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Abstract

Background

Diarrhea is one of the leading causes of childhood morbidity and mortality in lower- and mid-

dle-income countries. In such settings, access to laboratory diagnostics are often limited,

and decisions for use of antimicrobials often empiric. Clinical predictors are a potential non-

laboratory method to more accurately assess diarrheal etiology, the knowledge of which

could improve management of pediatric diarrhea.

Methods

We used clinical and quantitative molecular etiologic data from the Global Enteric Multicen-

ter Study (GEMS), a prospective, case-control study, to develop predictive models for the

etiology of diarrhea. Using random forests, we screened the available variables and then

assessed the performance of predictions from random forest regression models and logistic

regression models using 5-fold cross-validation.

Results

We identified 1049 cases where a virus was the only etiology, and developed predictive

models against 2317 cases where the etiology was known but non-viral (bacterial, proto-

zoal, or mixed). Variables predictive of a viral etiology included lower age, a dry and cold

season, increased height-for-age z-score (HAZ), lack of bloody diarrhea, and presence of

vomiting. Cross-validation suggests an AUC of 0.825 can be achieved with a parsimonious
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model of 5 variables, achieving a specificity of 0.85, a sensitivity of 0.59, a NPV of 0.82 and

a PPV of 0.64.

Conclusion

Predictors of the etiology of pediatric diarrhea can be used by providers in low-resource set-

tings to inform clinical decision-making. The use of non-laboratory methods to diagnose

viral causes of diarrhea could be a step towards reducing inappropriate antibiotic prescrip-

tion worldwide.

Author summary

Diarrhea is one of the leading causes of death in young children worldwide. In low-

resource settings, laboratory testing is not available or too expensive, and the decision to

prescribe antibiotics is often made without testing. Using clinical information to predict

which cases are caused by viruses, and thus wouldn’t need antibiotics, would help to

improve appropriate use of antibiotics. We used data from a large study of childhood diar-

rhea, paired with advanced statistical methods including machine learning, to come up

with the top clinical factors that could predict a viral cause of diarrhea. We compared

1049 cases where a virus was the only cause, with 2317 cases where the cause was known

but not a virus. We found that a lower age, dry and cold season, nutritional status defined

by increased height, lack of blood diarrhea, and vomiting, were the clinical factors most

predictive of whether the diarrhea was caused by a virus. We found that, using just those 5

factors, we were able to predict a viral cause with good accuracy. Our findings can be used

by doctors to guide the appropriate use of antibiotics for diarrhea in children.

Introduction

Diarrhea is one of the leading causes of childhood morbidity and mortality in lower- and mid-

dle-income countries (LMICs) and is among the most common reasons for admission into a

health facility [1]. Treatment of diarrhea is commonly empiric, with antibiotic prescription

mostly based on clinical suspicion of bacterial etiology, such as in cases of bloody diarrhea. In

resource-limited settings, laboratory etiological diagnosis is rarely made due to cost constraints

or availability. Despite Integrated Management of Childhood Illness (IMCI) guidelines recom-

mending use of antibiotics only for cases of bloody diarrhea and suspected cholera, studies

have demonstrated that over 42% of young children with non-bloody diarrhea receive antibi-

otics, with the rate of use varying widely by country and setting [2]. This inappropriate use of

antimicrobials can lead to toxicity, increased costs of care, and development of resistance [3].

Additionally, previous studies predicting etiology of diarrheal illness have been limited by the

low number of participants, a lack of controls without diarrhea, single center design, and insuf-

ficient stool testing [14–17]. Thus, methods providing clinical decision support that accurately

predict diarrhea etiology and reduce reliance on laboratory testing are needed. Recently, tools

for decision making and clinical prediction have been bolstered by the accessibility of machine

learning methods such as random forests, neural networks, and support vector machines [4].

The availability of molecular diagnostics in recent years has enabled accurate determination

of etiology for pediatric diarrhea. In several large studies in LMICs, this has been used for esti-

mating the population-based burden of various diarrheal pathogens [5–7]. While etiologies of
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diarrhea are now better-understood, there remains a gap in knowledge regarding clinical pre-

dictors for improving clinical decision making in the setting of infectious diarrhea. In this

study, we use data from the Global Enteric Multicenter Study (GEMS) [5] to examine clinical

diagnostic predictors of diarrhea etiology.

Methods

Study design and settings

GEMS is a prospective, case-control study that took place from 2007–2011 in 7 countries in

Africa and South Asia (S1 Fig). There were 9439 children with moderate-to-severe diarrhea

(MSD) enrolled at local health care centers along with 1 to 3 matched non-diarrheal controls.

An acute episode of diarrhea was defined as MSD if it had onset within the past 7 days and ful-

filled at least one of the following criteria: sunken eyes, more than normal; loss of skin turgor;

intravenous hydration administered or prescribed; visible blood in stool or parental report; or

admission to hospital with diarrhea or dysentery. At enrollment, a stool sample was taken

from each child to identify enteropathogens along with clinical information, including demo-

graphic, anthropometric, and clinical history. Methods for GEMS have been described in

detail previously [5, 8, 9]. Because pathogen nucleic acids are frequently detected by PCR in

children without diarrhea, we used the quantitative real-time PCR-based (qPCR) majority

attribution models developed by Liu et al [6] to assign etiology of diarrhea. We derived site-

and age- specific attributable fractions (AFe) for each episode, and used a cut-off of greater

than 0.5 to indicate attribution of a pathogen to a particular episode. We defined viral etiology

as majority attribution of the diarrhea episode by viral pathogen(s) only (i.e. excluding any co-

infections with bacteria or protozoa). We defined other known etiologies as having a majority

attribution of diarrhea episode by at least one other non-viral pathogen. Additionally, we

defined a bacterial etiology as attribution of the diarrhea episode by any bacterial pathogen,

including cases in which more than one pathogen was attributed (i.e. bacteria and virus, or

bacteria and protozoa, or multiple bacteria). For patients with unknown etiologies, we pre-

sume there is an infectious cause to their diarrhea that we are not detecting, and excluded

these cases from our predictive model.

We used the patient’s clinical symptoms data, epidemiologic, and anthropometric data at

presentation as potential predictors of etiology. We used standard guidelines from the trans-

parent reporting of a multivariable prediction model for individual diagnosis (TRIPOD) to

develop our prediction model (S1 Checklist) [10]. We focused on the prediction of a viral etiol-

ogy of acute diarrhea versus all other known etiologies as knowing this could offer support for

providers to withhold antibiotics. We additionally looked at the prediction of any bacterial

pathogen as a way to determine if follow-up testing, such as stool culture for antimicrobial

agent susceptibilities, may be helpful in ambiguous cases.

Data processing

We performed all data processing and analyses using R version 3.6.2 [11]. Starting with over

1000 variables collected, we excluded all variables which would not be available at the time of

presentation. Questions which had very few responses in certain categories (<10) were re-

grouped into an “other” category as appropriate. 3 patients responded they “Don’t Know”

when asked if they had any blood in their stool since the illness began and were removed from

the dataset. There were 43 patients with other forms of missing data which were additionally

removed for a total of 46 patients removed out of 3412. We maximized the utility of the model-

ing process by removing highly collinear and similar variables (e.g. weight-, BMI, and BMI-

for-age z-scores). These steps left 156 potential predictor variables for analysis.
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In addition to the information from the GEMS survey, we developed a season variable

using temperature and rain information from NOAA weather stations close to the health cen-

ters and with data during the GEMS time period [12]. We defined a rainy season day as a day

having a center-aligned 1-month moving rain average greater than the overall rain average

within the study period. We defined a hot season day as a day having a center-aligned

1-month moving temperature average greater than the overall temperature average within the

study period. The season variable was an indicator for a rainy/hot day, rainy/cold day, dry/

cold day, or dry/hot day.

Statistical modeling and assessment

We used random forests as a screening step to obtain an order of variable importance

toward the goal of building a parsimonious model. The random forest method uses an

ensemble approach by generating multiple decision trees (1000 trees, square root of the

number of predictors considered by each tree when splitting a node (12)) and assesses vari-

able importance by determining a reduction in mean squared prediction error for each vari-

able on the “out-of-bag” samples (or testing samples) created while bootstrapping the data.

We used random forests for variable selection in order to determine if there might be some

complexity (non-linearity or interactions) in the predictors that could not be explained by

an additive model. During this step, categorical variables are treated as a single variable with

an indicator for each categorical level. We additionally test for robustness of this variable

importance measure by varying the numbers of trees and predictors considered per node

split.

We used 5-fold cross-validation to attain an estimate of generalizable model performance.

For each cross-validation iteration (100 total), we re-fit the random forest regression

described above to get an order of variable importance for each training set to determine

which variables we used to fit separate logistic regression, random forest, gradient boosted

regression trees and vanilla neural network models with various predictor subset sizes. Sub-

sets examined were sizes 1 through 10, 15, 20, 30, 40, and 50. Tree based models used 1000

trees, and we chose to use twice as many nodes as the number of predictors in the neural net-

work’s hidden layer. In each iteration of cross-validation we made predictions on the test set

and obtained measures of performance: the receiver operating characteristic (ROC) curve,

and area under the ROC curve (AUC), also known as the C-statistic, along with AUC 95%

confidence intervals [13]. For a diagnostic threshold balancing the relative costs of false posi-

tives and false negatives, we calculated the positive predictive value (PPV) and the negative

predictive value (NPV) as functions of the derived sensitivity and specificity of the prediction,

using the prevalence of the corresponding etiology in GEMS. Finally, from the cross-valida-

tion, we determined how calibrated the different size models were by comparing each pre-

dicted probability of viral (x-axis) with the observed proportion of viral cases within 0.05 plus

or minus the predicted probability (y-axis) and report the intercept (Steyerberg’s A) and

slope (Steyerberg’s B) of a fitted simple linear regression model [27]. In order to assess the

robustness of the model and variable importance, we observe site-specific variable impor-

tance, look at site- and continent-specific cross-validated AUCs, and perform a leave-one-

site-out pseudo external-validation.

Ethics approval

The GEMS study protocol was approved by ethics committees at the University of Maryland,

Baltimore and at each field site. Parents or caregivers of participants provided written

informed consent, and a witnessed consent was obtained for illiterate parents or caretakers.
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Results

Of the 9439 patients in the GEMS study with MSD, 3366 are included in this analysis (S2 Fig),

1049 had a viral etiology and 2069 had a bacterial etiology (Table 1).

Using random forest screening, we found that age, season, bloody diarrhea, height-for-age

z-score (HAZ), and vomiting were the five variables most predictive of a viral etiology

(Table 2), and that top predictive variables for bacterial etiology were similar (S1 Table). The

top five predictors did not change order with the number of trees increased or the number of

predictors per split set at 6, 16, or 25. All predictors considered are shown in S2 Table (survey

variable names available at https://github.com/LeungLab/GEMSClinicalPredictors/).

When we performed 5-fold cross-validated logistic regression and random forest models,

the average AUC across 100 random iterations of cross-validation ranged from 0.71 (1 vari-

able) to 0.84 (8 or more variables) for prediction of viral etiology (Fig 1) with similar results for

bacterial etiology (S3 Fig). Although the neural network outperforms the logistic regression by

about 0.5% AUC at a smaller number of variables, we determined the gradient boost regres-

sion trees and neural network models did not improve discrimination beyond their simpler

counterparts enough to pursue them further in this context (S4 Fig). Our method for assessing

calibration showed that the logistic regression model was better calibrated than the random

forest model with more than 1 variable included and that models between 3 and 15 variables

Table 1. Number of cases attributed to each pathogen with an attributable fraction above 0.5.

Cases

Pathogen

Adenovirus 40/41 222

Aeromonas 59

Astrovirus 111

C. jejuni/C. coli 85

Cryptosporidium 301

Cyclospora cayetanensis 16

Entamoeba histolytica 29

Helicobacter pylori 131

Isospora 3

Norovirus GII 70

Rotavirus 967

Salmonella 67

Sapovirus 75

Shigella/EIEC 1376

Vibrio cholerae 152

EAEC 1

ST-ETEC (STh) 407

Typical EPEC (bfpA) 43

Occurrences

Protozoal 218

Viral 1049

Viral-Protozoal 30

Bacterial 1664

Bacterial-Protozoal 92

Bacterial-Viral 307

Bacterial-Viral-Protozoal 6

https://doi.org/10.1371/journal.pntd.0008677.t001
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were similarly well-calibrated (S3 Table). We demonstrate the direction and magnitude of the

effect of the top 10 variables from variable importance screening by fitting a logistic regression

on the entire data set (Table 3) and by generating partial dependency plots from the random

forest regression (S5 Fig). We additionally include the logistic regression coefficients for the

top 5 variable model in the supplement (S4 Table) as well as compare the distribution of

Table 2. Rank of variable importance for prediction of viral etiology by reduction in residual sum of squares

(RSS) using random forest regression.

Variable Name RSS Reduction

Age 51.6

Season 29

Blood in stool 26.1

HAZ 24.7

Vomiting 23

Breastfed 22

MUAC 20.9

Resp. Rate 18.5

Wealth Index 18.3

Temperature 16.7

https://doi.org/10.1371/journal.pntd.0008677.t002

Fig 1. Average AUC and 95% CIs from cross-validation (100 iterations) for both a logistic regression (LR) and random forest (RF) as the number of

variables in the model increases and inset shows zoomed in graphs of 1 through 10 variables.

https://doi.org/10.1371/journal.pntd.0008677.g001
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predictions for our 3366 cases versus the 1892 cases with qPCR data but no etiology defined

(S6 Fig). Lower age, a higher HAZ, more vomiting, no blood in the stool, and a dry/cold sea-

son, were associated with viral etiology. As expected, the opposite associations were found for

bacterial etiology (S5 Table). We found similar results in a sensitivity analysis with rotavirus

removed (for generalization of these results to locations with high rotavirus vaccine coverage),

though some effect magnitudes were reduced (S6 Table). Given the similarity of the results

between the logistic regression models and random forest regression models, we conducted all

successive analyses using the simpler logistic regression. To estimate the achievable sensitivity

and specificity by each model at various predictor sizes, we generated ROC curves from cross-

validation, and found that using a parsimonious model of 5 variables, we achieved a specificity

of 0.85 and a sensitivity of 0.59 for prediction of viral etiology (Fig 2). For predicting a bacterial

cause, our models achieved a sensitivity of 0.85 and a specificity of 0.63 (S7 Fig). Using the

prevalence of viral etiology in GEMS, our prediction model had a NPV of 0.82 and a PPV of

0.64.

When we examined the predictors associated with viral etiology for each of the 7 sites in

GEMS by filtering the entire dataset by site, we found all had a similar order of variable impor-

tance with some minor differences (Table 4). We then looked at the predictions filtered for

specific countries and specific continents within each cross-validation iteration’s test set to see

how the model performs on these subgroups. We found that at Asian sites the predictions had

an AUC almost 0.07 better than African sites on average. Looking at individual sites, in Kenya

the model predictions had the worst average AUC while Bangladesh had the best average

AUC. Across all sites, the AUC of a 5-variable model was similar to a 10-variable model with

less than 0.02 lower average AUC.

Given the logistic regression’s superior performance to random forest regression using 5

and 10 variables and in calibration, we performed validation by testing the logistic regression

on each site individually following training on the other sites in the same continent, and found

performance metrics similar to the cross-validation results, with AUC ranging from 0.65 to

Table 3. The odds ratios, 95% confidence interval, and p-value from a logistic regression model for the viral only

outcome.

Variable Name Odds Ratios (95% CI) P-value

Intercept 1.975 (0.053–72.894) 0.7117

Age (mo.) 0.956 (0.944–0.967) <0.0001

Season

Dry/Cold Reference

Rainy/Cold 0.197 (0.145–0.268) <0.0001

Dry/Hot 0.304 (0.244–0.379) <0.0001

Rainy/Hot 0.338 (0.268–0.426) <0.0001

Blood in stool 0.129 (0.096–0.173) <0.0001

HAZ 1.168 (1.081–1.262) 0.0001

Vomiting 2.383 (1.995–2.847) <0.0001

Breastfed

None Reference

Partially 2.359 (1.827–3.046) <0.0001

Exclusively 2.400 (1.554–3.705) 0.0001

MUAC 1.031 (0.963–1.105) 0.3773

Resp. Rate (per min.) 0.990 (0.979–1.000) 0.0541

Wealth Index 1.066 (0.976–1.164) 0.1559

Temperature (˚C) 0.988 (0.897–1.088) 0.8022

https://doi.org/10.1371/journal.pntd.0008677.t003
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0.92 across the seven sites. As with the internal cross-validation, we found 5-variable models to

have similar performance to 10-variable models. We found similar results for the bacterial eti-

ology prediction (S7 Table).

Discussion

Our use of data from GEMS, which involved 3366 diarrheal episodes with known etiology in 7

countries and with over 150 clinically-relevant parameters collected for each episode, allowed

for a robust analysis that revealed the ability of clinical variables alone to predict diarrheal eti-

ology with a high degree of accuracy. Using machine learning algorithms, we found that a

model with just 5 variables (age, season, HAZ, bloody diarrhea, and vomiting), could accu-

rately predict viral etiology, with a cross-validated AUC of 0.825. Translation of these findings

towards clinical decision making has the potential to improve management, including appro-

priate antibiotic use, in LMICs.

Fig 2. Interpolated estimates of ROC curves from the cross-validation for logistic regression and random forest models with variable sizes of 5, 10,

and 20. The faded dashed lines represent examples of how we could achieve a sensitivity of 0.6 and a specificity of 0.85 for prediction of viral etiology.

https://doi.org/10.1371/journal.pntd.0008677.g002
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Previous studies predicting etiology of diarrheal illness [14–17], have been limited by the

low number of participants, amount of clinical data collected, pathogen variety, number of

pathogens detected, method of detection, lack of controls without diarrhea, single center

design, and the need for stool testing. Etiological prediction is particularly challenging in

LMIC settings, where multi-pathogen detection is common in children with diarrhea, and pre-

sumed pathogens can be isolated from asymptomatic individuals in up to 50% of study con-

trols [18]. New molecular diagnostic methods used on the GEMS samples involved a

quantitative assessment of 32 potential pathogens, with matched case-control pairs, to ascribe

an etiological attributable fraction (AFe) for each episode. This quantitative method, in context

of a case-control study, is thus able to account for the high rate of asymptomatic detection of

pathogens by molecular testing in children in LMICs, which can confound the attribution of

etiology. Using these data, we built several models to evaluate the effect of clinical indicators

on whether children presenting with acute diarrhea had a viral etiology (or bacterial etiology).

We showed that AUCs improved for the first 7 variables but thereafter the addition of more

variables did not improve the model. Notably, we found that an AUC of 0.825 could be

achieved with 5 variables, enabling the translation of this predictive model to a parsimonious

rule which could be used in clinical decision-support. Additionally, we found that the random

forest regression did not improve performance over regression models. This is likely due to

the effect of the predictors on etiology being primarily linear. From the partial dependency

plots, we show that, within the range of most of the data, the relationship between each

Table 4. The table contains both site-specific variable importance ordering and a cross-validated average overall AUC, AUC by country, and AUC by continent and

confidence intervals from a 5 (bold) and 10 (ital.) variable logistic regression model for predicting a viral etiology with variables based on the overall variable impor-

tance. Lastly, it shows the AUC and a 95% confidence interval resulting from testing the logistic regression with variables based on the overall variable importance on each

site individually following its training on the other countries in the same continent.

Africa Asia

Variable/

Country

The Gambia Mali Mozambique Kenya India Bangladesh Pakistan

1 Age Age Age Age Age Age Age

2 Season Season Season HAZ MUAC Blood in stool Breastfed

3 HAZ Vomiting Breastfed MUAC HAZ Season HAZ

4 Blood in stool MUAC HAZ Resp. Rate Season Sunken Eyes Resp. Rate

5 MUAC HAZ Temp. Breastfed Resp. Rate Vomiting MUAC

6 Temp. Resp. Rate MUAC Temp. Blood in stool MUAC Temp.

7 Resp. Rate Breastfed Resp. Rate Wealth Index Wealth Index Rectal Straining Wealth Index

8 Wealth Index Wealth Index Wealth Index # Share Facility # Share Facility Temp. Vomiting

9 People in House Temp. Vomiting People in House Temp. HAZ People in House

10 Vomiting People in House People in House Days of Episode People in House Wealth Index Blood in stool

Cntry AUCs 0.850 (0.841–

0.858)

0.792 (0.780–

0.803)

0.833 (0.823–

0.843)

0.686 (0.674–

0.698)

0.812 (0.805–

0.820)

0.927 (0.922–

0.933)

0.788 (0.778–

0.798)

0.847 (0.838–
0.855)

0.796 (0.785–
0.807)

0.839 (0.828–0.848) 0.693 (0.681–
0.705)

0.813 (0.806–
0.821)

0.923 (0.918–0.929) 0.801 (0.791–
0.811)

Cont. AUCs 0.791 (0.786–0.796) 0.856 (0852–0.860)

0.793 (0.788–0.798) 0.862 (0.858–0.866)
Overall AUC 0.825 (0.822–0.828)

0.831 (0.827–0.834)
Cont. Ext. Val. 0.809 (0.766–

0.852)

0.789 (0.737–

0.841)

0.830 (0.786–

0.874)

0.671 (0.617–

0.724)

0.811 (0.776–

0.846)

0.924 (0.899–

0.949)

0.790 (0.747–

0.834)

0.803 (0.760–
0.846)

0.796 (0.745–
0.846)

0.826 (0.781–0.870) 0.670 (0.616–
0.724)

0.813 (0.778–
0.847)

0.922 (0.896–0.948) 0.795 (0.751–
0.838)

https://doi.org/10.1371/journal.pntd.0008677.t004
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predictor and the prediction is linear. Also, using interactions in a logistic regression model

did not improve AUC.

When considering sensitivity and specificity in the context of diarrheal etiology, we

assumed a high specificity target for prediction of “viral only” etiology (Fig 2), and similarly, a

high sensitivity target for bacterial etiology (S5 Fig), both of which would minimize the risk of

not giving antibiotics to a child with a bacterial infection. While current WHO guidelines rec-

ommend antibiotics only for children with dysentery and for children with acute water diar-

rhea (AWD) with severe dehydration in cholera endemic regions, there is evidence suggesting

treatment of non-dysenteric Shigella infections may be beneficial [19, 20]. Our prediction

model showed that for predicting a viral etiology, for a desired specificity of 0.85, we achieved

a sensitivity of 0.59. We found that the most significant predictors for differentiating viral

from other etiologies were: age, HAZ, season, bloody diarrhea, and vomiting. Vomiting, a

higher HAZ, and dry/cold season were evidence towards a viral etiology, while an older age

and bloody diarrhea were evidence against a viral etiology.

The predictors we identified are consistent with those of previous studies. Bloody diarrhea

as a predictor of a bacterial cause of diarrhea, especially for shigellosis, has been well estab-

lished [14–17, 21–23], and informs the IMCI guidelines that dysentery be treated with antibi-

otics. Vomiting as a predictor of a viral process has similarly been shown in previous studies

[14, 16]. It is well established that younger children have a higher incidence of diarrhea [24]

and some studies have suggested that younger age is also more indicative of a viral process [16,

22, 24–26]. We showed that age was the most important predictor with mean age of viral case

being 13.0 months, and 22.1 months for bacterial cases.

Using data gathered from NOAA weather stations proximal to our study sites during the

study period, we were able to develop seasonal variables based on temperature and rainfall.

We show that a viral etiology of diarrhea is associated with a drier, colder climate, consistent

with observation from previous studies from the USA [16] and India [26]. The positive associ-

ation of anthropometrics (higher HAZ and mid-upper arm circumference (MUAC)) with

viral etiology may suggest that improved nutrition is more protective of a bacterial than a viral

process. Symptoms found in earlier studies to be predictive of etiology, but which did not

improve predictive performance in our analysis when added to the variable importance

selected variables include: fever, number of stools per day, duration of diarrhea, and presence

of mucous [14–17, 23]. Similarly, variables related to hygiene and sanitation did not help with

prediction of etiology.

Given that GEMS was conducted in 7 countries across Africa and Asia, we examined the

model performance across sites. We found that the model attained an average AUC of about

0.86 in Asian sites and about 0.79 in African sites, likely due to poor performance of the model

in Kenya and good performance in Bangladesh. This suggests that external validation will be

necessary to assess both performance and generalizability. Indeed, even within continent,

countries had varying AUCs. We also found that, when validated against other sites from the

same continent by leaving one country out, use of five variables achieve similar AUC as use of

10 variables. Future studies should aim to capture country- or continent-specific trends such

as background seasonality or sudden changes in climate or patient symptoms, so that out-

breaks or volatility can be accounted for in the predictions.

Our study has a number of limitations. First, our predictive model does not distinguish

between different bacterial etiologies or bacterial from parasite etiologies, which may require

different therapy. Additionally, it does not predict for parasitic infections. In GEMS [6], a

number of bacterial pathogens had few to no cases detected using AFe> 0.5, including EHEC,

Yersinia, LT ETEC, EAEC, atypical EPEC, and Clostridium difficile. This was due to these

organisms’ presence in control children without diarrhea, making attribution difficult. While
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it is possible that these could have co-occurred with a viral pathogen, there is limited evidence

that antibiotic treatment of these etiologies would be beneficial in this setting. External valida-

tion is essential for this and all clinical prediction models, as demonstrated by our heteroge-

nous result by continent. GEMS was conducted before the widespread use of rotavirus vaccine

and rotavirus was the dominant viral pathogen; thus, the model will need to be validated in set-

tings were rotavirus vaccination campaigns have had substantial impact. Although we present

several measures of performance including sensitivity and specificity at various thresholds, we

do not directly measure clinical usefulness. Future studies should explicitly show the potential

for reduction in antibiotic use resulting from the clinical prediction. Lastly, our prediction

models could be further adapted to individual clinical contexts, depending on the ease of

obtaining different variables (i.e. availability of a height board versus a MUAC tape for anthro-

pometric measurements).

In conclusion, utilizing a large number of cases and quantitative molecular methods of

pathogen detection with etiologic attribution based on a case-control study, we showed that

etiology prediction could be attained for episodes of acute diarrhea with as few as 5 variables.

Our findings confirm previously considered predictors of viral etiology including lack of

bloody diarrhea, vomiting, younger age, and a dry and cool climate, and reveal additional pre-

dictors of viral etiology associated with anthropometric measures. These findings have the

potential to provide clinicians in lower-resource settings with better informed clinical decision

making, including helping to identify a subset of children from whom antibiotics may be safely

withheld and a group who may benefit from antimicrobials and/or adjunctive microbiologic

testing.

Supporting information

S1 Checklist. TRIPOD Checklist.

(DOCX)

S2 Checklist. STROBE Checklist.

(DOC)

S1 Fig. The left map shows the locations of the 4 study sites in Africa. Right map shows the

locations of 3 study sites in South Asia. The map was generated using the get_map and ggmap

functions in R version 3.6.1.

(TIF)

S2 Fig. Average AUC and 95% CIs from 100 iterations of cross-validation for both a logis-

tic regression (LR) and random forest (RF) as the number of variables in the model

increases and inset shows zoomed in graphs of 1 through 10 variables.

(TIF)

S3 Fig. Consort diagram of the reduction of patients from 22567 in the GEMS dataset to

the 3366 cases in our study. Note that we only filtered out non-responses for response vari-

ables that were in the top 50 of our screening step.

(TIF)

S4 Fig. Average AUC and 95% CIs from cross-validation (100 iterations) for logistic

regression (LR), random forest (RF), gradient boosted trees (GBR) and vanilla neural net-

works (NN) as the number of variables in the model increases and inset shows zoomed in

graphs of 1 through 10 variables for just the top two models in this range, the LR and NN.

(TIF)
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S5 Fig. Partial dependency plots for the top ten important variable for a predicting a viral

etiology. Ticks on the x-axis show the deciles of the data.

(TIF)

S6 Fig. Histograms showing the distribution of predictions from the five variable model

for both the patients with known etiologies and unknown etiologies determined by the

greater than 0.5 AFe from TAC data.

(TIF)

S7 Fig. Interpolated estimates of ROC curves from the cross-validation for logistic regres-

sion and random forest models with variable sizes of 5, 10, and 20. The faded dashed lines

represent examples of how we could achieve a sensitivity of 0.85 and a specificity of 0.59 for

any bacteria.

(TIF)

S1 Table. Rank of variable importance for predicting bacterial etiology by reduction in

residual sum of squares (RSS) using random forest regression.

(DOCX)

S2 Table. The table contains all predictors considered by the random forest variable

screening as well as the relative order of importance (reduction in mean square error

(MSE) by the variable’s inclusion) for viral prediction for the whole dataset.

(DOCX)

S3 Table. Steyerberg’s A and B (intercept and slope) for both logistic regression and ran-

dom forest regression models fit with a different number of variables.

(DOCX)

S4 Table. The odds ratios, 95% confidence interval, and p-value from a logistic regression

model for the viral only outcome for the top 5 variables.

(DOCX)

S5 Table. The estimate, 95% confidence interval, and p-value from a logistic regression

model for the any bacteria outcome.

(DOCX)

S6 Table. The estimate, 95% confidence interval, and p-value from a logistic regression

model for the viral only outcome with rotavirus cases removed.

(DOCX)

S7 Table. The table contains both site-specific variable importance ordering and a cross-

validated average overall AUC, AUC by country, and AUC by continent and confidence

intervals from a 5 (bold) and 10 (ital.) variable logistic regression model for predicting a

viral etiology with variables based on the overall variable importance. Lastly, it shows the

AUC and a 95% confidence interval resulting from testing the logistic regression with variables

based on the overall variable importance on each site individually following its training on the

other countries in the same continent.

(DOCX)
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