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Abstract

While investigating the role of p38 MAPK in regulating melanogenesis, we found that pyridinyl imidazole inhibitors class
compounds as well as the analog compound SB202474, which does not inhibit p38 MAPK, suppressed both a-MSH-induced
melanogenesis and spontaneous melanin synthesis. In this study, we demonstrated that the inhibitory activity of the
pyridinyl imidazoles correlates with inhibition of the canonical Wnt/b-catenin pathway activity. Imidazole-treated cells
showed a reduction in the level of Tcf/Lef target genes involved in the b-catenin signaling network, including ubiquitous
genes such as Axin2, Lef1, and Wisp1 as well as cell lineage-restricted genes such as microphthalmia-associated
transcription factor and dopachrome tautomerase. Although over-expression of the Wnt signaling pathway effector b-
catenin slightly restored the melanogenic program, the lack of complete reversion suggested that the imidazoles interfered
with b-catenin-dependent transcriptional activity rather than with b-catenin expression. Accordingly, we did not observe
any significant change in b-catenin protein expression. The independence of p38 MAPK activity from the repression of Wnt/
b-catenin signaling pathway was confirmed by small interfering RNA knockdown of p38 MAPK expression, which by
contrast, stimulated b-catenin-driven gene expression. Our data demonstrate that the small molecule pyridinyl imidazoles
possess two distinct and opposite mechanisms that modulate b-catenin dependent transcription: a p38 inhibition-
dependent effect that stimulates the Wnt pathway by increasing b-catenin protein expression and an off-target mechanism
that inhibits the pathway by repressing b-catenin protein functionality. The p38-independent effect seems to be dominant
and, at least in B16-F0 cells, results in a strong block of the Wnt/b-catenin signaling pathway.
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Introduction

Melanocytes are specialized cells located at the basal layer of the

epidermis that produce and transfer melanin pigments to

surrounding keratinocytes, thereby contributing to the appearance

of skin color. Within keratinocytes, melanins provide a primary

defense system against UV radiation by preventing cellular injury

and consequential DNA damage that can cause cancer and aging of

the skin [1,2]. Melanin is produced in specialized organelles named

melanosomes that are only observed in pigment cells. In

melanosomes, melanins are synthesized via a well-characterized

enzymatic cascade that is controlled by tyrosinase, tyrosinase-

related protein 1 (TRP1), and dopachrome tautomerase (DCT) also

known as tyrosinase related protein 2 (TRP2), and that leads to the

conversion of tyrosine into melanin pigments [3,4]. In particular,

tyrosinase plays a key role in this process, because it catalyzed the

initial and rate-limiting step of melanogenesis [5]. Melanogenesis is

subject to complex regulatory controls by a large number of intrinsic

and extrinsic factors that may be produced by the environment or

by neighboring cells in the skin. These factors include UV radiation,

melanocyte stimulating hormone (MSH) [6,7], agouti signal protein

(ASP), endothelin 1 (ET1), and a wide variety of growth factors and

cytokines [8,9]. The most important transcription factor in the

regulation of tyrosinase [10,11] and tyrosinase-related proteins

(TYRPs) [12] is the microphthalmia-associated transcription factor

(Mitf). Mitf expression is induced by the activation of the

melanocyte differentiation program. In addition, Mitf is a nuclear

mediator of Wnt signaling during melanocyte differentiation. The

Wnt proteins play multiple roles in the process of neural crest

formation, affecting induction, migration, proliferation and differ-

entiation [13]. Mice deficient in Wnt-1 and Wnt-3 lack pigment

cells, and this phenotype is probably due to the failure of early

neural crest cells to expand properly [14]. In addition to the critical

role that b-catenin plays in prenatal melanocyte biology, we recently

demonstrated a physical interaction between CREB and b-catenin

following PKA/cAMP pathway activation in normal human

melanocytes and B16-F0 mouse melanoma cells that led to a

functional cooperation of b-catenin and CREB on the Mitf

promoter [15]. Another hint of the importance of the link between

Wnt signaling and Mitf in melanocyte development is provided by

evidence showing that b-catenin is not only involved in lymphoid

enhancer factor1 (Lef1)-dependent control of Mitf gene transcrip-

tion but also functionally interacts with the Mitf protein [16].

One of the key factors in b-catenin regulation is the control of its

stability, which in turn influences its translocation into the nucleus

and its binding to T-cell factor (Tcf)/lymphoid enhancer factor
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(Lef) family transcription factors [17,18]. Extensive studies have

demonstrated that the activity of the b-catenin-Tcf/Lef transcrip-

tion complex can be regulated by mechanisms independent of Wnt

glycoproteins secretion and b-catenin nuclear translocation [19].

Many different nuclear proteins interact with the b-catenin-Tcf/

Lef transcriptional complex, resulting in both stimulation and

repression of Wnt target genes [20]. The regulation of Wnt

signaling by protein-protein interaction is tightly regulated by post-

transcriptional modifications such as phosphorylation, ubiquitina-

tion and sumoylation [21]. Consequently, the degree to which b-

catenin-dependent transcription is regulated is dictated by the

availability of b-catenin binding partners, and the phosphorylation

of b-catenin can affect some binding interactions with cofactors

[22–24]. Moreover, the mechanism of switching from differenti-

ated/proliferative to differentiated/invasive melanoma cells phe-

notype involves the fact that b-catenin engages the two closely

related transcriptional factors Lef1 and Tcf4 in a mutually

exclusive fashion [25]. Recent studies have proposed the use of

both natural and synthetic compounds that modulate b-catenin

protein-protein interaction and activity as possible therapeutic

options in cancer [26–31].

Even if Mitf, that is considered the master regulator of

pigmentation, is a target of the Wnt pathway [32], the impact of

Wnt/b-catenin pathway modulation on adult melanogenesis and

pigmentary disorders has not been studied in detail. In cell culture,

specific silencing of b-catenin expression reduces the levels of

melanocyte differentiation-associated markers, such as melanin

synthesis, tyrosinase activity, and protein expression [15]. High

levels of expression of Dickkopf-1 (DKK1), an inhibitor of the

canonical Wnt signaling pathway secreted by fibroblasts in the

dermis of human skin, is responsible for the low level of

pigmentation of the palmoplantar areas of human adults via the

suppression of b-catenin and Mitf [33,34].

Small cell-permeant inhibitors of protean kinases have become

precious reagents with which to investigate the physiological roles

of protein kinases. ATP-competitive antagonists of the p38 stress-

activated protein kinases have been used to assess the physiological

role of p38 MAPK in melanogenesis [35,36]. While investigating

the effects of the pyridinyl imidazole compounds SB202190 and

SB203580, we found that the inhibitory activity of these

compounds on melanin synthesis was independent of p38 MAPK.

In this study, in order to characterize the mechanism of

melanogenic pathway inhibition, we evaluated the impact of

pyridinyl imidazoles on signal transduction pathways mediating

melanogenesis. Data presented demonstrate that the inhibitory

activity of SB202190, SB203580 and of other structurally-related

pyridinyl imidazoles (PI) correlated with inhibition of the canonical

Wnt/b-catenin pathway activity and consequent decrease of Mitf

expression.

Results

Effect of pyridinyl imidazole compounds on
melanogenesis

Small-molecule inhibitors of p38 protein kinases have contrib-

uted greatly to our understanding of MAP kinase biological

signaling. However, some evidence showed that pyridinyl

imidazole compounds unexpectedly may have unexpected targets

in addition to p38 MAPK [37–41]. We recently reported

that SB202474 (4-Ethyl-2(P-Methoxyphenyl)-5-(49Pyridyl)-1H-

Imidazole), a structural analog of p38 inhibitors SB202190 and

SB203580, that is commonly included as a negative control,

caused a significant p38-independent inhibition of pigmentation,

demonstrating that the imidazoline class of compounds acts

through an off-target effect [42]. In this study, in order to

characterize the mechanism of melanogenic pathway inhibition,

we tested the effect of a selection of pyridinyl imidazole derivatives

on both spontaneous and hormonal-stimulated melanogenesis. In

presence of a-MSH, a potent and physiological hormonal

stimulator of pigmentation, B16-F0 murine melanoma cells were

analyzed after 72 h of co-treatment, whereas unstimulated cells

were treated with compounds for 96 h before analysis because

spontaneous melanogenesis is a much longer process. We tested

SB202474, SB202190, SB203580, SB220025, PD169316 and p38

MAPKinase inhibitor III on a-MSH-treated cells and assayed

their dose-dependent (1–20 mM) reduction of melanin synthesis on

(Fig. 1A). Similar results were obtained assaying basal melano-

genesis (Fig. 1B). In the case of MAPKinase inhibitor III, the

20 mM dose was not used due to toxicity incompatible with long-

term experiments (Fig. S1).

Effect of pyridinyl imidazole compounds on melanogenic
proteins expression

The regulation of intracellular cAMP levels contributes

significantly to both basal and stimulated acquisition of melano-

cyte differentiation markers [43]. cAMP-induced melanogenesis

has been reported to be mediated by the activation of CREB.

Transactivation exerted by CREB requires phosphorylation on

Ser133 [44] since only the phosphorylated form of CREB is

capable of interaction with the transcriptional machinery [45].

Once phosphorylated, CREB can up-regulate Mitf, which in turn

transcriptionally activates melanogenic enzymes [12]. Therefore,

we examined the effect of pyridinyl imidazole compounds on Mitf

and on the three melanocyte-specific enzymes, tyrosinase, TRP1

and Dct mRNA levels after 6 and 24 h of treatment. These

experimental time points were chosen because Mitf mRNA

increases to its maximal level around 6 h after the addition of a-

MSH to the cells, and the maximal change in melanogenic

enzyme mRNA abundance is observed at 24 h after stimulation

(Fig. S2). The results clearly demonstrated that all PI compounds

significantly reduced the production of Mitf and tyrosinase mRNA

(Fig. 2A). The transcript levels for both TRP1 and Dct showed

little correlation with changes in Mitf expression at 6 hours and

changes in the abundance of mRNAs seen with these agents were

variable; however, after 24 h of treatment, the analysis of TRP1

and Dct mRNA levels revealed moderate but significant decrease

in transcript abundance of both genes (Fig. 2B). Changes in Mitf

mRNA expression were reflected by changes in the corresponding

protein as determined by western analysis (Fig. 3A). Unlike total

protein levels, the ratio of phosphorylated to non-phosphorylated

Mitf was retained. Altogether, these results indicated that reduced

Mitf gene transcription led to consequent effects on melanogenic

enzyme production and was responsible for the attenuation of

melanogenesis in the presence of PI compounds. As pyrimidinyl

imidazole compounds showed an inhibitory effect on Mitf mRNA

levels, we also measured the generation of cAMP and the

phosphorylation of CREB, two downstream events rapidly

generated by the activation of the melanogenic pathway through

a-MSH-dependent stimulation of melanocortin 1 receptor

(MC1R). The intracellular elevation of cAMP levels was not

decreased by co-treatment with pyridinyl imidazole compounds

(Fig. 3B). By contrast, we did detect a general slight amplification

of intracellular signaling generated by adenylate cyclase activation.

The consequent activation of cAMP-dependent protein kinase

(PKA) produces a rapid increase in phosphorylated CREB

(Ser133) (maximum increase 1.5-fold at 1 h) (Fig. 3C), which then

gradually declines to its basal level after 6 hours. Consistent with

the elevation of intracellular cAMP, treatment of B16-F0 cells with
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pyridinyl imidazole compounds in association with a-MSH did not

reduce CREB phosphorylation (Fig. 3D). In fact, in the presence

of these agents we detected a hyperphosphorylation of CREB that

persisted over the normal duration of a-MSH-induced CREB

activation (data not shown). Therefore, we concluded that the lack

of cAMP-dependent melanogenesis in the presence of pyridinyl

imidazole compounds was a CREB phosphorylation-independent

event. As the hyperphosphorylation of CREB was an unexpected

result, we next evaluated the possibility that CREB hyperpho-

sphorylation is a physiological consequence of Mitf upregulation

failure. We tested this hypothesis by utilizing siRNA against Mitf

to evaluate the effect of its down-regulation on CREB phosphor-

ylation. Inhibiting Mitf expression (Fig. 4A), even in absence of a-

MSH, significantly increased pCREB(Ser-133) levels as measured

by median fluorescence intensity (MFI) (Fig. 4B). To confirm

whether Mitf down-regulation and CREB phosphorylation

occurred concurrently in the same cell populations, we double-

stained the cells with anti-Mitf and anti-pCREB(Ser-133) anti-

bodies after 2 hours of a-MSH stimulation (or not) and then

performed FACS analysis. The level of CREB phosphorylation

was significantly increased in Mitf-siRNA-treated cells (MFI:

[R2+R3] NS-siRNA 114615; Mitf-siRNA 187611; NS-siR-

NA+a-MSH 13269; Mitf-siRNA+a-MSH 16666). Moreover,

the data showed that in all samples the cell fraction presenting low

levels of Mitf expression (region R2) contained high levels of

CREB phosphorylation in comparison with the cell fraction

presenting high levels of Mitf (region R3) (Fig. 4C). According with

western blot analysis (Fig. 4A) the percentage of cells with high

levels of Mitf expression was lower in Mitf-siRNA treated-cells

than in control cells (R3: 2462% in Mitf-siRNA cells vs 7567% in

NS-siRNA cells; 8369% NS-siRNA+a-MSH cells vs 4866%

Mitf-siRNA+ a-MSH cells). These results confirmed the existence

of regulation coordinating Mitf expression and CREB activation.

Overexpression of Mitf relieved pyridinyl imidazole
compound-mediated repression of melanogenesis

To ascertain whether decreased Mitf expression could fully

explain the depigmentation effects of pyridinyl imidazole com-

pounds, we transiently transfected B16-F0 melanoma cells with a

plasmid encoding for Mitf cDNA (pCAAG-mi-S) or a control

construct carrying Mitf cDNA in antisense orientation (pCAAG-

mi-AS). As shown in Figure 5A, forced exogenous expression of

Mitf restores a-MSH-induced stimulation of melanogenesis,

confirming that regulation of Mitf expression plays a key role in

melanogenesis. Similar results were also obtained assaying basal

melanogenesis (data not shown). Thus, we concluded that

regulation of Mitf expression is the mechanism responsible for

melanogenesis inhibition by pyridinyl imidazole compounds.

In contrast to other Mitf isoforms widely expressed in many cell

types, Mitf-M has been established as a specific marker for

melanocyte-lineage cells [46]. Mitf transcription from the M-

specific promoter is up-regulated via separate cis-acting elements of

a network of HMG-containing proteins including Sox10, Pax3,

and Lef1 (Lef1/b-catenin complex). Moreover, Mitf functions as a

non-DNA binding cofactor of Lef1 on its own promoter [47]. To

further investigate the regulation of the M promoter in the

presence of pyridinyl imidazoles, we transfected a plasmid (pMitf-

Luc) containing the Mitf melanocyte-specific promoter sequence

(approximately 1 kb) upstream of the luciferase reporter gene

(pGL3 basic vector). This construct contains proximal consensus

sequences for Sox10, Pax3, Lef1 and CREB. Transient cell

transfections were carried out in B16-F0 and in HeLa cells, which

Figure 1. Effect of pyridinyl imidazoles compounds on melanin synthesis in B16-F0 melanoma cells. (A) Following incubation with a-
MSH (0.1 mM) and increasing concentrations (1, 2.5, 5, 10, 20 mM) of pyridinyl imidazoles for 72 h, the extracellular and intracellular levels of melanin
were determined separately by measuring the absorbance at 405 nm. Standard curves of synthetic melanin were used to extrapolate the absolute
values of melanin content. The total amount of melanin was calculated for each experimental point by adding the extracellular and intracellular
melanin values after normalization for protein content. Total melanin produced at the end-point by control (DMSO-treated cells) and hormone-
stimulated cells (a-MSH plus DMSO-treated cells) is reported for comparison. (B) B16-F0 cells were also treated with pyridinyl imidazoles compounds
for 96 h in absence of a-MSH. Results are expressed as percentage of untreated control samples. The data show the mean6SD of three experiments
performed in duplicate. *P#0.05; #P#0.01 versus control.
doi:10.1371/journal.pone.0033021.g001
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were chosen because of their lack of endogenous Mitf [48], Pax3

and Sox10 proteins [49]. As a consequence, the responsiveness of

pMitf-Luc in HeLa cells is exclusively dependent on CREB and

Lef1 functional activation. Due to the lack of MC1R expression in

HeLa cells, in this system CREB activation was achieved via

forskolin, an adenylate cyclase activator widely used to stimulate

cAMP by an MC1R-independent pathway. All the tested PI

compounds repressed luciferase expression in both unstimulated

(Fig. 5B) and stimulated cells (Fig. 5C). Treatment with 100 nM a-

MSH induced about a 3-fold increase in luciferase activity in

transfected B16-F0 cells, whereas 10 mM forskolin stimulated a

1.5-fold increase in luciferase activity in HeLa transfected cells. As

expected, luciferase activation was higher in melanoma than in

HeLa cells due to the cooperation of melanocyte specific

components (Sox10 and Pax3), cAMP signaling machinery and

the physiological tissue-specific expression of the M-Mitf promot-

er. However, the overall inhibition caused by imidazoles treatment

was similar in both cell lines, suggesting that the interference of

these compounds with cAMP responsiveness of Mitf promoter is

direct to CREB and/or Lef1 transcription factors functionality.

Pyridinyl imidazole compounds down-regulate
melanogenesis via suppression of Wnt/b-catenin
signaling

Previous studies have demonstrated that Wnt/b-catenin signaling

controls melanocyte differentiation primarily through the direct

regulation of Mitf [50]. We recently reported that melanocortin-

stimulated melanocyte differentiation up-regulates b-catenin tran-

scriptional activity and that cooperation between CREB and b-

catenin on the Mitf-M promoter is essential for realization of the

melanogenic program [15]. Given that pyridinyl imidazole

compounds repressed Mitf expression in the absence of any evident

CREB activation defect, we determined whether the repression of

melanogenesis observed in the presence of pyridinyl imidazole

compounds could be mediated by an antagonist effect on Wnt/b-

catenin signaling. In B16-F0 cells transfected with the TopFlash

(Tcf/Lef1) reporter plasmid, a-MSH-induced activity was signifi-

cantly reduced by the presence of pyridinyl imidazole compounds

(Fig. 6A). As the TopFlash plasmid contains a synthetic promoter,

we also tested the expression of genes that are naturally stimulated

by the b-catenin/Tcf/Lef1 complex. The expression of Axin2, Lef1

and Wisp1, which we previously demonstrated to be significantly

stimulated by intracellular cAMP elevation, was dramatically

reduced in the presence of pyridinyl imidazoles (Fig. 6B). Western

blot and immunofluorescence analysis, however, did not show any

decrease in b-catenin protein expression (Fig. 6C and D). These

results indicate that the functional inhibition of b-catenin activity

may be dominant over the small protein increase. Accordingly,

forced over-expression of either wild type or a constitutively active

mutant form of b-catenin that cannot be phosphorylated by CKIa
and GSK3b (Fig. 7A) moderately counteracted pyridinyl imidazole-

dependent repression of melanogenesis and inhibition of pMitf-

luciferase activity (Fig. 7B and C). Similar results were obtained in

absence of hormonal stimulation measuring the basal level of

melanin synthesis (data not shown). This result confirms that the

regulation of b-catenin-dependent transcriptional activity and not

simply b-catenin protein levels makes an important contribution to

melanin synthesis.

A possible intersection of the MAPK pathway with the Wnt/b-

catenin signaling pathway has been suggested in mouse F9

teratocarcinoma cells and HEK293 human embryonic cells

[51,52]. However, a more recent study demonstrated that the

Figure 2. The effect of pyridinyl imidazoles on melanogenic gene expression. (A) Semi-qunatitative real-time PCR was used to measure
Mitf, tyrosinase, TRP1 and TRP2 mRNAs expression in B16-F0 cells after 6 h and (B) 24 h of tratments. The graphs show fold differences in transcript
abundance in untreated cells, and a-MSH-treated cells (0.1 mM) in presence or not of PI compounds (SB202474, SB202190, SB203580, SB220025,
PD169316 20 mM: MAPK Inh III 10 mM). The results shown in (A) and (B) were normalized by the b-actin mRNA levels. The data show the mean6SD of
four experiments performed in triplicate. *P#0.05; #P#0.01 versus control.
doi:10.1371/journal.pone.0033021.g002
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knockdown of p38 does not interfere with Wnt/b-catenin signal

transduction and suggested that small molecule p38 MAPK

inhibitors may have cross-reactivity between these two pathways

[53]. To evaluate the possible impact of p38-reduced activity on b-

catenin–dependent transcription in B16-F0 cells were transiently

transfected with siRNA against p38 or a non-specific control (NS-

siRNA). Samples treated with p38 siRNA showed a moderate

increased expression and functional activation of b-catenin as

demonstrated by western blot analysis, TopFlash luciferase activity

and stimulation of Wnt/b-catenin target genes expression (Fig. 8A,

B and C). These results conclusively show that these small

molecules possess two distinct and additive ways to modulate b-

catenin dependent transcription: a specific p38 inhibition-depen-

dent mechanism stimulating the pathway (by increasing b-catenin

protein expression) and an off-target mechanism inhibiting the

pathway (by repressing b-catenin protein functionality). The p38-

indendent effect seems to be dominant, and at least in B16-F0

cells, the final outcome is a strong block of the Wnt/b-catenin

signaling pathway.

Discussion

Previous studies demonstrated that despite being used widely,

the pyridinyl imidazole class of p38 MAPK inhibitors as well as the

inactive compound SB202474 are involved in many different p38-

independent cellular activities, such as cyclic nucleotide accumu-

lation [54], nucleoside transport [37], aryl hydrocarbon receptor

target gene activation [38], defective autophagic vacuole forma-

tion [38] and CKI kinase activity regulation [39,53]. Compounds

analyzed in the present study were found to be too non-specific to

assess the physiological roles of p38 MAPK in melanocyte

differentiation. Our preliminary results demonstrated that the

p38 inhibitors (SB202190 and SB203580) and the structural

analog inactive compound SB202474 were effective in reducing

melanogenesis suggesting that this effect is likely due to

pharmacological actions of these compounds that are unrelated

to their inhibition of p38 MAPK activity. This hypothesis is also

supported by the observation that p38 MAPK specific siRNA

stimulates melanogenesis [42]. In line with the concept that the

Figure 3. The effect of pyridinyl imidazoles on cAMP/PKA/CREB signal transduction. (A) Expression of Mitf in B16-F0 cells after 6 h of
treatment with a-MSH (0.1 mM) in presence or not of PI compounds (SB202474, SB202190, SB203580, SB220025, PD169316 20 mM: MAPK Inh III
10 mM). Total cellular proteins (30 mg/lane) were subject to 10% SDS-PAGE. Variation of loading was determined by blotting with anti-b-tubulin
antibody. Western blot assays are representative of at least three experiments. (B) Concentration of cAMP of control and treated cells were
determined using the cAMP bioluminescent assay. Following incubation with a-MSH (0.1 mM) in presence or not of PI compounds, the cAMP levels
were measured and compared to the untreated control samples. The results are the mean6SD of three experiments performed in duplicates. (C)
Analysis of the time-dependent effect a-MSH treatment on CREB level of phosphorylation. Cells were stained with anti-phospho-CREB-PE (Ser133),
and then analyzed measuring median fluorescence intensity (MFI) in duplicates. Histogram represents means 6 SD of MFI of three independent
experimets. (D) Comparative analysis of CREB-Ser133 level of phosphorylation in untreated cells, a-MSH-treated cells and a-MSH plus PI coumpond-
treated cells.
doi:10.1371/journal.pone.0033021.g003
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observed inhibition is p38-independent, we observed that the

efficiencies of these compounds in melanogenesis inhibition were

not consistent with published IC50 values against p38 MAP kinase

activity (see table S1). For example, MAPK inhibitor III

(IC50 = 380 nM) and PD169316 (IC50 = 89 nM) at doses of 10

and 5 mM reduced melanin synthesis more strongly than

SB202190 (IC50 = 50 nM) and SB220025 (IC50 = 60 nM).

In this study, all pyridinyl imidazole compounds tested

suppressed melanin synthesis as well as the expression of Mitf,

and consequently TRP1 and Dct, by blocking b-catenin-

dependent transcription. The centrality of Mitf protein regulation

in imidazole-dependent melanogenesis inhibition was also con-

firmed by transfection experiments that clearly demonstrated

restoration of melanin synthesis by forced exogenous Mitf

expression. Four transcription factors are known that regulate

expression of the melanocyte-specific Mitf-M isoforms: Sox10,

Pax3, CREB and Lef1. Data obtained from HeLa cells indicate

that imidazoles act on ubiquitous factors, such as CREB, Lef1, and

related Tcf factors more than on melanocyte-specific proteins such

as Sox10 and Pax3. Moreover, the level of cAMP as well as the

hyperphosphorylation of CREB suggested a compensatory

mechanism trigged by Mitf expression failure, excluding a defect

in the cAMP/PKA/CREB axis responsiveness. Based on these

results, we restricted our investigation to Lef1. Lef1 transcription

factor is responsive to Wnt signaling through its interaction with b-

catenin [18]. Imidazole-treated cells showed a reduction in the

level of Tcf/Lef targets involved in the Wnt signaling network,

including ubiquitous genes such as Axin2, Lef1, and Wisp1 as well

as cell lineage-restricted genes such as Mitf and Dct. Although the

over-expression of the Wnt signaling pathway effector b-catenin

partially recovered the melanogenic program, the lack of complete

reversion suggested that imidazole interferes with b-catenin-

dependent transcriptional activity rather than simply affecting b-

catenin protein expression. Accordingly, we did not observe any

significant decrease of b-catenin protein expression. Therefore, in

agree with results obtained with p38-siRNA experiments a slight

increase of b-catenin level of expression was evident, especially in

presence of PD169316 and MAPK inhibitor III. This result could

Figure 4. Coordinated regulation of Mitf expression and CREB activation. (A) One representative western blot anti-Mitf used to quantify
RNA interference efficiency after 24 h of nucleofection. (B) Analysis of Mitf siRNA interference on CREB level of phosphorylation was analyzed
measuring CREB level of phosphorylation by measuring PE-CREB-Ser133 median fluorescence intensity (MFI) in duplicates. Histogram represents
means6SD of MFI of three independent experimets. (C) Dot plot analysis of one representative experiments of Mitf-siRNA showing higher MFI of PE-
CREB-Ser133 in samples presenting low levels of Mitf expression (region R2) in comparison with the cell fraction presenting high levels of Mitf (region
R3).
doi:10.1371/journal.pone.0033021.g004
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also be explained by a p38-independent-mechanism since

SB202190 and SB203580 also inhibits, at least in vitro, GSK3b
activity [55].

It is becoming increasingly clear that a variety of routes exist

that modulate the Wnt/b-catenin pathway and that b-catenin

signaling regulation may be more complicated than the simplified

view of b-catenin cellular homeostasis. Accordingly, we previously

demonstrated that over-expression of b-catenin slightly activates

Tcf/Lef-mediated transcription in melanocyte lineages [15] but is

not sufficient to prime the melanogenic program [56], suggesting

that even if b-catenin could synergize with other pathways the

exclusive presence of a large amount of nuclear b-catenin is not

sufficient to activate the melanogenic program. Moreover, a large

body of evidence demonstrates that b-catenin binds the two closely

related transcriptional co-activating proteins p300 and CBP in a

mutually exclusive fashion, and as a result, different subsets of

genes can be expressed [57]. Interestingly, the choice of co-

activator can be redirected by small compounds independently of

the level of b-catenin expression [28,58]. Furthermore, inhibition

of the histone acetyltransferase activity of basic transcription

factors has been proposed as a possible mechanism of pyridinyl

imidazoles-dependent suppression of gene transcription induced

by aromatic hydrocarbons [59]. Moreover, as pyrrole-imidazole

polyamides are able to inhibit Lef1-DNA binding and Lef1-

activated transcription both in vitro [60] and in cultured cells [61],

we cannot exclude the possibility that the aromatic rings of the N-

methylpyrrole and N-methylimidazole amino acid contained in

pyridinyl imidazole derivatives suppress the recruitment of Lef1 or

other co-activators on Wnt target gene promoters. Further studies

to elucidate the exact mechanism of action of pyridinyl imidazoles

are currently on-going in our laboratory.

In this paper, we described possible mechanisms by which

pyridinyl imidazole derivates may suppress melanin synthesis by

acting on Wnt signaling through unknown target molecules.

Figure 5. Analysis of the role of Mitf expression in pyridinyl imidazoles-dependent melanogenesis inhibition. (A) To B16-F0 melanoma
cells were transiently transfected with a plasmid encoding for Mitf cDNA (pCAAG-mi-S) or a control construct carrying Mitf cDNA in antisense
orientation (pCAAG-mi-AS). Following incubation with a-MSH (0.1 mM) in presence of pyridinyl imidazoles (SB202474, SB202190, SB203580,
SB220025, PD169316 20 mM: MAPK Inh III 10 mM) for 72 h, or not, the extracellular and intracellular levels of melanin were determined as described
above. The data show the mean6SD of three experiments performed in duplicate. (B–C) Analysis of luciferase activity of the Mitf melanocyte-specific
promoter (M promoter) in the presence of pyridinyl imidazoles in B16-F0 and HeLa cells. Twenty-four hours after transient transfection cells were
treated with PI compounds in presence (C) or not (B) of a-MSH (0.1 mM) (B16-F0) or forskolin (1 mM) (HeLa). Luciferase activity was assayed after 6 h of
treatment. Firefly luciferase activity, normalized to the corrisponding renilla luciferase activity was expressed as fold change compared with control
cells. Values represent mean 6 SD of three representative experiments performed in duplicate.
doi:10.1371/journal.pone.0033021.g005
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Nevertheless, it is evident that the PI-dependent interference with

Wnt signaling leads to low level of Mitf expression. However, is it

also important to consider that the decreased Lef1 expression

could trigger a negative loop reinforcing the inhibition of b-

catenin-dependent genes transcription. Importantly, attenuation of

Wnt signaling and decreased level of melanin synthesis were also

confirmed in normal human epidermal melanocyte cell cultures

(data not shown) supporting a possible topical application to treat

disorders of hyperpigmentation. A prerequisite of further explor-

ing the possibility of using PI compounds as skin-whitening agents

is the knowledge of any additional effects. For example, we

observed that while SB202474, SB202190, SB203580, PD169319

and MAPK inhibitor III all caused a strong p38-independent

retention of melanin in the intracellular compartment, SB220025

did not alter melanin secretion (data not shown).

From the therapeutic point of view, there is an increasing

interest in small molecules capable of regulating the Wnt signaling

cascade as this pathway is involved in cancer cell proliferation and

Figure 6. Regulation of Wnt/b-catenin signaling by pyridinyl imidazoles. (A) Inhibition of the b-catenin/Tcf/Lef1-responsive luciferase
reporter gene by PI compounds. The pTK-Renilla was inserted as an internal control. Twenty-four hours after transfection, cells were treated with PI
compounds (SB202474, SB202190, SB203580, SB220025, PD169316 20 mM: MAPK Inh III 10 mM) for 6 h. Firefly luciferase activity, normalized to the
corresponding renilla luciferase activity was expressed as fold decrease compared with control cells. Values represent mean 6 SD of three
representative experiments performed in duplicate. (B) Semi-qunatitative real-time PCR was used to measure Wnt/b-catenin-target genes Axin2, Lef1
and Wisp1 mRNAs expression in B16-F0 cells after 6 h of treatments with PI compounds. The graphs show fold differences in transcript abundance in
comparison with untreated cells. Results shown were normalized by the b-actin mRNA levels. The data show the mean6SD of three experiments
performed in triplicate. *P#0.05; #P#0.01 versus control. (C) Expression of b-catenin in B16-F0 cells after 6 h of treatment with PI compounds
(SB202474, SB202190, SB203580, SB220025, PD169316 20 mM: MAPK Inh III 10 mM). Total cellular proteins (30 mg/lane) were subject to 10% SDS-
PAGE. Variation of loading was determined by blotting with anti-b-tubulin antibody. Western blot assays are representative of at least three
experiments. (D) Immunofluorescence analysis of b-catenin. B16-F0 cells were grown on glass coverslips and then treated with SB202474, PD169316
(20 mM) or DMSO respectively. Six hours later, cells were fixed and analyzed by immunofluorescence labelling with a mouse monoclonal anti-b-
catenin followed by Alexa-Fluor-546-conjugated goat anti-mouse IgG antibody. Nuclei were labelled with bisbenzidine (DAPI). Original magnification
206.
doi:10.1371/journal.pone.0033021.g006
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migration. In addition, reduction of Mitf activity sensitizes

melanoma, a highly chemotherapy-resistant neoplasm, to chemo-

therapeutic agents, and it has been suggested that targeting Mitf in

combination with B-RAF or cyclin dependent kinases inhibitors

may offer a rational therapeutic avenue into melanoma [62].

Thus, a clinical evaluation of pyridinyl imidazole compounds

targeting Wnt/b-catenin in the absence of p38 MAPK cross-

reactivity (such as the case of SB202474) could be of extreme

interest.

Materials and Methods

Cell culture transfection and reagents
The B16-F0 murine melanoma and HeLa cells were purchased

from ATCC (American Type Culture Collection) and were

maintained in Dulbecco’s modified Eagle’s medium (DMEM)+7%

(B16-F0) or 10% (HeLa) heat-inactivated fetal bovine serum (FBS)

and antibiotics (Gibco, Life Technologies Italia, Milan, Italy). For

the induction studies, cells were plated for 24 hours, and then the

medium was removed and the cells cultured in DMEM with 2%

heat-inactivated FBS and antibiotics with or without pharmaco-

logical treatment in the absence of phenol red. SB202190,

SB203580, a-MSH, DMSO and L-DOPA were purchased from

Sigma (Sigma Aldrich, Milan, Italy), while MAPK inhibitor III,

PD169316, SB202474, and SB220025 were purchased from

Calbiochem (Merck, Milan, Italy). For transient transfection

experiments cells, 1.56106, were transfected with Amaxa

Nucleofector System using Amaxa Nucleofector Cell Line Kit R

(program P-031). Cells were transfected by nucleofection in a

single cuvette and plated immediately to ensure identical

transfection efficiency. For siRNA experiments, we transferred

200 pmols of either p38 specificsiRNA, Mitf specific siRNA or

Figure 7. The effect of forced b-catenin expression on pyridinyl imidazoles-dependent melanogenesis inhibition. Western blot
analysis of b-catenin in whole-cell lysates prepared from B16-F0 cells transfected with pCS2-b-cat-wt, pCS2-b-cat-mut plasmids or pCS2 empty vector.
Total cellular proteins (30 mg/lane) were subject to 10% SDS-PAGE. Variation of loading was determined by blotting with anti-b-tubulin antibody.
Western blot assays are representative of at least three experiments. (B) Twenty-four hours after transfection cells were treated with a-MSH (0.1 mM)
in presence of pyridinyl imidazoles (SB202474, SB202190, SB203580, SB220025, PD169316 20 mM: MAPK Inh III 10 mM) for 72 h, or not, and then the
extracellular and intracellular levels of melanin were determined as described above. The data show the mean6SD of three independent experiments
performed in duplicate. (C) B16-F0 cells were cotrasfected with lucerase reporter plasmids TopFlash and pCS2-b-cat-wt, pCS2-b-cat-mut plasmids. The
pTK-Renilla was inserted as an internal control for each experimental sample as a control for transfection efficiency. Firefly luciferase activity,
normalized to the renilla luciferase activity was expressed as fold decrease compared with control cells. Values represent mean6SD of three
representative experiments performed in duplicate.
doi:10.1371/journal.pone.0033021.g007
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scrambled siRNA as a negative control. Twenty-four hours later,

cells were treated with compounds or DMSO. For Mitf or b-

catenin (wild-type or mutated) exogenous over-expression cells,

1.56106, were transfected with 5 mg of the corresponding

construct using Amaxa Nucleofector System. For luciferase

experiments cells, 1.56106, were transfected with 1 mg of p-Mitf-

Luc containing the Mitf melanocyte-specific promoter sequence

upstream of the luciferase reporter gene or pTopFlash luciferase

reporter plasmids containing three copies of the optimal Tcf/Lef-

binding site (AAGATCAAAGGGGGT) upstream of a TK

minimal promoter. A pTK-Renilla–expressing vector (Promega,

Milan, Italy) was included as an internal control to avoid non-

specific effects on luciferase expression treatment and to normalize

data. After 24 hours, cells were treated with compounds (or not)

and 6 hours later cells were lyzed and resuspended in reporter lysis

buffer. Firefly and Renilla luciferase activity were determined with

Dual-Luciferase reporter assay (Promega, Milan, Italy) from

duplicate plates. The results represent data of duplicates from

three independent experiments.

Cell viability analysis
Cells were plated in a 24-well plate at a density of 26104 cells/

cm2 and left to grow overnight. Cells were treated with increasing

concentrations of PI compounds in DMEM containing 2% FBS and

antibiotics in quadruplicate, and were left to grow for 72 h before

being incubated with 3-(4,5 dimethylthiazol)-2,5-diphenyl tetrazolium

bromide (MTT) for 60 min. After this time, the medium was removed

and the resulting crystals were solubilized in DMSO. The absorbance

was measured at 570 nm with a reference wavelength of 650 nm.

Absorbance readings were subtracted from the value of blank wells,

and the reduction in cell growth was calculated as a percentage of

control absorbance in the absence of any drug (DMSO).

Figure 8. The effect of p38 silencing on Wnt/b-catenin pathway signal transduction. (A) One representative western blot used to quantify
p38-siRNA interference efficiency and b-catenin 24 h of transfection. Total cellular proteins (20 mg/lane) were subject to 10% SDS-PAGE. Variation of
loading was determined by blotting with anti-b-tubulin antibody. Western blot assays are representative of at least three experiments. (B) Luciferase
activity of TopFlash reporter plasmid in cells transfected with p38-siRNA and NS-siRNA. Luciferase activity was assayed after 24 h of transfection.
Firefly luciferase activity, normalized to the corrisponding renilla luciferase activity was expressed as fold change compared with control cells. Values
represent mean6SD of three representative experiments performed in duplicate. (C) Semi-qunatitative real-time PCR was used to measure Wnt/b-
catenin-target genes Axin2, Lef1 and Wisp1 mRNAs expression in B16-F0 cells after 24 h of transfection with p38-siRNA. The graphs show fold
differences in transcript abundance in comparison with non-specific siRNA-treated cells. Results shown were normalized by the b-actin mRNA levels.
The data show the mean6SD of three experiments performed in triplicate. *P#0.05 versus control.
doi:10.1371/journal.pone.0033021.g008

Pyridinyl Imidazoles Inhibit Wnt/b-Catenin Pathway

PLoS ONE | www.plosone.org 10 March 2012 | Volume 7 | Issue 3 | e33021



Melanin content determination
Extracellular melanin release was measured as previously

described [42]. Briefly, 200 ml of the media was removed and the

absorbance was measured spectrophotometrically at 405 nm using a

plate reader to measure extracellular melanin. After extraction of the

protein fraction, cell pellets were dissolved in 200 ml of 1 M NaOH

for 2 h at 60uC and the absorbance was measured spectrophoto-

metrically at 405 nm using a plate reader. Standard curves using

synthetic melanin (0–250 mg/ml) were prepared for each experi-

ment. Melanin production was calculated by normalizing the total

melanin values with protein content (mg melanin/mg protein).

Western Blot analysis
Proteins extracts were prepared with RIPA buffer (Tris-buffered

saline, 0.5% deoxycholate, 0.1% SDS, 1% Triton X-100)

containing Complete Mini protease inhibitor cocktail (Roche

Diagnostic, Milan, Italy). Aliquots of cell lysates were separated by

electrophoresis on SDS-polyacrylamide gels, transferred to

nitrocellulose membranes and then treated with the appropriate

antibodies: anti-b-catenin 1:3000, anti-Mitf 1:500, anti-p38 1:500

(Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) and anti-

tubulin 1:5000 (Sigma Aldrich, Milan, Italy). Horseradish

peroxidase-conjugated goat anti-mouse and bovine anti-goat

immunoglobulin (Santa Cruz Biotechnology Inc., Santa Cruz,

CA, USA) were used at 1:5,000 and 1:3,000, respectively.

Antibody complexes were detected by chemiluminescence (ECL;

Amersham Life Science, Arlington Heights, IL, USA). Western

blot assays were representative of at least three experiments.

Densitometric analysis was performed using a GS-800 Calibrated

Image Densitometer (BioRad Laboratoires, Milan, Italy).

Quantitative RT-PCR
Total RNA was extracted using an RNeasy mini kit (Qiagen,

Inc., Valencia, CA, USA). cDNA was synthesized from 1 mg of

total RNA using the Improm IITM Reverse Transcription System

(Promega, Milan, Italy). First-strand cDNA (1 ml) was amplified in

a reaction mixture (15 ml) containing BioRad Master SYBR Green

and 25 pmol of forward and reverse primers. All samples were run

in triplicate, and the average was then used to calculate the Ct

value of each particular sample. The median DCt value, calculated

as the differences between the Ct value for the gene of interest and

that for the endogenous control b-actin, was used to calculate

DDCt =DCt treated sample2DCt control sample, and this, in turn, was

used to calculate the fold difference of the genes of interest

between treated and control samples: Normalized expression

ratio = 22(DDCt). Values represent the means6SD of normalized

fold-difference (increase or decrease). Data were analyzed with

iQ5 Optical System Software (BioRad Laboratories). Sequences of

oligonucleotide primers indicated with an F correspond to sense

strands and with an R correspond to anti-sense. In preliminary

tests the amplification efficiency of all primer pair was showed to

be $99.5%. Reverse primers can be found in Table S2.

Flow cytometry
Cells were fixed and permeabilized with Cytofix/CitopermTM.

Cells were stained with anti-Mitf (Santa Cruz Biotechology Inc.,

Santa Cruz, CA, USA) primary antibody followed by an incubation

step with goat-anti-mouse-Alexa488 secondary antibody; anti-

CREB-PE-conjugated (pSer133) antibody (BD Bioscience, Erem-

bodegem, Belgium) and then analyzed by flow cytometry using a

FACSCalibur. Experiments included the following negative con-

trols (no antibody) to confirm staining specificity for single color

analysis with anti-CREB-PE-conjugated (pSer133) antibody; goat-

anti-mouse-Alexa488 and goat-anti-mouse-Alexa488 plus CREB-

PE-conjugated (pSer133) for in double staining experiments. Data

from 16104 cells were acquired from each sample. Median

Fluorescence Intensity (MFI) was evaluated on a linear scale.

Immunofluorescence
For indirect immunofluorescence experiments, cells were grown

on coverslips and after treatment were fixed with 3% paraformal-

dehyde in PBS for 15 min at room temperature and then

permeabilized with 0.05% Trition X-100 in PBS for 5 min. Cells

were rinsed in PBS and incubated for 2 h with mouse anti-b-

catenin (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA)

primary antibody (1:1000 in PBS). Cells were rinsed three times

with PBS and incubated for 60 min with an Alexa-Fluor-488-

conjugated goat anti-mouse IgG (1:800 in PBS) (Molecular Probe).

To confirm staining specificy each experiment included a negative

control incubated exclusively with Alexa-Fluor-488-conjugated

goat anti-mouse IgG in absence of no primary antibody. Nuclei

were stained with DAPI (Sigma, Milan, Italy). Images were

captured using a CCD camera (Zeiss, Oberkochen, Germany).

Statistical analysis
Student’s t-test was used to assess statistical significance with

thresholds of * p#0.05 and # p#0.01.

Supporting Information

Figure S1 Effect of pyridinyl imidazoles on cell viabil-
ity. Cells were left to grow for 72 in presence of increasing

concentrations of pyridinyl imidazoles compounds before being

incubated with 3-(4,5 dimethylthiazol)-2,5-diphenyl tetrazolium

bromide (MTT) for 2 hrs. The resulting crystals were solubilized

in DMSO. The absorbance was measured at 570 nm with a

reference wavelength of 650 nm. Values reported as O.D.

decrease over untreated control represent the means6SD of two

experiments performed in triplicate.

(TIF)

Figure S2 Time-dependent a-MSH-dependent stimula-
tion of Mitf and melanogenic enzymes. Semi-quantitative

real-time-PCR to measure the kinetics of Mitf, tyrosinase, TRP1

and DCT mRNA increase following a-MSH treatment was

performed by using the real-time detection system. The graphs

show fold differences in transcripts abundance in a-MSH-

stimulated cells compared with untreated cells. The results shown

were normalized by the b-actin mRNA levels. The data show the

mean6SD of four experiments performed in triplicate.

(TIF)

Table S1 Pyridinyl Imidazole Compounds. All PI included

in the study are listed with the corresponding chemical name and IC50.

(DOCX)

Table S2 Sequences real-time PCR oligonucleotide
primers list.
(DOCX)
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