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The field of cardiac electrophysiology (EP) had adopted simple artificial intelligence (AI) methodologies for decades. Recent renewed
interest in deep learning techniques has opened new frontiers in electrocardiography analysis including signature identification of diseased
states. Artificial intelligence advances coupled with simultaneous rapid growth in computational power, sensor technology, and availability
of web-based platforms have seen the rapid growth of AI-aided applications and big data research. Changing lifestyles with an expansion
of the concept of internet of things and advancements in telecommunication technology have opened doors to population-based detec-
tion of atrial fibrillation in ways, which were previously unimaginable. Artificial intelligence-aided advances in 3D cardiac imaging heralded
the concept of virtual hearts and the simulation of cardiac arrhythmias. Robotics, completely non-invasive ablation therapy, and the con-
cept of extended realities show promise to revolutionize the future of EP. In this review, we discuss the impact of AI and recent techno-
logical advances in all aspects of arrhythmia care.
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Introduction

As artificial intelligence (AI) has entered the medical field in recent
years, machine learning (ML) approaches have made progress in
assisting healthcare professionals in optimizing personalized treat-
ment in a given situation, in particular in electrocardiography and
image interpretation. Artificial intelligence methodologies are increas-
ingly being adopted into all aspects of patient care and are paving the
way to minimally invasive or non-invasive treatment modalities. This
article offers a state-of-the-art overview on milestones achieved, but
also on future integration of this information into diagnostic and
therapeutic measures, and its likely impact on all aspects of arrhyth-
mia care. Integration of all individual information in combination with
AI solutions is likely to revolutionize electrophysiology (EP) interven-
tions in the near future (Figure 1 and Graphical Abstract).

Cardiac electrical signal analysis
using artificial intelligence
methodologies

Human intelligence is characterized by the capability of learning,
reasoning, analysing, and decision-making. When machines mimic
the use of these capabilities, it can be termed AI. Although the
concept and the term AI have been used for over six decades,1–3

its usage has skyrocketed over the last decade. Whilst ML is the
most commonly used term for AI, it only denotes one of the
methodologies of AI (Figure 2 and Supplementary material online,
Section S1).

Most of the AI applications in EP are based on the analysis of signals
that represent cardiac electrical activity, with the signal varying with
the type of sensor and underlying technology. Two of the most com-
monly used signals are electrocardiogram (ECG) and photo plethys-
mography (PPG). Photo plethysmography is more contemporary and
has been used in some of the wearable devices including watches,
wrist bands, and smartphones. Fundamental AI processes employed
in analysing data obtained from these devices are essentially similar
(Figure 3).

Following data collection, data are pre-processed, feature engin-
eering (Table 1) carried out, and followed by classification by one of
the ML methodologies (Table 2).The ML methodology is first trained
using the ‘training data’ with appropriate labels. The second stage
involves ML methodology assessment using a ‘validation data set’ and
fine tuning the algorithm. Following these two steps, the ML algo-
rithm would then be ready to be used with a third ‘test set’.
Performance of the algorithm is expressed using values such as sensi-
tivity, specificity, accuracy, receiver operating curve (ROC), and area
under ROC (AUC).4

Arrhythmia detection using
artificial intelligence

Since digitalization of ECG, AI methods have been employed in com-
puterized interpretation of ECGs. Whilst ML methods revealed high
sensitivity and specificity for detecting normal sinus rhythm, their

abilities were lower than expert cardiologists for the identification of
cardiac arrhythmias.5 One of the main deterrents have been the pres-
ence of noise, small or varying P waves resulting in over diagnosis of
atrial fibrillation (AF), paced rhythms, poor-quality ECGs, tremor,
and previously untrained rhythms. With better ML algorithms, noise
reduction techniques and advanced feature extraction, selection and
reduction methods [including use of the unsupervised deep neural
network (DNN)], computerized interpretation of ECGs has clearly
improved arrhythmia detection achieving an accuracy close to
95%.6,7

Hannun et al.8 developed an end to end deep learning (DL) ap-
proach for ECG analysis by using a DNN for identifying 12 rhythm
abnormalities by using 91 232 single-lead ECGs. When validated
against independent data reported by a committee of certified cardi-
ologists, their algorithm was shown to be superior to an average car-
diologist in identifying these rhythm abnormalities (ROC 0.97 vs.
0.78).

With the development of unsupervised DNN algorithms, more
interest has been generated amongst researchers for identifying hid-
den diseased state signatures in a 12-lead ECG. So far, it has been
shown to be feasible to detect hyperkalaemia,9 heart failure,10 hypo-
glycaemia,11 and even changes in emotional states12 using 12-lead
ECG. Attia et al.13 at Mayo Clinic Rochester assessed the feasibility of
identifying previous episodes of or impending AF using an AI-enabled
12-lead ECG in normal sinus rhythm. They used 0.65 million ECGs to
train, validate, and test the AI algorithm in a 7:1:2 ratio and found that
AI-enabled ECG recorded during normal sinus rhythm performed
well as a screening test to identify AF with an accuracy of 79.4% and
this improved to 83.4% when it was a first ECG following an episode
of AF. Additional multiple ECGs improved the model accuracy lead-
ing to the hypothesis that structural changes that may precede AF
including myocyte hypertrophy, fibrosis, or chamber dilatation may
result in subtle multifaceted changes in ECG that may otherwise be
unrecognized by the human eye but are detectable by a DNN. This
observation has important clinical implications with potential point-
of-care identification of individuals at the risk of AF and for the em-
bolic stroke of undetermined source.

Deep neural network has also been used to predict hypertrophic
cardiomyopathy (HCM),14 age and sex,15 and plasma dofetilide con-
centration from ECG.16

Advancements in sensor technology, telecommunications
(increased availability of wireless, Wi-Fi, Bluetooth and smartphone
technologies), availability of web-based data storage, and AI-aided
analysis have seen rapid growth of handheld and wearable cardiac
monitoring systems (Table 3).

Whilst several handheld devices are available, the AliveCor Heart
Monitor, an ECG-based system, has been studied extensively for AF
detection in symptomatic patients.17,23–27 In most of these studies,
AliveCor Heart Monitor achieved well over 90% sensitivity and speci-
ficity for AF detection both in outpatient and hospital settings.28 In a
comparison with traditional transtelephonic monitor, AliveCor
Heart Monitor achieved 100% sensitivity and 97% specificity for AF
and atrial flutter detection.29 Similar results were seen with the use of
PPG-based systems coupled with AI-aided analysis.30,31 In the
WATCH AF trial, Dörr et al.22 studied the efficacy of a smartphone
PPG-based algorithm in AF detection. The PPG algorithm achieved a
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..sensitivity of 93.7%, a specificity of 98.2%, and an accuracy of 96.1%
to detect AF.

In a recent community-based trial on the utility of a smartwatch in
AF detection (Apple Heart Study),19 smartwatch in conjunction with
a pulse notification algorithm showed promising results in 0.41 million
participants with no prior history of AF. The smartwatch application
collected single 1-min tachograms every 2 h. If a smartwatch-based ir-
regular pulse notification algorithm identified possible AF, the partici-
pant was notified to have further simultaneous 7-day monitoring
using an ECG patch. The smartwatch-based algorithm had a positive
predictive value of 0.84 (95% confidence interval 0.76–0.92) for iden-
tifying AF during the simultaneous monitoring period. Similar results

were shown in yet another population-based AF screening study
using a PPG algorithm in conjunction with smart devices.18

Chen et al.20 studied AF detection using a smart wristband
equipped with both ECG and PPG sensors, comparing ECG and PPG
individually as well as in combination. They demonstrated higher ac-
curacy of 97.5% for AF detection with the combination against 94.7%
and 93.2% with ECG and PPG, respectively.

Wasserlauf et al.21 compared smartwatch detection of AF using a
DL algorithm (episodes lasting >_1 h) with an insertable loop record-
er. They analysed 31 348 h of simultaneously recorded data. The
smartwatch algorithm achieved 97.5% and 97.7% for episode sensitiv-
ity and duration sensitivity, respectively.

Figure 1 An illustration highlighting the impact of artificial intelligence and recent technological advancements on all aspects of patient care in the
field of cardiac electrophysiology. ADAS, Automatic Detection of Arrhythmic Substrate; AF, atrial fibrillation; BSM, body surface mapping; CIE, com-
puterized interpretation of electrocardiography; DL, deep learning; EAM, electro anatomical mapping; EP, electrophysiology; LGE, late gadolinium en-
hancement; MDCT, multidetector computed tomography; ML, machine learning; MRI, magnetic resonance imaging; OPTIMA, optimal target
identification via modelling of arrhythmogenesis; SBRT, stereotactic body radiotherapy; SR, sinus rhythm; TA, texture analysis; TC, tissue character-
ization; VAAT, virtual heart arrhythmia ablation targeting; VARP, virtual heart arrhythmia risk predictor approach; VIVO, view into ventricular onset;
VT, ventricular tachycardia.

3906 V.D. Nagarajan et al.



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..Artificial intelligence-enabled monitoring systems are affordable
and reliable, can be used for continuous ambulatory monitoring, and
will facilitate the detection of vulnerable groups.32 A step closer to
the holy grail of early AF detection within the community in other-
wise asymptomatic patients may in fact initiate a paradigm shift in ar-
rhythmia detection.

Artificial intelligence and cardiac
devices

Most of the pacemaker and defibrillator functions use rule-based
algorithms. Rate response feature in a pacemaker, which incorpo-
rates the ability of the device to vary the pacing rate based on an input
from a biosensor; tachycardia detection and deliverance of an appro-
priate therapy by an implantable defibrillator, are some of the illustra-
tions of the rule-based decision-making. A rule-based algorithm is
referred to as a simplest form of AI but it differs from ML in its inabil-
ity to learn.33 In rule-based algorithms, rules are laid down by humans
based on the domain expertise, whereas ML methodologies learn ac-
tively from the training data and create their own rules for decision-
making, which may not be transparent in some instances
(Supplementary material online, Section S2 and Table S1).

Machine learning algorithms are finding their use with cardiac
devices both in arrhythmia detection and prediction of future events.
Machine learning methods have been employed in automated
external defibrillators in the development of shock advice

algorithms.7,34–36 Recently, Nguyen et al.37 developed an algorithm
for the detection of shockable and non-shockable rhythms using ML.
They used both boosting classifier and convolutional neural network
as a feature extractor with a sensitivity and specificity of 95.21% and
99.31%, respectively. This shock advice algorithm was a considerable
improvement over existing algorithms and in keeping with the stand-
ards set by the American Heart Association guidelines.38 More re-
cently, a DL technique was introduced to identify any cardiac device
model from a chest radiograph.39

Machine learning methods have been used to improve cardiac
resynchronization therapy (CRT) outcomes prediction, paving the
way for better patient selection.40,41 In a proof of concept, single
centre study, ML algorithm in conjunction with natural language proc-
essing was applied to electronic health records.42 This model suc-
cessfully identified subgroups of patients who were unlikely to
benefit from CRT. An ML algorithm using naive Bayes classifier using
patient variables including age, sex, QRS duration and morphology,
left ventricular ejection fraction and end-diastolic diameter, New
York Heart Association functional class, presence of AF, and epicar-
dial left ventricular lead was superior to existing guidelines in predict-
ing event-free survival post-CRT.43

Machine learning algorithms including random forests and convo-
luted neural networks, when applied to the AF signature burden
obtained using continuous remote monitoring data in patients with
cardiac implantable electronic devices, were superior in predicting
stroke compared to the widely used CHA2DS2-VASc score. An en-
semble method using ML model in conjunction with CHA2DS2-VASc

Figure 2 Artificial intelligence methodologies with their individual characteristics. AI, artificial intelligence; ANN, artificial neural network; CovNN,
convolutional neural network; DNN, deep neural network; KNN, K-nearest neighbours; LR, logistic regression; RF, random forest; RNN, recurrent
neural network; SVM, support vector machine.

AI in the diagnosis and management of arrhythmias 3907
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..score had better sensitivity and specificity when compared to using
CHA2DS2-VASc score alone and improved AUC from 0.52 to
0.63.44

Multimodal integrative approach
to predict sites of arrhythmia
origins and role of machine
learning

Non-invasive characterization of arrhythmia prior to attempting abla-
tive therapy is gaining favour amongst electrophysiologists. This ap-
proach aids in focused targeting of the cardiac region of interest. One
of the important contributors to this being ML aided advances in car-
diac 3D imaging.

Application of DL methods including convolutional neural net-
work has improved the speed of acquisition,45 time efficiency, recon-
struction quality of images,46,47 and accuracy of cardiac magnetic
resonance (CMR) segmentation.48,49 Machine learning techniques
have been applied to improve myocardial tissue characterization and
texture analysis50,51 and define the heterogeneous nature of the
scarred myocardium in late gadolinium enhancement (LGE) CMR
images in patients post-myocardial infarction.52

Automated CMR analysis using a convolutional neural network al-
gorithm was shown to be similar in precision to human analysis for
measuring left ventricular ejection fraction and left ventricular mass
but was 186 times faster.53

In a proof of concept study, Fahmy et al. used U-Net deep convo-
luted networks with 150 operational layers to quantify scar volumes

in patients with HCM. A strong correlation was observed between
the manually and automatically segmented scar volumes.54

Cardiac magnetic resonance-defined scar regions have gained con-
siderable importance and form the basis of some of the ablation strat-
egies including scar homogenization and scar de-channelling in
ventricular tachycardia (VT) ablation. These advancements have also
paved the way for the concept of targeting fibrotic substrate that can
perpetuate rotors, in addition to pulmonary vein isolation in patients
with persistent AF.

Advances of ML-aided imaging55 have set the stage for the devel-
opment of several novel concepts in EP including non-invasive local-
ization of arrhythmia foci with high precision, personalized virtual
heart modelling including simulation of cardiac arrhythmias and con-
cept of non-invasive ablation.

In parallel with developments in cardiac imaging, further advance-
ments have been made in ECG acquisition with the development of
body surface mapping (using up to 252 electrodes instead of standard
12 leads). Electrocardiography imaging systems that integrate body
surface mapping with non-contrast computed tomography (CT) that
simultaneously records electrode location and geometry of cardiac
surface can localize focal activation of atrial or ventricular ectopy on
the 3D reconstruction of the patient’s heart using an inverse solution
approach.

The Amycard 01C (EP Solutions SA, Yverdon-les-Bains,
Switzerland)56 and ECVUE (CardioInsight Technologies Inc.,
Cleveland, OH, USA)57 systems are now commercially available and
are able to locate atrial and ventricular arrhythmias. As they provide
a simultaneous, quasi global view of the entire atrial or ventricular ac-
tivation, these systems allow to visualize even AF. Using this tech-
nique, focal trigger and rotor sites are identified, which is impossible
using the conventional sequential mapping techniques (Figure 4, left).

Figure 3 Schematic representation of steps involved in cardiac impulse analysis from the data acquisition to analysis by machine learning algorithm.
ECG, electrocardiogram; ML, machine learning; PPG, photo plethysmography.

3908 V.D. Nagarajan et al.
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Table 1 Overview of feature engineering processes employed during development of machine learning methods

Feature engineering

Definition Extraction Optimization

• Most informative and non-redundant charac-

teristics of data signals
• Represented in a numerical form and together

form a feature vector
• Data represented as features is computational-

ly processed by ML algorithms

• In supervised ML methods feature extraction is

done by experts in the domain
• In unsupervised and DL methodologies feature

engineering is done by the algorithm itself
• Features used for cardiac signal analysis—time

intervals, morphological amplitudes, areas or

distances

• Selection of appropriate features is crucial

for the success of ML methodology
• Algorithms used for relevant feature identi-

fication—particle swarm optimization, etc.
• Algorithms used for dimensionality reduc-

tion—principal component analysis and

linear discriminant analysis

DL, deep learning; ML, machine learning.

....................................................................................................................................................................................................................

Table 2 Commonly used machine learning classification algorithms

Algorithm Learning method Description Utility in EP ML

Support vector machine • Most commonly used

supervised learning

method

• Used to classify complex non-linear data
• Creates ‘hyperplane’ that non-linearly

separates the two classes in a feature

space
• Good classification and generalization

properties

• Arrhythmia classification using heart

rate variability
• VF detection algorithm in automated

external defibrillators

Random Forest • Supervised learning

method

• Ensemble learning methods that combine

multiple decision trees (algorithms)
• Decision trees arranged in a hierarchical

manner
• Final prediction derived by calculating the

mean or mode of the individual DT’s

decision

• Classification of ECG beats
• CRT outcomes prediction

Bayesian networks • Supervised learning

method

• Graphical structures to represent know-

ledge about an uncertain domain
• Represent variables and their probabilistic

relationships
• HMM—one of the frequently used exam-

ples of BNs

• Classification of ECG beats
• CRT outcomes prediction

Neural networks • Can be supervised or

unsupervised learning

method

• Computational model mimicking biologic-

al neural networks
• Data is propagated in a hierarchical man-

ner via nodes in each layer
• Input/target pairs are used during model

training

• Classifying large amounts of data
• Classification of ECG beats

Convolutional neural

networks

• Can be supervised or

unsupervised learning

method

• Evolved form of deep neural networks

(multiple hidden layers between input and

output)
• Convolution layers produce a spatially de-

pendent feature for the subsequent layer
• Most widely used DL

• For deciphering diseased state

footprints in 12-lead ECG
• Cardiac imaging

BN, bayesian networks; CRT, cardiac resynchronization therapy; DL, deep learning; ECG, electrocardiogram; EP, electrophysiology; HMM, Hidden Markov Models; ML, machine
learning; VF, ventricular fibrillation.

AI in the diagnosis and management of arrhythmias 3909



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..View into ventricular onset (VIVO, Catheter Precision) is a next-
generation non-invasive mapping system that combines knowledge
of the exact location of the surface 12-lead ECG stickers with careful-
ly reconstructed cardiac anatomy from either CMR or CT imaging
(Figure 4, right). With the VIVO platform, prediction of the focus of
premature ventricular electrical activity and VT focus is correct in
85% and 88% of patients, respectively.58

Using a multimodal integrative approach, feasibility of combining
body surface mapping, cardiac gated multidetector CT, and/or
delayed contrast-enhanced magnetic resonance (MR) imaging on a
common platform is shown in Figure 5 (right); this approach was use-
ful in understanding complex accessory pathway previously resistant
to ablation and to identify rotor trajectories in patients with AF.59

Software (Automatic Detection of Arrhythmic Substrate, ADAS-
VT, Galgo Medical SL, Barcelona, Spain), which processes LGE CMR
images offline to characterize 3D scar architecture to be merged
with electro anatomical mapping (EAM) during the ablation proced-
ure, has been shown to facilitate the ablation procedure60 (Figure 5,
left).

With the development of methods for non-invasive localization of
arrhythmia focus, several groups have reported on their experience
of using radiation therapy in patients with mostly ischaemic ventricu-
lar arrhythmia.61–65 Robinson et al.66 reported successful utilization
of radiotherapy in a cohort of patients with treatment-refractory epi-
sodes of VT or cardiomyopathy related to premature ventricular
contractions. They identified scar regions using ECG imaging, cardiac
anatomical imaging and delivered Focused stereotactic body radiation
therapy (SBRT) with marked reduction in arrhythmia burden,
reduced use of anti-arrhythmic medication and improved quality of

life following therapy. Overall survival was 89% and 72% at the end of
6 and 12 months, respectively.

In addition, first-in-man treatment of paroxysmal AF using SBRT in
two patients has been reported67 with the demonstration of safety
and efficacy of delivering SBRT lesion set in the left atrium confirmed
by presence of fibrosis. Results from these initial pilot studies and
case reports are encouraging. However, more robust data are
required from larger clinical trials with longer follow-up to show
long-term safety of these techniques, which are of great interest but
still under evaluation.

Personalized virtual heart
modelling—a new paradigm

Considerable advances in cellular modelling technology have paved
the way for the development of a computerized human cardiac myo-
cyte.68 Virtual ventricular myocytes, with predefined electrophysio-
logical properties, and predictable functional changes in response to
surroundings including ion channel changes and myocardial ischaemia
have been developed.69–74

Trayanova et al. envisaged the creation of a computerized but per-
sonalized virtual heart model.69,75–77 Contrast-enhanced MR images
of the patient’s heart were used to create near identical geometrical
models of the cardiac chambers and were populated with virtual car-
diac myocytes with physiological properties pertaining to the cells
from a designated location. Previously validated rule-based algo-
rithms were applied for fibre orientation to compute heart models.
These computed virtual hearts were electrophysiological twins to

....................................................................................................................................................................................................................

Table 3 Diagnostic accuracy of artificial intelligence-aided devices in identifying atrial fibrillation

Study Device and AI algorithm Signal analysed AF detection

The iREAD Study

William et al.17

Algorithm using smartphone (Kardia

Mobile Cardiac Monitor) and handheld

cardiac rhythm recorder vs. physician-

interpreted ECG

ECG 96.6% sensitivity and 94.1% specificity for AF

detection

HUAWEI Heart Study

Guo et al.18

Wristband/wristwatch-based irregular

pulse notification algorithm

PPG Positive predictive value of PPG signals being

91.6% (95% CI 91.5–91.8%)

Apple Heart Study

Perez et al.19

Smartwatch-based irregular pulse notifi-

cation algorithm vs. subsequent moni-

toring with ECG patch

Initial PPG followed by

simultaneous PPG and

ECG

Smartwatch-based algorithm had a positive pre-

dictive value of 0.84 (95% CI 0.76–0.92) for

observing AF during the simultaneous moni-

toring period

Chen et al.20 Smart wristband device enabled by AF-

identifying AI algorithm vs. wristband

ECG reviewed by physicians

PPG and ECG Sensitivity, specificity, and accuracy were

88.00%, 96.41%, and 93.27%, respectively, for

PPG and 87.33%, 99.20%, and 94.76% for

ECG

Wasserlauf et al.21 Apple Watch with KardiaBand (enabled

by convoluted neural network algo-

rithm) vs. insertable cardiac monitor

ECG 97.5% and 97.7% for episode sensitivity and

duration sensitivity, respectively

WATCH AF trial

Dörr et al.22

Smartwatch-based algorithm vs. cardiolo-

gists’ diagnosis by electrocardiography

PPG Sensitivity of 93.7% (95% CI 89.8–96.4%), speci-

ficity of 98.2% (95% CI 95.8–99.4%), and

96.1% accuracy (95% CI 94.0–97.5%)

AF, atrial fibrillation; AI, artificial intelligence; CI, confidence interval; ECG, electrocardiogram; PPG, photo plethysmography.

3910 V.D. Nagarajan et al.
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.
the patient’s heart on which various stimulation protocols could be
applied to induce ventricular arrhythmias of different morphologies
and identify critical isthmus zones for these arrhythmias.

As a proof of concept, this study of virtual heart modelling was
used for non-invasive risk assessment of sudden cardiac death in a
high-risk population undergoing cardioverter defibrillator implant-
ation. The virtual heart arrhythmia risk predictor approach (VARP)
was evaluated retrospectively in a cohort of 41 patients executing
simulations to evaluate patient specific VT inducibility and found to
be superior to other predictors including left ventricular ejection
fraction.78 Predictive capability of this novel targeted approach needs
further evaluation in larger studies.

Yet another proof of concept study evaluated the use of virtual
heart modelling in patients undergoing VT ablation.77 Virtual hearts
were modelled from patients’ contrast-enhanced MR images and VT
induction carried out as in the VARP study. Once VT induction was
carried out, the optimal ablation strategy was performed virtually.
This technique was termed virtual heart arrhythmia ablation targeting
(VAAT). When compared retrospectively in 21 patients undergoing
VT ablation, it was found to correspond well with real ablation
lesions. The VAAT strategy was further tested prospectively in 5
patients undergoing VT ablation in two different centres. VAAT
lesions were merged with an EAM system and an ablation was carried
out at these sites without further prior mapping. The clinical

outcomes for these patients were encouraging with no further VT
episodes post-ablation.79

Virtual hearts and machine
learning in atrial fibrillation

Machine learning methodologies in conjunction with atrial computa-
tional models were used to define re-entrant driver locations in AF.80

Segmented LGE CMR scans were used to identify atrial fibrosis in 21
patients with persistent AF. Fibrotic and non-fibrotic regions were
identified and were assigned with region-specific tissue properties.
Atrial fibrillation was induced using multisite atrial pacing in these vir-
tual atrial models. Phase mapping with an unsupervised density-based
spatial cluster algorithm was used to define re-entrant driver loca-
tions. Over 80% of re-entrant driver locations matched to the fibrosis
border zones.

The first-in-human clinical study of virtual heart models to guide
ablation in patients with persistent AF used personalized atrial geo-
metric models created using segmented LGE MR scans done prior to
the procedure.81 Rapid pacing was carried out from 40 uniformly dis-
tributed bi-atrial sites. The model response was analysed to deter-
mine the optimal ablation lesion set to eliminate all possible
persistent re-entrant drivers (identified using above mentioned ML

Figure 4 Left panel: Example of non-invasive simultaneous mapping of atrial fibrillation of both the right and left atrium using the electrocardiogram
imaging technology. Several mechanisms occur in various areas of the atria simultaneously and thereby maintain atrial fibrillation. Right panel:
Example of non-invasive simultaneous mapping of ventricular ectopy using the view into ventricular onset technology.

AI in the diagnosis and management of arrhythmias 3911
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..methodologies) sustaining AF and other atrial arrhythmias; the opti-
mal ablation lesion set created using this approach was called
OPTIMA: OPtimal Target Identification via Modelling of
Arrhythmogenesis was then loaded onto the EAM mapping system
and the ablation was carried out without prior mapping. This was a
proof of concept feasibility study and was not designed to evaluate
procedure outcomes. In fact, outcomes reported from 10 patients
were encouraging with no further recurrence of persistent AF.

In a study combining ML and personalized computational model-
ling, an ML algorithm was shown to predict AF recurrence post-
pulmonary vein isolation in patients with paroxysmal AF.82 In this
proof of concept study, features were derived from patient’s pre-
pulmonary vein isolation LGE MR images and also from the results of
AF simulations carried out on their personalized computational
model. Random forests were used for unbiased feature selection, and
ten-fold nested cross-validation was used to train, validate, and test
quadratic discriminant analysis ML classifier. Most predictive features
were used as input to this classifier. This ML algorithm predicted
post-pulmonary vein isolation AF recurrence with an average valid-
ation sensitivity and specificity of 82% and 89%, respectively, and a
validation AUC of 0.82.

Intracardiac data and machine
learning applications in atrial
fibrillation

Large quantities of intracardiac data are recorded during EP proce-
dures. Recent advances in ML methodologies have encouraged
researchers to apply these techniques to the intracardiac electro-
grams and EAM data with a view to define extra pulmonary ablation
sites in AF.

Schilling et al.83 showed the feasibility of classifying complex frac-
tionated atrial electrograms in an objective way using fuzzy decision
tree algorithm retrospectively on intracardiac electrograms. Atrial
electrograms were classified into four subgroups ranging from non-
fractionated with high frequency to continuous activity achieving a
correct rate of 81 ± 3%. Electrograms with continuous activity were
detected correctly 100% of the time.

In a proof of concept study, McGillivray et al.84 developed random
forest supervised ML algorithm to locate re-entrant circuits driving
AF using indirect feature measurements, derived from electrograms
in a simulated model. The model correctly identified 95.4% of drivers
in the simulation model.

In a recent study, Alhusseini et al.85 developed an ML algorithm to
classify intracardiac electrical patterns during AF. They used a convo-
luted neural network DL approach to analyse EAM data obtained
from bi-atrial sites using basket catheters. Spatial maps of activation
were created to identify the presence of rotational activation fea-
tures. Algorithm compared well with a team of experts with an ac-
curacy of 97.3% when the experts were in unanimous agreement and
85.1% in more difficult instances. Convoluted neural network accur-
acy in the test set was similar for locations containing termination
sites (95.6%) or otherwise (94.2%).

With ML-guided ablation strategies becoming a possibility for the
near future, electrophysiologists would need real-time access to inte-
grated data from different sources including EAM and 3D cardiac
imaging. Availability of this information with the ability to manipulate
the data for better visualization whilst still operating in a sterile field
would enhance operator dexterity and procedural efficacy during
complex ablations. Holographic visualization of real-time catheter
position, cardiac geometry, EAM, and ablation data in an EP lab has
been shown to be feasible.86 Systems to provide augmented reality
solutions in EP labs are currently being developed for future use87

and would certainly aid in better and efficient work flow.

Figure 5 Left panel: 3D image information from computed tomography and myocardial thickness in a patient with coronary artery disease and ap-
ical scar after myocardial infarction. Middle panel: Image information of late gadolinium enhancement from cardiac magnetic resonance imaging of the
left ventricle with identification of the potentially arrhythmogenic channels within the scar responsible for ventricular re-entrant tachycardia. Right
panel: Example of perfusion information from functional nuclear imaging superimposed on a contrast computed tomography scan in a patient with
arrhythmogenic right ventricular disease. Ao, aorta; CMR, cardiac magnetic resonance; LA, left atrium; LGE, late gadolinium enhancement; LV, left
ventricle; RV, right ventricle.
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Robotics in electrophysiology and
potential role of machine learning

To deliver catheter ablation safely to a high degree of precision
reducing the impact of operator variability in level of training and
technical skill, robotic ablation can be seen as a valuable tool to help
improve access to the same level of accuracy in a reproducible
fashion.

In the field of EP, robotic navigation was introduced 20 years ago.
The two concepts proposed were either a mechanical sheath system
guiding a conventional ablation catheter via computer-enhanced
technique (Hansen & Amigo)88–90 or a magnetic platform
(Stereotaxis).89,91

A more recent contender is another mechanical system, which
uses acoustic energy for both imaging and lesion deployment
(Vytronus). 3D reconstruction using ultrasound imaging is performed
automatically and the robotic system deploys acoustic energy com-
pletely automatically along an operator designed ablation line. First-
in-human experience was reported in a cohort of 52 patients with
paroxysmal AF undergoing pulmonary vein isolation using low inten-
sity collimated ultrasound (LICU). Acute pulmonary vein isolation
was achieved in 77.3% and 94.2% of patients using LICU only and
LICU with enhanced software, respectively, with continued freedom
from atrial arrhythmia recurrence at 12 months.92

A vast body of evidence has been published for the magnetic navi-
gation system (Niobe, Stereotaxis), which in combination with 3D
EAM systems (CARTO or ACUTUS) plus 3D image integration, can
be applied to all arrhythmias.93,94

Feasibility of using an ML algorithm to guide automated electro-
anatomical voltage mapping was previously demonstrated using re-
mote magnetic navigation system. The ML algorithm used learning
from demonstration framework utilizing prior knowledge from ex-
pert mapping procedures and Gaussian process model-based active
learning.95

Non-invasive ML-aided identification of the ablation targets using
3D imaging and personalized heart modelling followed by robotic ab-
lation of these pre-defined locations appears to be an exciting pro-
spect for the future. This approach, if successful, could limit the
number of catheters to a minimum and could be both more time and
cost-efficient.

Is artificial intelligence bridging
the gaps in arrhythmia care?

Recent research into AI-enabled ECG has rekindled interest into ob-
servational-based research. Artificial intelligence-enabled ECG has
been shown to identify patients with persistent AF, left ventricular
systolic dysfunction, and HCM and the list is likely to grow in time
with emerging evidence from ongoing research. This ubiquitous car-
diac investigation has a potential to be a powerful screening tool at
point of care, an innovation that may have a significant impact on
community-based diagnosis of latent cardiac conditions, even more
so in the under privileged parts of the world.

In an acute setting, AI-enabled ECG may aid in the rapid identifica-
tion of life threatening electrolyte imbalance and patients at the

imminent risk of cardiac arrest who may need more intensive moni-
toring. Severe restrictions imposed by the recent COVID-19 pan-
demic resulted in some of the AI-enabled technologies such as QT
interval monitoring using AI-enabled mobile devices, approved by
regulatory authorities to see the light of the day in clinical practice.96

Advancements in sensor technology and wireless communications
with ability to link devices over internet of things have made continu-
ous heart rhythm monitoring feasible, albeit resulting in an exponen-
tial increase in data to be analysed. Review of such data by a skilled
personnel is nearly impossible due to time and resource constraints.
Artificial intelligence solutions can effectively analyse these data in a
time and a resource efficient manner. Artificial intelligence-assisted
near real-time analysis of data from wearable devices has prompted
the contemplation of newer research into novel treatment
strategies such as pill in the pocket anticoagulation following an epi-
sode of AF.97

Machine learning algorithms have shown their utility to further
personalized patient care by improving existing guidelines, which aid
in clinical decision-making regarding anticoagulation in the at-risk
population and patient selection for cardiac device therapy.
Superiority of ML methodologies over traditional rule-based algo-
rithms in handling big data may facilitate data analysis from multiple
data sources to identify the impending risk of life threatening arrhyth-
mia or heart failure episodes in a timely manner.

Artificial intelligence-enabled technological advancements are aid-
ing in arrhythmia focus identification prior to EP procedures. In time,
AI-enabled ECG may better contribute to accurate localization of ac-
cessory pathway or arrhythmia focus. There is a vast potential for the
application of ML methodologies to intracardiac data including EAM,
for better characterization of an arrhythmia to aid in selection of the
ideal ablation strategy.

Limitations and challenges
Machine learning methodologies are not error free, best example
being overfitting, a phenomenon resulting from a disproportionate
number of features in comparison to the amount of data in the train-
ing set.98 As a result of overfitting, the ML algorithm performs very
well on the training set whilst performing poorly on the test set with
poor generalizability. It has to be appreciated that traditional statistic-
al methods may be superior in analysing lesser amount of data whilst
ML offers the ability to handle high computational power to classify
large amounts of data efficiently.

Some of the ML methodologies are opaque, and as a consequence,
it may not possible to verify how an algorithm arrives at its conclu-
sions. This current lack of transparency in methodology, often
referred to as black box nature of ML,99 can affect clinicians’ confi-
dence when applying ML-based technologies in active clinical deci-
sion-making. Defining regulatory guidelines for these self-learning,
non-transparent yet accurate ML methods can be challenging.

Artificial intelligence is a data science, and hence, the importance
of the quality of the data used to train and validate ML algorithms can-
not be overstated.100 There is a greater need for collaboration and
data sharing between research centres to collate large quantities of
robust healthy data to improve the generalizability of ML methodolo-
gies. This highlights yet another challenge relating to data security and
privacy. More transparency about how data are shared and stricter
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.
adherence to data management laws is essential in research involving
ML methodologies.

Increasing use of ML algorithms in clinical decision-making101 is
likely to challenge the concept of personal responsibility and a physi-
cians fiduciary relationship towards patients,102 necessitating regula-
tory guidelines to clarify the distribution of liability in the event of
mishaps involving AI-aided technologies. Cardiologists in the near
term are likely to be keen on AI-aided rather than AI-dictated clinical
decision-making for patient management.

Conclusion

Artificial intelligence has considerable impact on all aspects of patient
management in the field of cardiac EP from the identification of ar-
rhythmia to therapy (invasively and non-invasively). Simple AI techni-
ques have been established in the form of computerized
interpretation of electrocardiography and rule-based algorithms for
cardiac devices. Recent advances with the use of DL techniques are
paving the way for newer research in arrhythmia detection and
arrhythmogenic focus identification. The most recent AI-aided
advancements in cardiac imaging invigorated the attempts to develop
better non-invasive mapping techniques to guide targeted ablation
therapies (invasive and non-invasive). This is a new paradigm shift and
promises personalized ‘state of the art’ precision care for patients
with complex cardiac arrhythmias. The combination of advanced
communication and imaging technologies have helped the rapid
adoption of AI techniques and big data research as evidenced by the
exponential growth of literature on AI-aided research. It may well be
that we are in the midst of an AI-led profound change in patient care.
Cardiologists are invited to this new paradigm shift whilst cautiously
evaluating the fallout. As is well said ‘with great power comes great
responsibility’, it ultimately rests upon the EP community to take re-
sponsibility and engage in collaboration.

Supplementary material

Supplementary material is available at European Heart Journal online.
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71. Koivumäki JT, Korhonen T, Tavi P. Impact of sarcoplasmic reticulum calcium re-
lease on calcium dynamics and action potential morphology in human atrial
myocytes: a computational study. PLoS Comput Biol 2011;7:e1001067.

72. Lascano EC, Said M, Vittone L, Mattiazzi A, Mundi~na-Weilenmann C, Negroni J.
Role of CaMKII in post acidosis arrhythmias: a simulation study using a human
myocyte model. J Mol Cell Cardiol 2013;60:172–183.

73. Saucerman JJ, Healy SN, Belik ME, Puglisi JL, McCulloch A. Proarrhythmic con-
sequences of a KCNQ1 AKAP-binding domain mutation: computational models
of whole cells and heterogeneous tissue. Circ Res 2004;95:1216–1224.

74. Nygren A, Fiset C, Firek L, Clark JW, Lindblad DS, Clark RB, Giles WR.
Mathematical model of an adult human atrial cell: the role of Kþ currents in
repolarization. Circ Res 1998;82:63–81.

75. Aronis KN, Ali R, Trayanova N. The role of personalized atrial modeling in
understanding atrial fibrillation mechanisms and improving treatment. Int J
Cardiol 2019;287:139–147.

76. Aronis KN, Ali RL, Liang JA, Zhou S, Trayanova N. Understanding AF mecha-
nisms through computational modelling and simulations. Arrhythm Electrophysiol
Rev 2019;8:210–219.

77. Trayanova NA. How personalized heart modeling can help treatment of lethal
arrhythmias: a focus on ventricular tachycardia ablation strategies in post-
infarction patients. Wiley Interdiscip Rev Syst Biol Med 2020;12:e1477.

78. Arevalo HJ, Vadakkumpadan F, Guallar E, Jebb A, Malamas P, Wu KC,
Trayanova N. Arrhythmia risk stratification of patients after myocardial infarc-
tion using personalized heart models. Nat Commun 2016;7:11437.

79. Prakosa A, Arevalo HJ, Deng D, Boyle PM, Nikolov PP, Ashikaga H, Blauer JJE,
Ghafoori E, Park CJ, Blake RC 3rd, Han FT, MacLeod RS, Halperin HR, Callans
DJ, Ranjan R, Chrispin J, Nazarian S, Trayanova N. Personalized virtual-heart
technology for guiding the ablation of infarct-related ventricular tachycardia.
Nat Biomed Eng 2018;2:732–740.

80. Zahid S, Cochet H, Boyle PM, Schwarz EL, Whyte KN, Vigmond EJ, Dubois R,
Hocini M, Haı̈ssaguerre M, Jaı̈s P, Trayanova N. Patient-derived models link re-
entrant driver localization in atrial fibrillation to fibrosis spatial pattern.
Cardiovasc Res 2016;110:443–454.

81. Boyle PM, Zghaib T, Zahid S, Ali RL, Deng D, Franceschi WH, Hakim JB, Murphy
MJ, Prakosa A, Zimmerman SL, Ashikaga H, Marine JE, Kolandaivelu A, Nazarian S,
Spragg DD, Calkins H, Trayanova N. Computationally guided personalized tar-
geted ablation of persistent atrial fibrillation. Nat Biomed Eng 2019;3:870–879.

82. Shade JK, Ali RL, Basile D, Popescu D, Akhtar T, Marine JE, Spragg DD, Calkins
H, Trayanova N. Pre-procedure application of machine learning and mechanistic
simulations predicts likelihood of paroxysmal atrial fibrillation recurrence fol-
lowing pulmonary vein isolation. Circ Arrhythm Electrophysiol 2020;13:e008213.

83. Schilling C, Keller M, Scherr D, Oesterlein T, Haı̈ssaguerre M, Schmitt C,
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