data set that includes 300-
base-pair (bp) flanking sequence.

While most microRNA tools focus on homologous and novel
microRNA discovery, few tools have been developed to predict
cleavage sites involved in microRNA biogenesis, and no tools
have been developed to predict Drosha sites from primary
transcript sequences. Some tools have been developed to
address the similar task of Dicer cut sites from shorter
sequences. PHDCleav is an support vector machine (SVM)
designed to identify Dicer cut sites on human microRNA
precursors (Ahmed et al., 2013). While PHDCleav performs
well on a test set, when the SVM is applied in a sliding
window across the entire precursor, the cut site predictions are
on average 3.1 nucleotides offset from the annotation (Ahmed
et al., 2013). LBSizeCleav is similar but adds features describing
the length of loop and bulge structures (Bao et al., 2016).
LBSizeCleav performs with greater accuracy than PHDCleav at
finding cleavage sites within 1nt of the annotated site, but has
lower accuracy when more of an offset is allowed (Bao et al.,
2016).

RESULTS

Dataset Generation
For our analysis, we processed microRNA annotations from
miRBase with the corresponding genomic sequences to extract
microRNA precursor sequences as well as up to 300-nt flanking
genomic sequence. We extracted flanking sequences shorter than
300 nt in cases where they overlapped neighboring microRNA or
there was not enough genomic sequence surrounding the
annotation. We refer to the precursor and flanking sequence
as an “extended sequence”. Our data processing resulted in a
collection of 34,713 extended sequences for both metazoan and
plant species.

Because plant and animal (metazoan) microRNA biogenesis is
very different (Kurihara and Watanabe, 2004; Axtell et al., 2011),
and because more data is available for metazoa to train deep
learning models, we focused this current study on precursors
from metazoan species having both mature microRNAs (5 and
3′) annotated in miRBase, which consists of 11,296 records.
Precursor sequences with an identity threshold of at least 80%
to other sequences were excluded from the set using CD-Hit (Fu
et al., 2012) in order to ensure low similarity between the training,
validation, and testing sets. An 80:10:10 split was used to produce
a training set with 3,923 examples, validation set with 490
examples, and test set with 491 examples. To increase our
training examples, we added back sequences that CD-Hit had
identified as similar to those in the training set but were below the
sequence identity threshold of the validation and testing sets,
which increased the training set to 8,491 examples. We compared
each sequence in the training set with sequences in the validation
and testing sets to verify that an identity of less than 0.8 was
maintained for sequences between sets as demonstrated in

Supplementary Figure S1. Random lengths of flanking
genomic sequence between 30 nt and 50 nt were included with
each of the precursors for the training, validation, and testing sets.
An augmented training set with 84,910 examples and an
augmented validation set with 4,900 examples were generated
by randomly selecting 9 additional random flanking genomic
sequence lengths for each precursor (Figure 1B).

Model Architecture
We trained three different sets of models defined by the type of
input data. First, model 1 was trained on only the extended RNA
sequence. Second, model 2 was trained using the RNA sequence
and secondary structure dot-bracket sequence. RNAfold (Lorenz
et al., 2011) was used to predict the secondary structure of the
entire extended RNA sequence, to provide the dot-bracket
(Hofacker et al., 1994) sequence for each RNA within each of
the train, test, and validation sets. Finally, for model 3, we further
annotated the sequence using its bpRNA structure array (Danaee
et al., 2018) to provide a single-character code for each position,
such as whether the nucleotide was on a bulge, internal loop, or
hairpin loop. The DeepMirCut software combines base-pairs
identified by RNAfold with loop-type identified by bpRNA

FIGURE 2 | Example cleavage site identification for hsa-mir-125a. (A).
Dicer and Drosha cut sites relative to the secondary folding structure of hsa-
mir-125a. The enzymes Dicer and Drosha cleave the hairpin resulting in the
two mature microRNA sequences highlighted in red. (B). A linear
representation of the same RNA sequence, with the mature products
highlighted in red, and labels indicating cut sites and mature products. (C).
Quantitative curves show the predictions of DeepMirCut along the length of
the extended precursor sequence for the Drosha and Dicer 5′ and 3′ labels.
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into a single modified bpRNA sequence using “L” and “R” to refer
to 5′ (left) and 3′ (right) nucleotides participating in base pairs.
Model 3 was trained using the RNA sequence and this enhanced
bpRNA structure array sequence.

The architecture includes an embedding dimension, a
dropout layer, two bidirectional LSTM layers, and a time-
distributed layer, which is a dense layer that provides outputs
for each position of the input sequence. The time-distributed
layer outputs a set of 5 values for each nucleotide which
represent weights for a Drosha cut on the 5′ arm (DR5), a
Drosha cut on the 3′ arm (DR3), a Dicer cut on the 5′ arm
(DC5), a Dicer cut on the 3′ arm (DC3), or no cut site present
(O). By default, DeepMirCut labels the position with the
maximum weight for DR3, DR5, DC3, and DC5 as a
cleavage site, but the O-sites are not labeled (Figure 1C).
Labeling is done in this way so that each cut site will only be
labeled once, rather than labeling using that maximum weight
at each position, which could result in cut sites being labeled
more than once or not at all. See Figure 2 for an example of
DeepMirCut predicting cleavage sites for hsa-mir125a.

Evaluation Metrics and Tuning
Precision, recall, and F-score are often used to evaluate the
performance of machine learning models applied to binary
classification tasks. However, when evaluating DeepMirCut
each of these measurements ends up being the same since a
single label is predicted for each cleavage site. For this reason, we
have opted to use perfect match fraction (PMF) and position shift
error (PSE) to measure performance (see Performance Metrics in
Methods.)

Hyperparameters were tuned to identify the best
parameter combinations for models trained using each of
three input options for DeepMirCut. The top 10 architectures
identified through tuning were each evaluated with 20
replicates to identify parameters resulting in the best

median PMF (Supplementary Figures S2–S4). All models
were evaluated using the augmented validation set. The
parameter combinations that showed the best performance
during tuning are shown in Table 1.

Models trained on RNA sequence only, RNA sequence and
dot-bracket sequence, and RNA sequence and bpRNA
structure array were evaluated against the test set using the
optimum parameter combinations for each type of input.
Replicates that were trained with the sequence and bpRNA
structure array resulted in the highest median PMF for each
cleavage site (Table 2 and Figure 3A) and the lowest position
shift error for dicer cleavage sites (Table 2 and
Supplementary Figure S5A). A boxplot showing the
distributions of the modal offset between the cleavage site
predicted by each replicate and the annotated cut sites for
each example in the test set is shown in Figure 3B.

Best Performing Replicate
We identified the best-performing replicate trained on
nucleotide and enhanced bpRNA structure array based on
average PMF for all cut sites when evaluated against the
validation set. Hereafter, we refer to this best model as
“DeepMirCut”. We tested the performance of DeepMirCut
on the test set and found that it performed best when
identifying the DR5 and DC3 cut sites, which are the cut
sites that release 5′-end of the mature microRNA sequences
during microRNA biogenesis. The PMF for the DR5 and DC3
cut sites were 0.381 and 0.415 respectively, and the PSE for
the DR5 and DC3 cut sites were 2.658 and 2.165 respectively
(Table 2). Predictions for the DR5 and DC3 cut sites also had
higher decision values than other cut sites showing that the
algorithm predicted these cuts with greater confidence
(Supplementary Figure S5B). Most predictions from
DeepMirCut fell within one nucleotide of the annotated
cleavage sites. (Figures 3C,D). When applied to the test

TABLE 1 | Tuned parameters for each DeepMirCut model and type of input.

Input Type Nucleotide sequence only Nucleotide and dot-bracket sequence Nucleotide and bpRNA sequence

Embedding layer 96 units 32 units 32 units
Dropout 0.315 0.213 0.417
Bi-LSTM layer 1 320 units 64 units 128 units
Bi-LSTM layer 2 192 units 256 units 320 units
Learning rate 3.2 10–3 1.91 10–3 3.57 10–3

Epsilon (10x) −7.56 −6.79 −6.87

TABLE 2 | Median, best replicate, and ensemble performance metrics for each type of cut site and input. The best performance for each column is indicate in bold, i.e.
highest PMF or lowest PSE.

Model DR5 DC5 DC3 DR3

PMF PSE PMF PSE PMF PSE PMF PSE

Nucleotide sequence only (median) 0.223 4.998 0.124 5.147 0.204 4.85 0.178 4.776
Nucleotide and dot-bracket (median) 0.37 2.657 0.297 2.962 0.39 2.385 0.321 2.385
Nucleotide, and bpRNA (median) 0.379 2.687 0.3 2.929 0.407 2.295 0.329 2.425
Sequence and bpRNA (best replicate) 0.381 2.658 0.322 3.055 0.415 2.165 0.346 2.436
Sequence and bpRNA (ensemble) 0.45 2.426 0.354 2.819 0.47 1.994 0.389 2.037
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set, this model also performed better than the median PMF
for all replicates (Table 2).

Point Mutation Analysis
We performed a point-mutation analysis on the nucleotides
surrounding each cut site to interpret the sequence features
learned by DeepMirCut (Figure 4 and Supplementary
Figure S6). The effect on scores for the Dicer cut site on

the 3′ arm of the precursors was the most pronounced. A
guanine nucleotide before and a uracil nucleotide after Dicer
cleavage sites on the 3′ arm had a positive effect on
predictions while the opposite order (U before, G after)
had a negative effect. Uracil had the highest information
content 1 nt downstream from the cleavage site, as indicated
by the sequence logo (Figure 4B), and previous studies (Hu
et al., 2009).

FIGURE 3 | Comparison of performance for replicates trained with the best parameter combinations for each input type. (A). Boxplot comparing the perfect match
fraction found when each model replicate was run against the test set. (B). Boxplot showing the modal offset of each prediction across all model replicates. (C).
Histogram showing the frequency of positional shifts of predicted cut sites relative to their annotated locations for the best replicate trained using nucleotide, RNAfold,
and bpRNA structure array. D. A line plot showing the fraction of cut sites identified within varying distances from the annotations for the best replicate trained on
nucleotide, RNAfold, and bpRNA structure array.
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We also performed a secondary structure point mutation
analysis for the enhanced bpRNA structure array sequence
(Figure 5 and Supplementary Figure S7). Asterisks indicate
statistically significant score changes using a paired difference
t-test with a Bonferroni multiple test correction. A bulge
occurring 3 nt upstream had a positive influence on the
identification of Dicer cleavage sites on the 3′ arm
(Figure 5D). On the 5′ arm prediction performance improved
when a bulge was present 1 nt downstream, but not 1-2nt
upstream from the Dicer cleavage site (Figure 5B).

We further performed the same type of point mutation
analyses on a specific conserved family. We examined
members of the let-7 family, and observed many consistent

trends when compared with the metazoan microRNAs as a
whole (Supplementary Figures S8, S9). For example, we
observe a strong uracil bias for the position immediately after
the 5′ Drosha cut site and a preference for uracil surrounding the
DC5 cut sites. Notable differences for let-7 include a preference
for C after the DC3 cut site and greater sequence conservation
around the DR3 cut site than is observed in the test set. Consistent
with the general structural trends (Figure 5), we observe a strong
preference for a bulge at position -3 relative to the DC3 site. The
structure point mutations for let-7 show a stronger preference for
a bulge immediately 3′ of the DR5 cut site and several positions
that strongly favor internal loops, which may point to family-
specific structural preferences.

FIGURE 4 | Point mutation analysis for nucleotides surrounding cut sites in the test set. Heatmaps show the average change in decision value due to point
mutations for nucleotides surrounding cleavage sites of (A). Drosha on the 5′ arm, (B). Dicer on the 5′ arm, (C). Drosha on the 3′ arm, and (D). Dicer on the 3′ arm.

FIGURE 5 | Point mutation analysis for bpRNA sequence surrounding cut sites in the test set. Heatmaps show the average change in decision value due to point
mutations within the enhanced bpRNA sequence surrounding cleavage sites of (A). Drosha on the 5′ arm, (B). Dicer on the 5′ arm, (C). Drosha on the 3′ arm, and (D).
Dicer on the 3′ arm.
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Ensemble Approach
The top 12 best performing replicates trained on RNA sequence
and enhanced bpRNA structure array were combined into an
ensemble. The number of replicates was chosen so that it
resulted in the highest PMF and lowest PSE when tested
against the validation set (Figure 6A and Supplementary
Figure S5C). Hereafter, we refer to this model as “ensemble
DeepMirCut.” Ensemble DeepMirCut was applied to the test

set and performed better than the single model version of
DeepMirCut for each cleavage site. Ensemble DeepMirCut
performed best on the DC3 cut site with a PMF of 0.47
compared to a PMF of 0.415 for the single model version of
DeepMirCut. Like the single model version, Ensemble
DeepMirCut had better performance when identifying cut
sites that corresponded to the 5′-end of mature microRNAs
(Table 2). Most predictions fell within 1 nt of the annotated

FIGURE 6 | (A). Positional Shift Error found when ensemble bpRNA is applied to the validation set for ensembles of increasing size (dots represent PSE for
individual replicates being added to the ensemble). (B). Frequency of predictions relative to each cut site when ensemble bpRNA is applied to the test set with an
ensemble size of 12. (C). Mapped read counts and cut site predictions for known microRNA precursors with unannotated microRNAs on the 3′ arm. Vertical lines show
the position of cut sites that are either annotated in miRBase or predicted using the miRPreprocess.pl script frommiRWoods. Arrows show the location of cut sites
predicted by ensemble DeepMirCut.
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cleavage sites (Figure 6B). Ensemble DeepMirCut can identify
the Dicer cut site on the 3′ arm with an average PSE of 1.994
over our test set of metazoan miRs (Table 2).

Testing Against Mirtrons
Mirtrons are Drosha-independent microRNAs that use intron
splicing for removal from primary transcripts, and would not fit
in our intended application of DeepMirCut. Mirtron labels are
not available in miRBase, and databases that exist do not cover all
species in our data set; therefore, we included mirtrons in our test
and training sets. We used mirtronDB to identify mirtrons for
annotated species in our dataset (Da Fonseca et al., 2019). Our
training set was composed of 4.66% mirtrons, and our test set
consisted of 9.6% mirtrons from mirtronDB. We tested whether
mirtrons show an increase in DeepMirCut prediction error by
splitting our test set between mirtrons and canonical microRNAs.
When comparing Drosha cleavage site prediction, we found that
DeepMirCut predicted DR5 sites for mirtrons with a PSE of 3.56
and predicted DR5 sites for canonical microRNA with a PSE of
2.57. Similarly, ensemble DeepMirCut predicted cut sites for DR5
with a PSE of 2.86 for mirtrons, and 2.38 for canonical miRs
(Supplementary Table S2). Unexpectedly, DR3 sites showed the
lowest PSE when evaluated on mirtrons.

Testing Against microRNAs with
Questionable Validity
We further tested whether prediction error would increase for
microRNAs with questionable status. To evaluate this, we
downloaded a dataset of 177 questionable mouse microRNAs
from Chiang et al (Chiang et al., 2010). MicroRNAs and buffer
sequence were extracted from the NCBIM37 mouse genome
assembly using the GFF from miRBase version 14. Fourteen
microRNAs were excluded due to having a single product
crossing into the hairpin loop, which made determining the
side of the product ambiguous. DeepMirCut and ensemble
DeepMirCut both scored with a PSE of more than 5 for each
cut site (Supplementary Table S3). Due to the unusually high
PSE, this observation corroborates that many of the microRNA in
the dataset are not true miRs.

Cleavage Site Prediction for Unannotated
Mature microRNAs
Although DeepMirCut was trained on microRNA annotations
with two mature microRNA products, we reasoned that we could
predict the location of the missing product for precursors with
only one annotated microRNA product. We collected precursor
annotations from miRBase with only one annotated mature
product, but that had mapped reads from small RNA deep
sequencing data. Using the ensemble, we tested the
performance of DeepMirCut on precursors with only one
annotated microRNA by generating sets with the annotated
microRNA either on the 3′ arm or the 5′ arm. Cleavage sites
on the arm opposite to the annotated microRNAs were assumed
based on read stacks from small RNA sequencing data (see
Methods) and were used to assess performance. Ensembled

DeepMirCut was able to predict cuts that corresponded to
unannotated microRNA where small RNA sequencing reads
had mapped. (PMFDR5 � 0.444, PMFDC5 � 0.444, PMFDC3 �
0.545, PMFDR3 � 0.364; PSEDR5 � 5.000, PSEDC5 � 3.778, PSEDC3 �
1.364, PSEDR3 � 1.818). (Figure 6C and Supplementary
Figure S10).

DeepMirCut Compared to Other
Approaches
We compared DeepMirCut to PHDCleav and LBSizeCleav using
the implementation from Bao et al. (https://sunflower.kuicr.
kyoto-u.ac.jp/∼houu/LBSizeCleav/index.html) (Bao et al.,
2016). We designed an experiment to perform as direct of a
comparison of these approaches as possible, utilizing test
conditions based on the original paper, which compares the
true cut site to 6 nt downstream.

We trained and tested PHDCleav and LBSizeCleav on the
metazoan training set described above, which removes sequence
replicates since these would result in redundant sequence and
structural patterns. DeepMirCut and ensemble DeepMirCut
performed with a much higher specificity but did not
outperform the accuracy or sensitivity of the best models for
PHDCleav or LBSizeCleav (Supplementary Table S4). It is
important to note that we had to change our output to
compare with PHDCleav and LBSizeCleav. The authors of
PHDCleav used a sliding window approach and they reported
a PSE of 3.1 for their best model (Ahmed et al., 2013). In contrast,
when detecting the DC3 cut site DeepMirCut performed with a
PSE of 2.165 and Ensemble DeepMirCut with a PSE of 1.994
(Table 2). However, we did not have the code available to analyze
the PSE of PHDCleav or LBSizeCleav further.

DISCUSSION

Few studies have predicted Drosha cut sites from sequence, but
the importance of Drosha in microRNA biogenesis is best
illustrated by experiments that show that knocking-out Drosha
abolishes microRNA biogenesis, while knocking-out Dicer only
reduces the abundance of mature microRNAs (Kim et al., 2016).
We describe the training, testing, and evaluation of DeepMirCut
for the site-labeling of Dicer and Drosha cleavage sites on
extended precursor sequences that includes surrounding
genomic sequences. Previous methods such as PHDCleav and
LBSizeCleav address similar tasks, yet differ from the work
presented here for several reasons. First, they do not predict
Drosha cut sites. Second, they were only trained and tested on
human sequences. Deep learning methods require much larger
training sets; therefore, we worked with all available metazoan
primary sequences. Third, these approaches are applied to
microRNA precursor sequences, but DeepMirCut is applied to
extended precursor sequences that incorporate the context from
longer portions of the primary transcript in order to predict
Drosha sites. Because these approaches address a different task
and are applied to different input sequences, they cannot be
directly compared. DeepMirCut predicts both Dicer and Drosha
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cleavage sites on full-length extended precursor sequences that
include flanking sequence of randomly-sampled length. Our
experiments with annotations from miRBase show that
DeepMirCut labels cleavage sites with close average proximity
when applied to full-length extended sequences, which is a more
difficult task than previous classification approaches.

We expect that the improved performance comes from the
multi-layered recurrent neural network, and the more-
comprehensive input data, which includes both nucleotide
sequence and annotated secondary structure sequences with
dot-bracket and enhanced bpRNA structure array. Although
secondary structure improves performance, we found that
DeepMirCut can predict moderately-well based on sequence
alone, suggesting it is not completely relying on structural
information about the loop for its predictions. This is
consistent with the fact that point-mutation analysis reveals
strong changes in score due to perturbations to sequence
alone. It is known that cleavage of microRNA precursors
tends to include uracil residues and exclude guanine residues
at the ends of mature microRNAs when cut by Dicer (Starega-
Roslan et al., 2015a; Starega-Roslan et al., 2015b) and Drosha
(Starega-Roslan et al., 2015b). Our analysis shows that point
mutations to uracil at each end of both mature products had a
positive effect on decision value. Point mutations resulting in a
guanine at either end of the mature products except DR3 had a
negative effect on decision value. Adenine residues are frequently
found 2 nt upstream from the dicer cleavage site on the 5′ arm
(Starega-Roslan et al., 2015b). In our point mutation analysis,
adenine at this position had a positive effect on decision value.
The addition of structural context to the training and testing set
further improved the performance of DeepMirCut. It has been
shown biochemically that the hairpin loop position (Gu et al.,
2012) and the locations of bulges and other unpaired nucleotides
(Feng et al., 2012) may help direct the function of Dicer. Our
point-mutation analysis of regions beyond the precursor
corroborates previous genome-wide experimental studies of
Drosha cleavage sites (Kim et al., 2017). However, our
structural heatmap allows us to visualize the importance of
certain loop types (internal loops vs bulges) beyond just paired
vs unpaired. We note two limitations in our structural point-
mutation analysis (Figures 4, 5). First, the analysis is not
necessarily interpretable for double-mutations, as only the
results of single mutations were measured. For example, while
single-nucleotide internal loops are favorable when adjacent to
Drosha 5′ cut sites, we expect it is not favorable to have a two-
nucleotide internal loop spanning the cut site. Second, these
point-mutation heat maps are limited to structure and
sequence data available in the training set.

Central to microRNA function is the seed sequence, which is
necessary for the RISC to target specific mRNAs and is defined
relative to the 5′ end of the mature microRNA. Consistent with
these functional requirements, we observed that DeepMirCut
performed better at the identification of cleavage sites
corresponding to the 5′ ends of mature microRNAs compared
to their 3′ ends. These data support the idea that Dicer and
Drosha are directed to these cleavage sites by sequence and
structural information. A possible reason for this is a greater

variability of cut sites at the 3′ end of microRNAs (Neilsen et al.,
2012), which makes training and testing is more difficult for these
sites. Although this is true separately for the 5 and 3′ arms (DR5 is
better than DC5 and DC3 is better than DR3), we also note that
DR3 is the second most accurately predicted cut site and does not
correspond to the 5′ end of a mature microRNA. For reasons that
are unclear, DR3 sites were also accurately predicted for mirtrons.
DeepMirCut was able to predict DR3 sites accurately for both
canonical miRs and mirtrons despite the fact that we do not
observe obvious trends in our logos (Figures 4, 5) and that
Drosha is not involved in mirtron biogenesis.

As we noted previously (Bell et al., 2019), structure prediction
of microRNA precursors is sensitive to the length of the sequence,
and adding the 30- to 50-nt flanking sequence may add variability
to structure prediction. The possibility remains that improved
secondary structure prediction may improve performance of
DeepMirCut.

While DeepMirCut is a valuable tool for the automatic
prediction of Drosha and Dicer sites, it is not a substitute for
experimental methods, which provide empirical evidence of cut
site locations, and can directly detect isomirs (Neilsen et al., 2012;
Starega-Roslan et al., 2015a). That said, DeepMirCut is trained on
datasets built from multiple experimental data sources, and may
uncover common principles describing the most frequently
occurring cut sites in microRNA biogenesis. For this reason,
DeepMirCut can be used in the design of synthetic miRs so as to
match typical sequence and structural features observed in
endogenous microRNAs, or to assist in the prediction of novel
microRNAs in metazoan genomes that lack a microRNA
annotation. Furthermore, we have shown that DeepMirCut
predictions for microRNAs of questionable validity show a
substantially higher PSE than more confident annotations, and
therefore may help in identifying potential microRNA annotation
errors. Beyond the uses of DeepMirCut, we also provide a new
data set of extended precursor sequences for future algorithms to
be trained on. While this new dataset is not a replacement for
web-accessible microRNA databases such as miRBase (Kozomara
et al., 2019), it complements them well, by providing the extended
context beyond precursor sequences. We expect future studies to
train new architectures on our extended precursor dataset to
improve performance of this microRNA cut-site-labeling task.
Our extended precursor dataset includes data for plant
microRNAs, which were not used in our training or
evaluation in this study, and could be studied in future
investigations. Future work could incorporate cut site
prediction into microRNA discovery pipelines to test if the
ends of deep sequencing reads map to strong predicted cut sites.

METHODS

Data Preprocessing
All microRNA GFF annotations files were downloaded from
miRBase v22.1, and then used to locate precursor sequences
and the surrounding genomic context for each species.
Genome FASTA files were downloaded from various sources
including NCBI Assembly and organism-specific genome
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resources when needed. Supplementary Table S1 lists the
download location for each organism. Precursor sequences
were extracted from each genome along with a buffer
sequence extending 300nt upstream and 300nt downstream.
The buffer sequence was shorter in cases where less buffer was
available and truncated in cases where it would overlap
neighboring microRNA precursors. Cleavage-sites were
determined by predicting the secondary structure of the
original precursor sequences found on miRBase using
RNAfold (Hofacker et al., 1994) and identifying the arm
where each mature microRNA was located. Examples where
mature microRNA products overlap the portion of the
secondary structure prediction corresponding to the hairpin
loop were removed to avoid ambiguity in cleavage-sites
corresponding to each microRNA. In several cases either the
name or location of the miR was inconsistent between the
miRBase GFFs and the miRBase FASTA files and in a few
cases defunct miRs were present in the miRBase GFFs. In
order to improve testability, microRNAs were dropped
whenever there was a naming inconsistency between GFF and
FASTA files or an inconsistency between the annotation and
genomic sequence (70 loci in total). Sequences from Brassica
napus, Schistosoma japonicum, Schmidtea mediterranea, and
Triticum aestivum were excluded from the set because of
difficulties in finding versions of the genome that
corresponded to locations of each sequence within the
miRBase GFF files.

Performance Metrics
Precision, recall, and F-score all give the same measurement
due to DeepMirCut applying a single label for each cut site;
therefore, we use perfect match fraction (PMF) and positional
shift error (PSE) to evaluate performance. Perfect match
fraction is the fraction of predictions for a particular type
of cut site that are correctly labeled. Positional shift error is
the average absolute value of the distance that a cleavage site
prediction is shifted from the annotated position.

PMF � Number of Examples with Cutsite Correctly labeled

Total Examples

PSE � ∑example|Predicted Position − Annotated Position|
Total Examples

Hyperparameter Tuning
Hyperparameters for three different models were tuned using
a training set composed of different input data. The first
approach used RNA sequence data only. The second
approach used RNA sequence and the dot-bracket
sequence corresponding to the predicted secondary
structure. The third approach used RNA sequence and the
enhanced bpRNA structure array (Danaee et al., 2018).
Hyperopt (Bergstra et al., 2013) was used to search for a
model producing an optimal perfect match fraction with an
embedding dropout between 0 and 0.5, an embedding
dimension of 32, 64, 96, 128, or 160 units, a first
bidirectional LSTM layer with 64, 128, 192, 256, or 320

units, a second bidirectional LSTM layer with 0, 64, 128,
192, 256, or 320 units, a learning rate for the adam optimizer
between 0.00001 and 0.1, and an epsilon between 10–10 and
10–4. The top 10 models identified by hyperopt were retrained
20 times and a model for each of the three training sets was
chosen based on median PMF (see Supplementary Figures
S2–S4). After this analysis, we determined that the best model
was trained on RNA sequence and enhanced bpRNA
structure array.

Point Mutation Analysis
A point mutation analysis was performed by mutating every
nucleotide from −5nt upstream to 5nt downstream of each
cut site in the test set. We applied DeepMirCut to predict cut
sites on mutated and unmutated datasets and returned the
decision values for the annotated cut sites. The mean
difference between decision values for mutated nucleotides
vs unmutated nucleotides and unmutated vs mutated
nucleotides was used to evaluate the effects that mutations
at each position would have on the model’s ability to predict
cleavage sites.

A second point mutation analysis was performed by
mutating each of the characters within the bpRNA
structure array from −10 nt upstream to 10nt downstream
of each cut site within the test set. The possible characters in
the bpRNA structure array are L for left base pair, R for right
base pair, H for hairpin loop, B for bulge, I for internal loop,
and M for multiloop. DeepMirCut was run on the mutated
and unmutated datasets and the mean difference between
decision values for each cut site was used to evaluate the
effects that mutations at each position of the bpRNA
sequence array would have on the model’s ability to
predict cleavage sites.

Heatmaps were generated by making every possible point
mutation to each of the sequences in the test set, where si,p
corresponds to the nucleotide at position p for sequence i.
The value Hn,p for the heat map corresponds to a mutation to
nucleotide n at position p, and has the value of the mean
difference in decision value between characters in the
mutated and unmutated sets:

Hn,p � ∑i1[si,p≠n] × (Di,n,p −Di,si,p,p) + 1[si,p�n] ×∑m∈Mi,p
(Di,n,p −Di,m,p)

∑i1[si,p≠n] +∑m∈Mi,p
1[si,p�n]

whereMi,p is the set of valid character mutations for example i at
position p, and Di,n,p is the decision value returned for the
annotated cut site of example i when the character n is used
in position p of the sequence. Note that this average includes
mutations away from as well as toward the original character si,p,
which is accounted for by the indicator functions. We identified
statistically significant point mutations using a paired difference
t-tests on all position/character combinations. We restricted the
statistical significance test of the point mutation such that the
character had an occurrence of at least 5% at that position in the
training set to ensure that the model had seen enough examples to
predict the effect of the mutation.We used weblogo (Crooks et al.,

Frontiers in Molecular Biosciences | www.frontiersin.org January 2022 | Volume 8 | Article 79905610

Bell and Hendrix DeepMirCut: Predicting microRNA Cleavage Sites

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


2004) to create sequence logos for the unmutated nucleotide and
bpRNA sequences spanning each cut site. Sequence logos were
used to compare the frequency of occurrence within the
unmutated sets to the point mutation analyses.

Identification of Cleavage Sites for
Unannotated Mature microRNAs
In order to test the performance of DeepMirCut on microRNAs
with only one annotated mature microRNA, wildtype MCF-7
total cell content (GSE31069) and MCF-7 cell fractions
(GSE31069) were downloaded from GEO (Barrett et al., 2010).
We identified 904 human microRNAs within our dataset with
unique sequences that had only one annotated microRNA and
shared less than 80% identity with the training set. Reads from the
MCF-7 cell lines were mapped to the Human genome (hg38), and
the cleavage sites of the unannotated mature microRNAs were
predicted from the location of the read mappings using the
miRPreprocess script found in miRWoods (Bell et al., 2019).
We filtered out microRNAs with fewer than 5 reads in order to
reduce the likelihood that cut sites were identified from spurious
reads. The remaining microRNAs were split into two test sets
consisting of 9 microRNAs with unannotated products on the 5′
arm and 11 microRNAs with unannotated products on the 3′
arm. We applied ensemble DeepMirCut to each set and evaluated
performance against cut sites identified by miRPreprocess.

Comparison with LBSizeCleav and
PHDCleav
The original program only performs 5-fold cross validation on a
set of human miRs from miRBase. To perform a direct
comparison, we adapted the original code to train and test on
our datasets. In doing so, made minimal modifications to avoid
changing how the original implementation generated sequence
and structure patterns from microRNA precursors, and only
removed the 5-fold cross validation so that a input train and
test data set could be used.

We had to modify the way DeepMirCut makes predictions
in order to compare with other programs. One issue with
comparing DeepMirCut to PHDCleave and LBSizeCleav is
that they only train and test using positive examples that are
at each cut site and negative examples that are exactly 6 nt
away from the cut site. To make our comparison fair, we only
measured performance at these positions ignoring the
remainder of the sequence. A second issue is that
DeepMirCut predicts each cut site based on where the
decision value reaches its peak. This peak is usually at or
near the cut site but will often be lower than a default cutoff
score of 0.5. To solve this issue, we normalize by the highest
decision value over the length of the precursor. Positive
predictions were defined as a decision value greater than
0.5, and negative predictions as less 0.5.
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