
Research Article
An Optimized Hyperparameter of Convolutional Neural Network
Algorithm for Bug Severity Prediction in Alzheimer’s-Based
IoT System

Iqra Yousaf,1 Fareeha Anwar,1 Salma Imtiaz ,1 Ahmad S. Almadhor ,2

Farruh Ishmanov ,3 and Sung Won Kim 4

1Department of Computer Science and Software Engineering, International Islamic University, Islamabad 44000, Pakistan
2College of Computer and Information Sciences, Jouf University, Sakaka, Saudi Arabia
3Department of Electronics and Communication Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
4Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Correspondence should be addressed to Farruh Ishmanov; farruh@kw.ac.kr and Sung Won Kim; swon@yu.ac.kr

Received 14 April 2022; Revised 17 May 2022; Accepted 27 May 2022; Published 28 June 2022

Academic Editor: Fahmi Khalifa

Copyright © 2022 Iqra Yousaf et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Softwares are involved in all aspects of healthcare, such as booking appointments to software systems that are used for treatment
and care of patients. Many vendors and consultants develop high quality software healthcare systems such as hospital man-
agement systems, medical electronic systems, and middle-ware softwares in medical devices. Internet of -ings (IoT) medical
devices are gaining attention and facilitate the people with new technology. -e health condition of the patients are monitored by
the IoT devices using sensors, specifically brain diseases such as Alzheimer, Parkinson’s, and Traumatic brain injury. Embedded
software is present in IoTmedical devices and the complexity of software increases day-by-day with the increase in the number
and complexity of bugs in the devices. Bugs present in IoT medical devices can have severe consequences such as inaccurate
records, circulatory suffering, and death in some cases along with delay in handling patients. -ere is a need to predict the impact
of bugs (severe or nonsevere), especially in case of IoTmedical devices due to their critical nature. -is research proposes a hybrid
bug severity prediction model using convolution neural network (CNN) and Harris Hawk optimization (HHO) based on an
optimized hyperparameter of CNN with HHO. -e dataset is created, that consists of the bugs present in healthcare systems and
IoTmedical devices, which is used for evaluation of the proposed model. A preprocessing technique on textual dataset is applied
along with a feature extraction technique for CNN embedding layer. In HHO, we define the hyperparameter values of “Batch Size,
Learning Rate, Activation Function, Optimizer Parameters, and Kernel Initializers,” before training the model. Hybrid model
CNN-HHO is applied, and a 10-fold cross validation is performed for evaluation. Results indicate an accuracy of 96.21% with the
proposed model.

1. Introduction

Software is part of our daily life, present in almost all do-
mains such as education, health, business, and
manufacturing. Software engineering is the main discipline
in which high quality software is developed by applying user-
centered design principles. Different tasks and operations of
an organization are handled by software systems [1]. -e
new IoT technology is gaining attention with these
healthcare systems for medical filed, and IoTdevices such as

sensors and smart equipment are using for the treatment of
the patients [2, 3]. Multiple software used in IoT medical
devices for remotely working and complexity of software
increases day by day. With the increase in size and com-
plexity of software, the number of reported bugs becomes
huge.-ese bugs in IoTmedical devices and other healthcare
systems can have severe consequences if there is malfunc-
tion. -e bug in IoTmedical devices such as for Alzheimer’s
patient is like swallowable misinformation, means doctor
checks the compliance of a patient with an Alzheimer’s

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 7210928, 14 pages
https://doi.org/10.1155/2022/7210928

mailto:farruh@kw.ac.kr
mailto:swon@yu.ac.kr
https://orcid.org/0000-0003-3689-9663
https://orcid.org/0000-0002-8665-1669
https://orcid.org/0000-0002-7378-8009
https://orcid.org/0000-0001-8454-6980
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7210928

disease and recommend him pills with a swallowable chip.
However, due to a bug in the device’s design, the transmitter
is unable to communicate compliance data to the physician.
-e doctor is unaware that the patient is not taking his
medication, leading the situation to worsen [4]. A software
bug is defined as a fault or defect in the program.-ese faults
or defects can occur during different phases of software
development life cycle, i.e., coding, designing, or mainte-
nance. -e timely resolution of these faults is critical to
project success. Bug can occur due to any reason such as
error by a developer, misunderstanding or inaccurate exe-
cution of requirements, and inadequate communication
between team members or with users [5] (Table 1).

In software development life cycle, the most significant
part of software development is software maintenance with
respect to bugs. Defect prediction techniques are used in
software maintenance process to improve the reliability of
software by isolating a bug. -e main focus of software
maintenance is to resolve the bug reported by users and
testers of the system when it is tested or used [1, 6]. In
software development life cycle, 90% software’s cost is spent
during the phase of software maintenance. Research com-
munity focuses on bug prediction for software maintenance
and evolution because of the huge number of bugs. In bug
fixing process, a bug is first prioritized on the basis of the
severity [7] -ere is a difference between severity and pri-
ority: severity is the level of impact on the performance of the
software system, whereas priority is the order in which the
bug is resolved. Priority of a bug depends on the severity
level [8]. -us, the severity of a bug has significant im-
portance for bug prioritization and resolution.-e fields of a
bug report are considered as the features of prediction
model. -e fields are Bug Report ID, Created Date, Project
Name, Priority, Severity, Summary, Component and De-
scription of Bug, Assignee, Reporter, etc [9].

Earlier, defect prediction techniques that are used in
medical devices are statistical analysis tool; fault localization
and model checking are used to identify the defect in a
software [10–12]. Research is focusing on the use of machine
learning techniques to identify the bugs in software. Bug
severity can also be assigned usingML algorithms. Literature
has defined multiple levels of severity such as severe and
nonsevere [6, 13], blocker, critical, major, minor, and trivial
along with addition of normal and enhancement level [14].
User assigns the level of severity when they report the bug,
and it causes an inappropriate assessment of severity due to
inexperienced user and lack of domain knowledge. -e
manual severity level assignment is a very time-consuming,
erroneous, and difficult task [6]. It depends on the domain
knowledge and experience of users. Machine learning ap-
proaches are introduced to overcome the limitations of
manual severity level assignment.

Motivation: Machine learning approaches are intro-
duced to overcome the burden of manually assigning se-
verity levels. -e multiple ML approaches such as ensemble
techniques, comparison of different algorithms such as NB,
RF, KNN, MLR, J48, and RNG, CNN and SMOTE for se-
verity assignment is performed [1, 15, 16]. However, these
approaches do not consider proper feature selection

methods [17] and emotion-based technique [6] and so on.
By considering these limitations, researchers have proposed
deep learning (DL) approaches for the bug severity pre-
diction. DL is a subset of ML, which is capable of self-
learning from the data. Different approaches such as K-NN,
CNN, RNN-LSTM, CNRFB model, and CMT with weights
are proposed [6, 15, 16]. -ese techniques also have some
drawbacks, such as they do not consider large datasets,
unlabeled datasets, and imbalanced datasets. -ey also do
not consider important parameters known as hyper-
parameters in deep algorithms [6], hence compromising
accuracy. Parameters are those whose values are updated
during training by some optimization tool for ML classifiers.
Hyperparameters are those parameters whose values are
decided before training the model, and these hyper-
parameters are optimized for ML or DL classifier to enhance
their performance. Hyperparameter optimization is the
method of optimizing hyperparameters of different classi-
fiers, and we can relate these parameters to model selection
such model type, model architecture, or learning algorithm
[18].

Table 1: Table of abbreviations.

Abbreviation Full form
Adadelta Adaptive delta
Adagrad Adaptive gradient
Adam Adaptive moment estimation
AdaMax Adaptive max-pooling
AdaBoost Adaptive boosting
ACO Ant colony optimizer
AUC Area under cover
BTS Bug tracking system
CMT Class membership information of a term
CNN Convolution neural network

CNRFB Convolutional neural network and ransom forest
with boosting classifier

DL Deep learning
J48 Decision tree
XGBoost Extreme gradient boosting
GA Genetic algorithm
GWO Gray wolf optimizer
HHO Harris Hawk optimization
IoT Internet of -ings
KNN K-nearest neighbor
LF Levy flight
LSTM Long short term memory
LMT Logistic model trees
ML Machine learning
MIoT Medical in internet of things
NB Näıve Bayes
MRIs Magnetic resonance images
NLP Natural language preprocessing
NLTK Natural language toolkit
OS Operating system
PSO Particle swarm optimization
RLU Rectified linear unit
RNG Relative neighbor graph
RF Random forest
SMOTE Synthetic minority oversampling technique
SVM Support vector machine
WSM Weighted sum method

2 Computational Intelligence and Neuroscience

In IoT medical devices, when a new bug is found, de-
velopers, users, and testers have to assign a severity level to it.
Since lack of attention to critical bugs can result in severe
injury or even death of a patient. Many automatic techniques
for bug severity prediction are introduced by using ML
algorithms and DL algorithms in general softwares; how-
ever, no work is performed on a healthcare IoT medical
dataset. -e need for accurate prediction of bug severity in a
timely manner is critical to its timely resolution. -e aim of
this research is to identify an optimized hyperparameter of
the CNN algorithm by using the HHO algorithm for bug
severity prediction in healthcare dataset that improves ac-
curacy. -e research contributions are given one by one:

(i) A novel optimized hyperparameter technique of
convolutional neural network for bug severity
prediction

(ii) Better accuracy of bug severity prediction with the
help of proposed technique

(iii) Early detection of bugs in IoT medical devices es-
pecially for Alzheimer disease

(iv) Proposed technique that provides better fitness
value (WSM)

-e paper is organized in sections as follows. Section 2
describes the literature review of techniques for bug severity
prediction, Section 3 describes the research design of pro-
posed work, and the results, finding, and discussion are
presented in Section 4.

2. Literature Review

In this section, we divide and present the literature on the
basis of healthcare medical devices and general softwares’ on
severity level prediction during software maintenance.

2.1. Defect Prediction Techniques Used for Software Medical
Devices. Medical devices: they mostly rely on embedded
software. Due to the critical nature of the health domain, the
medical devices must be defect free. -erefore, the manu-
factures perform detail verification and validation of the
embedded software in them. Different defect prediction
techniques such as statistical analysis, fault localization, code
review, metrics, and model checking are used in medical
devices. [10–12]. Statistical analysis is used to check a
software system without executing the software. Modern
analysis tools help in reducing software cost by detecting the
defects earlier in software development life cycle [10].

2.2. Machine Learning Approaches in Healthcare

Machine learning (ML) approaches: they help in pro-
viding promising opportunities for improving the
delivery of quality health care [19, 20]. Currently,
different ML approaches are used for analysis of the big
healthcare data [2]. -ey are used in identification and
diagnosis of disease, drug discovery and manufacturing
personalized medicines, pattern imaging analysis,
smart-health record, crowd-sourcing data collection,

and clinical trial research [21]. -e use of ML algo-
rithms is gaining attention in healthcare; however. ML
is not used for severity level prediction. A detailed
review is provided about machine learning algorithms
that are applied on various healthcare big data [22]. ML
approaches such as supervised learning, unsupervised
learning, and reinforcement learning are used on
healthcare big data included in the electronic medical
records, medical imaging, Internet of things, medica-
tion, etc.
Support Vector Machine: A hybrid technique for
software defect prediction in medical software is pro-
posed. SVM parameters are optimized with the genetic
algorithm. Experiments are performed to check defect
prediction. Results show better performance as com-
pared to other state-of-the-art techniques [23].
Convolutional Neural network: Computer-aided de-
sign, convolutional neural network technique proposed
for diagnosing brain tumor to improve the diagnosis
accuracy. BR35H benchmark dataset is trained that
consists of brain tumor MRIs. Six-different datasets
used for evaluate the model performance and to en-
hance the performance different geometric data aug-
mentation techniques, with statistical standardization
are selected. -e proposed system performed better
with average 98% accuracy and around 0.99 specificity
by comparing other systems [24]. In [25], Gaussian
convolutional neural network (GCNN) was proposed
on two datasets to detecting distinctive brain tumor
types. Tumors classify into pituitary, glioma, and me-
ningioma in one dataset and other dataset divided into
three grades of glioma. Accuracy achieves with two
datasets 99.8% and 97.14% on proposed approach,
respectively.

2.3. Bugs inHealthcareMedicalDevices. -e consequences of
software failures are huge in case of healthcare. Software-
related failures in medical devices cause severe injuries or
death and should be resolved on time. -e proposed tech-
nique provides the analysis of software related system failures
of medical devices. System failures are categorized by their
symptoms and faults and different methods for preventing
and detecting faults. -e nature of fault helps in identification
of prevention and detection strategy before the system is
released. -is technique also provides the detailed insight
about the formal requirements specification and improves the
testing of the complex systems [26]. -omas provided 14
specific suggestions for early detection of computer-related
bugs in medical devices before detected by clinicians, pro-
curement, and regulators.-ey also describe different ways to
reduce severity of bugs. -ese suggestions help to avoid bugs
with safer use and improved quality of healthcare systems, as
a result saving lives of patients and money [27].

2.4. IoT-Based Healthcare Support Systems. IoT devices are
the new technology that used for facilitating and helping the
people. Many sensors and devices with applications are

Computational Intelligence and Neuroscience 3

used for monitoring the health condition of patients in
their home. Alzhemier’s patient treat on the basis of their
behaviours and movement and data gathered from the
sensors and equipment installed at patient’s home. Dif-
ferent types of protocols are used for the sensor and smart
equipment [3]. -e Uk HMG ISI technique is proposed for
threat analysis in Medical Internet of -ings (MIoT) sys-
tems, and the case study is performed in the form of
Technology Integrated Health Management test bed. -e
complete threat’s assessment is conducted by determining
the static or dynamic features in the component of MIoT
systems. -ese features have an impact on the depen-
dencies and space threats when updating the system. -e
proposed technique saves time and effort when identifying
the threats in MIoT systems. -e MIoT system is a
healthcare system that monitors the devices and tracks the
condition of the patient remotely by recording the specific
health measurements systemically and send the complete
information to back-end system. -e system examines the
collected data and detects the health issues of patients
earlier for any emergency [28].

2.5. Machine Learning for Bug Severity Prediction for
General Software

Ensemble Techniques: an ensemble method for detec-
tion of bugs on NASA project PITS A-F dataset is
proposed by using Bagging, Voting, AdaBoost, and
Random Forest. Results indicate that better accuracy
is achieved with the help of bagging [15]. Kumari
et al. applied different ML techniques on PITS Project
A-F closed source dataset and opensource Mozilla
dataset. KNN, J48, RF, RNG, NB, CNN, and MLR for
the prediction of bug severity. MLR has highest
accuracy i.e., 98.90% of NASA pits D and 80.37% for
Eclipse and J48 was best for Mozilla 75.71% [29].
XGBoost: this used in Bugzilla repository of Mozilla
Project [30]. Summary features are used in first case;
summary, priority, and component are used in
second case; in third case summary with SMOTE.
Average accuracy achieved is 72.99%, 73.87%, and
62.23%.
K-NN and SVM: K-NN classifier was used with dis-
tance-weighted voting scheme for the prediction of
severity of bug on Eclipse and Mozilla projects dataset.
F-measure value for some classes increased from 34.4%
to 46.6% which is higher than some other approaches
(44.47%) and for some classes decreased by comparing
different approaches (53%) [16]. Kumar et al. [31],
applied eleven machine learning algorithms on Mozilla
and Eclipse projects. SVMwith kernel performed better
from all others. Classification and regression tech-
niques were used to examine the link between bug
attribute. Multiattribute-centered classification and
regression model is proposed for the prediction of
severity and bug fix time. Sharma et al. [32] used real
world datasets namely Bugzilla, Firefox, Boot2Gecko,
Webtools, -underbird, Firefox, Seamonkey, Add-

OnSDK, and Mozilla for bug severity prediction.
Summary weight and bug age attribute are considered
to be good predictor. Baarah et al. [33] used eight
classifiers and compared their results on closed source
projects dataset. Highest accuracy achieved by LMT is
86.31%, AUC 0.90%, and F-measure 0.91%.
Naı̈ve Bayes: NB classifier is used for bug severity
prediction with PSO and ACO feature extraction
techniques on Mozilla, Firefox, and Eclipse datasets.
Good results are achieved for precision recall and
F-measure [34]. Emotion similarity multinomial NB
classifier is applied on Eclipse, GNU, JBoss, Mozilla,
and Wireshark with average accuracy of 70.86%,
80.32%, 88.12%, 55.65%, and 41.63% with respective
datasets [35].
Convolutional Neural network: CNN algorithm applied
on seven products of Mozilla and Eclipse. Average per-
formance of proposed approach in terms of accuracy,
precision, recall, F-measure are 88.10%, 82.64%, 86.16%,
84.36%, and 0.286 [6]. CNN is used with genetic algo-
rithm (feature extraction) onMozilla and Eclipse. Average
results in terms of precision 77.38%, F1-Score 68.76%, and
Recall 62.09% [36]. Multiaspect feature approach is
proposed for feature extraction on Eclipse andMozilla
dataset that feed into the convolutional neural net-
work algorithm. Average results are accuracy 75%,
precision 78%, F1-measure 86%, and MCC 41%, re-
spectively [13]. For multiclass severity classification,
BCR approach is proposed based on CNN and RF with
Boosting [6]. -ey used Mozilla, Eclipse, JBoss,
OpenFOAM, and Firefox datasets with three attri-
butes [17]. XGBoost [30], CNN, and RNN are applied
on a NASA’PITS dataset for severity prediction.
Highest accuracy achieved by CNN 79% in terms of
AUC and sensitivity with value 0.92 and 76.34% [37].
In [38], Hamza proposed a framework where com-
parison of RNN [37] and LSTM is done.-ey collected
a dataset from a closed-source project from JIRA
repository. LSTM achieve higher accuracy of 85%.

Bug severity predication is of significant importance
for timely resolution of critical bugs. Many ML tech-
niques are discussed for bug severity prediction in
general softwares. Timely detection and resolution of
healthcare bugs is of critical importance. Machine
learning is gaining attention and some studies have
discussed ML models for healthcare problems in terms of
diseases and medical software devices for removing
software faults. Many studies have used ML for pre-
venting and detecting software faults, but no work is
done on bug severity prediction. Bugs in healthcare
applications and IoT devices cause severe effect, such as
-erac-25, massively overdosed due to bug, interruption
in a software function such as loss of correct functions
over several upgrades, inaccurate health records, cir-
culatory suffering, and swallowable misinformation.
-erefore, the significance of bug severity prediction of
healthcare data is huge.

4 Computational Intelligence and Neuroscience

3. Proposed Methodology

-e proposed model predicts the bug severity level on the
basis of summary of bug report dataset. -e validation of the
proposed approach is done by conducting a controlled
experiment, and accuracy, precision, recall, and f1-measure
is calculated. Controlled experiment is conducted on python
language. In experiment, the independent variable is tested
and adjusted to determine its impact on the dependent
variable. In this research, independent variables (optimized
hyperparameter) are used to test the impact of independent
variable on dependent variable i.e., accuracy of the proposed
model. -e proposed model consists of different steps, the
first step is to select the dataset.-e second step is to perform
the date preprocessing that consists of three techniques
namely as tokenization, stopwords removal, and stemming.
Afterwards, data is split into training and testing parts by
applying 10-fold cross validation. -e next step is feature
extraction for embedding layer in the CNN model and the
last step is to perform experiment where we apply CNNwith
HHO for optimizing hyperparameters of the model. Finally,
the model provides the experimental results. -e proposed
approach is explained in Figure 1.

3.1. Experimental Setup. -e experiment is conducted using
PYTHON to answer the research question.

RQ1: What is the impact of the proposed approach of
optimizing hyperparameter of the convolutional neural
network algorithm on the accuracy of bug severity
prediction?

3.2. Experimental Dataset. In this study, bug report is cre-
ated of healthcare domain by considering bugs in different
medical applications such as -erac-25 [39], from articles
related to software faults in medical software devices [26, 27]
and from article related to IoT-based healthcare systems for
cognitive disease such as Alzheimer [4] and from article
related threat’s assessment in IoTmedical devices [28]. -e
model uses these attributes from the bug report dataset i.e.,
bug ID, summary, and severity levels of the bug. In general
softwares, bug report dataset consists of bug with the fol-
lowing severity levels normal, minor, trivial, enhancement,
blocker, critical, and major. Normal severity level is not
considered in this work due to the nature of healthcare
domain. We have categorized minor, trivial, and enhance-
ment as nonsevere bugs, while blocker, critical, and major as
severe bugs. -erefore, the bugs are categorized as severe or
nonsevere i.e., binary classification.

3.3. Bug Report Preprocessing. Preprocessing steps are per-
formed to eliminate the unnecessary words from the bug
report dataset summary [17]. Data preprocessing step is the
main step to achieve more accurate features from the
summary. Moreover, the classification accuracy of the
prediction model is increased by using preprocessed data.
For applying natural language processing methods, we use

natural language toolkit (NLTK). [40]. One example of bug
report preprocessing is shown in Table 2.

Tokenization: Tokenization is a process in which large
string of a text data is converted into words and these
words are known as tokens. In bug report, there are
textual unstructured data, unrelated symbols, and
punctuation marks, i.e., “!”#$%&∖”() ∗+, −./: ;?@[\\]∧
_“ |{ } ∼ .” Tokenization first remove these punctuations
and symbols, convert remaining meaningful words into
tokens.
Stop-word Removal: Stopword removal is a process in
which the words or terms that we use to make a simple
sentences in English language are removed i.e. nouns,
prepositions (“i,” “me,” “my,” “myself,” “we,” “our,”
“ours,” “ourselves,” “you,” “you’re”) are called as
stopwords. All these words are removed in this step
because these words can complicate the prediction
model. -e dimensionality of data becomes high, and
classification efficiency of ML algorithm becomes low.
-e process has two parts; first we apply NLTK Library
for mining the stopwords from data. In second steps,
we remove all these words from data.
Lemmatization: Lemmatization is a procedure in which
context of a dataset is seen and each word is converted
into meaningful dictionary form. -ese words are
known as lemma. For example, when we apply the
lemmatization process, the word “selected” is converted
into the basic word “select.” -e last step is lemmati-
zation; assuming Ln as the number of preprocessed
words into tokens.

3.4. Dataset Distribution. -e dataset is divided into two
parts, training and testing dataset by using 10-fold cross
validation. -e 10-fold cross validation is applied on over all
document level to protect the model from overfitting. In 10-
fold cross validation, the training data is divided into 10 data
subsets that are of almost same size and then the testing take
place in 10 iterations; in each iteration, the one fold which
contains the 10% of the dataset is used for testing, and other
nine fold which contains 90% of the datasets is used for
training. By this way, each data sample is used once in both
testing and training. -e objective of using the 10-fold cross
validation is to reduce the chances of biasness and to achieve
the best performance result [41].

3.5. Feature Extraction. Feature extraction is also called as
word to vector representation. -e next step is to extract a
feature from the preprocessed textual dataset, and for this,
we encode dataset as a sequence of integers by using
tokenizer class in Keras API. Vocabulary size of all tokens
can be determined by mapping words in the vocabulary to
unique integers. In a neural network algorithm, the input
must have the same shape and size. When we use the textual
data for the neural network model as inputs, then all the
sentences in the dataset do not have the same length.
Naturally, some sentences have a shorter length and some
have a longer length. For this, we need padding of the same

Computational Intelligence and Neuroscience 5

size as the input for the neural network model [42]. To
ensure that every statement in the dataset has same length,
all statements are padded to make them equal to the length
of the longest statement in the dataset.-e longest statement
length in the dataset is 13. Keras function Pad_Sequences are
used to pad the sequences to themaximum length by using 0.
In the neural network model, embedding layer is used as a
first hidden layer and it must have three arguments. -ese
arguments are input_dim (vocabulary size of dataset i.e., if
integer encoded value of dataset is 0–10, then vocabulary size
is 11), output_dim (the size of the real-valued vector space in
which the word is embedded, and for the embedding layer,
the size of the output vector is defined for each word, and
embedding dimension size is defined for output vectors 50),
and input_length (maximum length of input dataset), these
are the arguments required for embedding layer.-e research
has used small dataset for the problem, so the embedding
dimension size used is 50. Different embedding dimension
values can be tested according to the problem [43].

3.6. Deep Learning and Convolutional Neural Network.
DL has many hidden layers in contrast to ML. ML as well as
DL both can be supervised and unsupervised learning. -e
benefit of considering DL over ML is that there is no need of
data preprocessing for numerical dataset and feature se-
lection [44]. Many benefits of DL make it suitable to adapt it
for new problems. Convolutional neural network is a DL
approach with many benefits [45].

Convolutional layer is always considered as a first layer
in a hidden layers and last layer is always considered as fully-

connected layer. In the convolutional layer, we gather the
related feature from the input layer of the data and output of
this layer passes through an activation function. -e output
of the neural network is calculated by using the activation
function.-ere are many activation functions, and the use of
activation function depends upon the define problem. Ac-
tivation functions are categorized into two types, namely
linear and nonlinear. -e pooling layer merges all the same
features into one pool. Pooling layer has many advantages; it
decreases the dimensionality, and when used after every
convolutional layer, it decreases the computational com-
plexity and also helpful in overfitting problem. Pooling layer
has many types namely max, average and, sum. -ey are
used according to the define problem. Fully connected layers
use to transform the input data in N-dimensional vectors.
Here, N is defined as number of classes or label that is used to
classify the target data. CNN is the simply feed-forward
neural network. In some problems, dropout layer is used and
it is very helpful to overcome the overfitting problems of
networks. Parameter optimizer plays a main role in calcu-
lating the performance of CNN [46]. -e working of layers
of CNN is expressed in Figure 2.

3.7. Harris HawkOptimization Algorithm. -e Harris Hawk
Optimization (HHO) Algorithm is a population-based
swarm technique introduced by Heidari et al. [47], used to
solve the optimization problem. HHO is inspired by the
Harris Hawks chasing style, and their cooperative behavior
toward prey in nature known as surprise pounce. -is
technique explains the overall performance of hawks in

Dataset

Lemmatization

Stopword
Removal

Tokenization

Text
Preprocessing

Feature Extraction
(Tokenizer Class and

Pad_Sequences
Function)

Dataset Distribution
(Training and Testing) Train Convolutional

Neural Network

Hyperparameters
of CNN

Harris Hawk
Optimization

Best
Hyperparameter

and results

Fitness value
(WSM)End

Start

Figure 1: Proposed approach of CNN-HHO.

Table 2: Bugreport preprocessing example.

Original statement Export from the UI should create compressed repositories
Tokenization “Export,” “from,” “the,” “ui,” “should,” “create,” “compressed,” “repositories”
Stopword removal “Export,” “ui,” “create,” “compressed,” “repositories”
Lemmatization “Export,” “ui,” “create,” “compressed,” “repository”

6 Computational Intelligence and Neuroscience

mathematical form, such as how they cooperate to search for
the prey, hunt, surprise, and chase it from different direc-
tions. -ese behaviors of Harris Hawks are used to develop
an optimization algorithm for solving complex problems.
-e HHO consists of both phases i.e., different optimization
techniques and, exploration and exploitation. -e summary
of two stages of HHO (exploration and exploitation) is
present in Figure 3.

3.7.1. Exploration Stage. First step of Harris Hawks is
exploration phase, by considering nature where Harris
Hawks are not able to detect the prey properly, they wait,
search, and explore for the desired prey for several hours.
In Harris Hawk optimization technique, candidate so-
lutions are the Harris Hawks, and they consider the best
candidate solution by perching on some positions and
wait to identify a prey by using two strategies (exploration
and exploitation). -ese strategies selected on the basis of
probability and the probability are defined as p. In first
strategy, when p value is p0.5 , the Harris Hawks perch on
the basis of the position of prey and the other hawks and in
second strategy when p≥ 0.5 , the Harris hawks perch
randomly on the tall trees with random location in a
specific range. -ese two strategies are modeled in
equation (1). -e detail description of equation (1) is
described in Table 3.

Z(t + 1 �
Zrand(t) − r1 × Zrand(t) − 2 × r2Z(t)

 if p≥ 0.5

Zprey(t) − Zm(t) − r3 LB + r4 UB − LB((if p< 0.5
.

⎧⎪⎨

⎪⎩

(1)

Average location of the hawks is evaluated by

Zm(t) �
1
N

N

i�1
Zi(t), (2)

where Zi(t) is defined as the current position of the hawk in
the iteration t and N as the whole numbers of hawks in the
population. Average location can be obtained in many ways
but the easiest method is considered.

3.7.2. Transition from Exploration to Exploitation. -ere is
another stage known as the “transition from exploration to

exploitation” in which on the basis of prey’s escaping energy
they calculate the change between different exploitative
activities. In this stage, prey stabs to escape from Harris
Hawks and prey’s escaping energy decreasing. -e escaping
energy of the prey is evaluated by

E � 2 × Eo × 1 −
t

T
 . (3)

Prey’s escaping energy is defined as E, initial energy of
the prey indicate as Eo, and T is the total number of iter-
ations. Eo Initial energy of the prey lies between the interval
(−1, 1); when Eo the value reduces from 0 to −1, then prey is
actually flagging and when Eo value enhance from 0 to 1,
then prey has power of escaping. During iterations, E dy-
namic escaping energy continuously reduces. -e dynamic
escaping energy E indicates that the exploration stage has
not finished; when |E|≥ 1, then exploration phase occurs,
while |E|1, then exploitation stage occurs.

3.7.3. Exploitation Stage. In this stage, Harris Hawks move
around the prey on the basis of calculated energy from

Hard
 besi

ege
 with

progre
ssi

ve
rap

id dive
s

So� besi
ege

 with

progre
ssi

ve
rap

id dive
s

Perching on

position hawks

ran
dom

locat
ions

Hard besiege

So� besiege

q < 0.5

q ≥ 0.5

r ≥ 0.5

r <
 0.5

|E| ≥ 0.5

|E
| ≥

 0
.5

|E
| ≥

 1

E

Explorat
ion

Figure 3: Exploration and exploitation phases [46].

Table 3: Explanation of symbols used in the HHO algorithm [48].

Symbols Description

Z, Zi

Position vector of the hawks in the iteration of i-
th hawk

Zprey Position of the prey
Zrand Position of random hawk
Zm Average position of the hawks
E, Eo Escaping energy of prey, initial state of energy

N, t, T Swarm size, iteration counter, maximum
number of iterations

LB, UB, D
Variable values (lower and upper bound),

dimension
r1, r2, r3, r4, r5,
p Random number in the range (0, 1)

Input Layer

Embedding Layer

Convolutional Layer

Pooling Layer

Dense Layer

Output Layer

Figure 2: Simple architecture of CNN.

Computational Intelligence and Neuroscience 7

different directions. -e hawks’ movement around the prey
is considered as desired possible solution and the best
possible solution is the position when hawks are closest to
the prey. Harris Hawk attacking on the prey and running
away from the prey are considered as two main behaviors of
this stage. Harris Hawks attack on prey in a behavior which
is known as surprise pounce. -ere are four different
strategies proposed in HHO, depending upon escaping
activities of prey and chasing style of hawks, namely soft and
hard besiege, and soft besiege and hard besiege with pro-
gressive rapid dives.-e four different strategies proposed in
HHO can be utilized on the basis of two parameter, E es-
caping energy of the prey, and r probability of escaping of the
prey. -e values that lie between the range from 0 to 1 is
known as probability of r. E energy value lies between the
range −1 to 1. -e possibilities of escaping energy E and
probability of r are expressed in Figure 4. If r0.5, we can say
that the prey has chances of escape, and if r≥ 0.5, then the
prey cannot escape. If |E|≥ 0.5, then prey has no more
energy to escape, but if |E|≥ 0.5, then prey has enough
energy to escape.

3.7.4. Soft Besiege. -is strategy is applied when prey has
enough energy to escape r≥ 0.5 and |E|≥ 0.5. Prey can try to
escape, but at the end, it cannot. Harris Hawks make softly
besiege around the prey that makes the prey tired and at that
time hawks implement the surprise pounce. -is method is
expressed as

Z(t + 1) � ΔZ(t) − E JZprey(t) − Z(t)

, (4)

ΔZ(t) � Zprey(t) − Z(t). (5)

In equation (5), whereΔZ(t) signifies the position vector
of the prey and the present location of hawk in the iteration t,
r5 is the random value between 0 and 1 and J � 2(1 − r5)

represents escaping procedure of the prey. -e J value ar-
bitrarily changing in each iteration to mimic the behavior of
prey movement.

Hard Besiege: this strategy is useful when prey has in-
sufficient escaping energy and extremely exhausted r≥ 0.5
and |E|0.5 . In this situation, prey totally tired; hawks make
the circle around the prey and implement the surprise
pounce. -is strategy is expressed by

Z(t + 1) � Zprey(t) − E|ΔZ(t)|. (6)

3.7.5. Soft Besiege with Progressive Rapid Dives. -is tech-
nique is useful when |E|≥ 0.5 and r0.5. In this situation, prey
has sufficient energy to escape and hawks perform soft
besiege beforehand making surprise pounce. Hawks moves
in a way, in which they choose the possible steps in the
direction of the prey and also consider the significance of
their possible next step in the direction of prey. If this step is
correctly applied, then they use the equation (7), to mod-
ernize their recent position. If it is not correctly applied, then

they use LF approach to attack on the prey in rapid dives by
using equation (8).

Y � Zprey(t) − E|JZprey(t) − Z(t)|, (7)

X � Y + S × LF(D). (8)

Where dimension of the define problem is calculated byD,
S is a random vector of size 1 × D and LF defines as levy flight
function shown in equation (9). Where u and v are random
numbers among 0 and 1 and β is the constant value set to 1.5. σ
evaluated by using equation (9). -e final step in which po-
sition of the hawk is updated, then in this situation soft besiege
with progressive dives is calculated by equation (10).

LF(x) � 0.01 ×
u × σ
|v|

1/β ,

σ �
Γ(1+) × sin(πβ/2)

Γ(1 + β/2) × × 2(β − 1/2)

1/β

,

(9)

Z(t + 1) �
Y, if LF(Y)LF(Z(t)),

X, if LF(X)LF(Z(t)),
 (10)

where fitness function is indicated by f and Y and X obtained
by equations (7) and (8)

3.7.6. Hard Besiege with Progressive Rapid Dives. -is
strategy is useful when |E|0.5 and r0.5. In this situation, prey
has not enough energy to escape, and hawks perform hard
besiege beforemaking surprise pounce.-is step is similar to
the technique hawks use in soft besiege with progressive
rapid dives. In this case, hawks consider the minimum
distance between their average position and the prey’s po-
sition. -e following equation (11) is used in hard besiege:

Z(t + 1) �
Y, if LF(Y)LF(Z(t)),

X, if LF(Z)LF(Z(t)).
 (11)

-e values of Y and X are obtained from the equations
(12) and (13):

Hard Besiege with
Progressive Rapid

Hard Besiege

Soft Besiege with
Progressive Rapid

Soft Besiege

Exploration

Prey Escape Probability (r) Escaping Energy (E)

NoYesNoYes

NoYes

E < 1

E < .5

r < 0.5

Figure 4: -e different HHO possibilities in the exploitation stage
[46].

8 Computational Intelligence and Neuroscience

Y � Zprey(t) − E JZprey(t) − Zm(t)

, (12)

X � Y + S × LF(D), (13)

whereZm(t) is calculated from equation (2).-e flowchart of
the HHO is given in Figure 5.

3.8. Hybrid Approach of CNN-HHO. -e motivation behind
the proposed approach is that the deep neural network
model works like a human-brain for processing the data and
creates patterns for making the decision. Harris hawk op-
timizing algorithm recently developed the nature-inspired
algorithm based on the hunting behavior of the hawks, and if
we study the behaviors of Harris Hawk, they wait, observe,
and monitor the prey with their powerful eyes and choose
the best candidate solution for attack on the prey, where the
prey has no chance to escape. Due to its ability to coverage
quickly, when compared to other approach, HHO identifies
the optimal solution in complex problem. HHO identifies
the CNN optimum parameter fastly because it hardly gets
stuck in local minima and enhances the model performance.
We propose a hybrid approach of CNN-HHO in which we
use Harris Hawk optimizing algorithm (HHO) for opti-
mizing the CNN hyperparameters. Best hyperparameter and

best performance of themodel in terms of evaluationmetrics
are achieved from the proposed approach.

We trained CNN baseline-model with healthcare data-
set, and for optimizing the hyperparameters of CNN, the
algorithm Harris Hawk optimization is implemented from
the opensource Mealpy python library [49]. In Algorithm 1,
main phases of the proposed approach are outlined. We use
two attributes of bug report dataset summary and severity of
the bug. X is considered as summary, and Y is considered as
target value.-e data is split into testing and training ratio,N
is the population size, and the total number of iterations “T.”
Hyperparameters optimize through these iterations by using
HHO. -e hyperparameters that are optimized for im-
proving the model performance are optimizer parameter
Om, activation function Af, learning rate Lr, batch size Bs,
and Kernel initializer KBn. -e following hyperparameters
selected value for optimization are shown in Table 4. -e
dataset is divided into training and testing ratio by using 10-
fold cross validation.

Training dataset is used for training the classifier, and
testing dataset is used for evaluating the performance of the
model. First initial population is generated, and N defines
the number of solutions. We use five hyperparameters for
optimization, so solution size is 5. Number of solutions N
and hyperparameter are considered as population matrix (N,
5). For hyperparameters lower bound and upper bound

Start

End

Initialize the
population randomly

Is the stop
condition met?

Calculate the fitness of each
solution in a population

Find the best fitness solution

For each solution in
the population

Update the Initial Escape
Energy, Escape Probability and

Jump Strength

Update the Escape Energy

|E| ≥ 1

|E| ≥ 0.5

Perform Soft
Besiege

Perform Hard
Besiege

Perform Soft
Besiege with

Progressive Rapid
Dives

Perform Soft
Besiege with

Progressive Rapid
Dives

r ≥ 0.5

Perform Exploration

Report the best solution

YesNo

Yes

No

Yes

No

Yes

No

C
om

pleted all solution

No

Yes

|E| ≥ 0.5

Figure 5: Flow chart of HHO.

Computational Intelligence and Neuroscience 9

value range, fitness function is calculated. -e detail of
fitness value calculation is expressed in Algorithm 2. Best
solution is mapped to hyperparameters. -e CNN model is
executed for evaluating the performance on optimized
hyperparameters in the given value of epochs. We are
working with binary classification problem, so for calcu-
lating the performance of model, we have used following
evaluation metrics accuracy 14, precision 15, recall 16, and
F1-measure 17. To estimate the accuracy of a model, cal-
culate the ratio of true positive, false positive, false negative,
and true negative.

Accuracy �
TP + TN

TP + TN + FP + FN
,

Precision �
TP

TP + FP
,

Recall �
TP

TN + FN
,

F1 − measure �
2 × Precision + Recall
Precision + Recall

.

(14)

After evaluating the results of the five given metrics, it is
important to map them into a single fitness value and for
that we use the weighted sum method (WSM). We use the
WSM in which we get the weight of each value and multiply
with the given percentage, and then add all for calculating
the fitness value. Fitness value is calculated by

Fitness � (0.25 × Accuracy + 0.25 × Precision + 0.25

× Recall + 0.25 × F1 − measure) × 100%.
(15)

When fitness value is achieved for the given population,
then we update the population for next iteration. -e HHO
is used frommealpy library, and detail working of the Harris
Hawk is discussed above.

4. Experimental Results and Findings

-is section evaluates the performance of the proposed
model and baseline CNN model. -e proposed hybrid
approach is applied to healthcare bug report dataset. -e
convolutional neural network algorithm with Harris Hawk
optimizing algorithm as a hyperparameter optimizing
technique is implemented. In baseline CNN, the value of
every parameter chooses manually and chooses basis on the
best result. Number of convolution layers, number of dense
layers, activation function at each layer, activation function
at the output layer, number of epochs, batch size, number of
pool layers, loss function, learning rate, optimizers etc. are

the parameters of the convolutional neural network model.
Manually identifying the right value for the parameters of
the CNN model is a crucial task. Training time and the
burden of the CNN model reduce by choosing an optimal
value and for choosing optimal for the given parameters,
Harris Hawk Algorithm (HHO) is used [50].

We have executed the CNN-HHO model on 10 opti-
mization iteration for getting the best hyperparameters with
the given dataset. -e iterations are run with 10 epochs’
value and 20 population size. In Table 5, we applied
healthcare datasets to the proposed approach for getting the
best hyperparameters. 32 batch size, Adagrad optimizer
parameter, ReLU activation function, 0.03 learning rate, and
uniform kernel initializer are the best hyperparameters with
given dataset.

-e accuracy, precision, recall, and f1-measure value are
found on the basis of these selected best hyperparameters,
and best results are written in the Table 6. Hybrid approach
gives better results corresponding to best hyperparameters
in terms of accuracy 96.21%, precision 88.06%, recall 92.54%,
and f1-meaures 94.68%. After calculating the values of
evaluation metrics, we calculated the fitness value of the
proposed model by usingWSM formula and performance in
terms ofWSM 92.86%.-e results of the proposed approach
are compared with the baseline CNN and are expressed in
Table 6.

In Figure 6, we compared our proposed approach with
baseline CNN model with the same dataset. -e results
clearly indicate that the proposed approach i.e., hyper-
parameter optimization of CNN with HHO performed
better as compared to baseline CNN.-e fitness value of the
proposed model increased with 10.36% from baseline-CNN
model.

4.1. Finding and Discussion. -e experiment demonstrates
that proposed hybrid approach for hyper-parameter opti-
mization performed well on health care dataset. We used
four metrics i.e., accuracy, precision, recall, and F1-measure
for model performance evaluation. We have used WSM for
calculating fitness value function. -e proposed model gives
best results as compared to the baseline-CNN.

RQ 1: What is the impact of the proposed approach of
optimizing hyperparameter of the convolutional neural
network algorithm on the accuracy of bug severity
prediction?

-e hybrid approach CNN-HHO is proposed for
checking the impact of optimizing hyperparameters of the
CNN algorithm on the accuracy. For optimizing the CNN
hyperparameter, various techniques can be used such as grid

Table 4: Details of hyperparameter of CNN classifier that are optimized.

Hyper-parameters Values
Activation function Softmax, Softplus, Softsign, ReLU, tanh, sigmoid, hard_sigmoid, linear
Optimizer parameters Adam, Adadelta, Adagrad, Adamax, NAdam, SGD, RMSprop
Kernel initializers Uniform, lecun_uniform, normal, zero, glorot_normal, he_normal, glorot_uniform, he_uniform
Learning rate 0.01 to 0.5
Batch size 32 and 64

10 Computational Intelligence and Neuroscience

search, Gradient Descent, andMeta-heuristic algorithm.We
have used metaheuristic HHO for optimizing the hyper-
parameters of CNN. We choose five hyperparameters with
their values of CNN such as optimizer parameters, activation
function, batch size, learning rate, and Kernel initializers for
optimizing with HHO on healthcare dataset. We are
working with binary classification problem. -e proposed
model performed on HHO with 10 epochs’ value and 20
population size. Best hyperparameter of model with cor-
responding best accuracy value is achieved. Batch zize with a
value of 32, ReLU is the best activation function, Adagrad
was the best optimizer parameter, learning rate with the
value of 0.03, and uniform was the best Kernel initializer.

4.2. Freats to Validity. In this experiment, we find the
different threats to validity that can impact on the perfor-
mance of the proposed approach. -ese threats to validity
are explained below.

4.2.1. Internal Validity. -e internal threats to validity are
considered, as the Harris Hawk Optimization (HHO) algo-
rithm is used for optimizing the hyperparameter of CNN in the
experiment. For the prediction of bug severity, other hyper-
parameter optimization techniques can be used such as ran-
dom search, grid search, gradient descent optimization
techniques, and other metaheuristic algorithms such as PSO,
GA, and GWO. Performance of the proposed approach can
vary if different hyperparameter optimizing techniques are
applied. In addition, for bug severity prediction, we just worked
with CNN for achieving result because with textual dataset,
CNN gives the best result. In spite of that, moremodels such as
machine learning and deep learning classifiers can be used.

4.2.2. External Validity. -e external threats to validity
depends on the quality of the dataset. -e proposed ap-
proach implements on healthcare bug report dataset. In case

(1) function CNN–HHO (x, y, k-value,N, T)\\-e function takes size of population N and, the number of iteration T, train-test split
dataset with target value

(2) Bs← 32 and 64\\-e batch size of DL model
(3) Om←Adam, Adadelta, Adagrad, Adamax, NAdam, SGD, RMSprop\\DL Optimizers
(4) Lr← 0.01 to 0. \\-e learning rate of DL model
(5) Af← softmax, softplus, softsign, relu, tanh, sigmoid, hard_sigmoid, linear\\Activation function
(6) Kn← uniform, lecun_uniform, normal, zero, glorot_normal, he_normal, glorot_uniform, he_uniform∖∖Neural network kernel

initializers
(7) Em←Accuracy, Precision, Recall, F1-Measure\\Evaluation metrics
(8) M←CNN model\\DL Model
(9) t← 1\\initial iteration
(10) Pop← initiate pop (N)\\initiate the population with pop size
(11) while (t≤T) do
(12) xtrain, xtest, ytrain, ytest← train-test split dataset\\dataset splitting
(13) popScores←Evaluate the fitness value (M, Bs, Om, Lr, Af, Kn, Emxtrain, xtest, ytrain, ytest)
(14) newPop← updatePop (popScores, t, T)\\update population
(15) pop← newPop\\set new population
(16) t← t+ 1∖∖ iteration update
(17) best Solution←Extract Top (Pop)\\Extract best solution
(18) Result←Best hyper parameters and Best solution \\Result with best solutions and hyper parameters

ALGORITHM 1: Pseudocode of the proposed approach hybrid CNN-HHO.

(1) function EvaluateFitnessValue (M, Bs, Om, Lr, Af, Kn, Emxtrain, xtest, ytrain, ytest)
(2) popScores← []\\ initiate the Score of population
(3) while (solution ∈Pop) do
(4) ModelSolution Solution, Bs, Om, Lr, Af, Kn)\\Solution mapped into HP
(5) Mo de ltraine d← trainM(M, xtrain, ytrain, Em)\\model trained on training dataset
(6) fitnessValue← testM(Mo de ltraine d, xtest, ytest, Em)\\Evaluate performance
(7) popScores←Append (popScores, (solution, fitnessValue))\\solution append
(8) return← popScores\\Population Score

ALGORITHM 2: Pseudocode of the fitness value calculation.

Table 5: Selected hyperparameters of hybrid approach CNN-HHO
on healthcare dataset.

Dataset Hyperparameter Selected values

Healthcare

Activation function ReLU
Optimizer parameters Adagrad
Kernel initializers Uniform
Learning rate 0.03
Batch size 32

Computational Intelligence and Neuroscience 11

if a different dataset is chosen, such as opensource projects
and closed source projects, then the results of the approach
may vary.

4.2.3. Construct Validity. -e construct validity is the se-
lection of the evaluation metrics that evaluate the perfor-
mance of the proposed approach. We have used accuracy,
precision, recall, and f1-measure that are mostly used as
evaluation metrics [6, 13]. We have worked with these
metrics, and results are promising, if we work with different
evaluation metrics like AUC, then results can vary.

5. Conclusion

Bugs with different severity levels are reported by users and
testers, and it is very essential to solve the bugs on time by
using the severity attribute. IoT devices based on healthcare
support systems used for the treatment of Alzheimer’s pa-
tients.-ese devicesmust be free of bugs because severe bugs
can have severe consequences on the health condition of
Alzheimer’s patients. In this study, we have proposed a
hybrid approach for the classification of bug severity
problem that are based on CNN and HHO algorithms, with
optimized hyperparameter of the CNN model with HHO.
Healthcare dataset is used to validate the performance of the
model. First we preprocessed the bug report dataset; second,
we performed feature extraction for CNN embedding layer,
and in the end, hyperparameter optimization is used for the
HHO Algorithm. Batch size, learning rate, optimizer pa-
rameter, activation function, and Kernel initializer are used
as hyperparameter for optimization. -e hybrid CNN-HHO
approach gave excellent results with the best hyper-
parameters. We used four metrics for evaluation of the
performance of model accuracy, precision, recall, and F1-
Measure. Fitness value is calculated by using WSM, and
performance is achieved with 92.86% on the given dataset.

We also compared our proposed model with the baseline
CNNmodel.-e accuracy of our model with value 96.21% is
better as compared to another state-of-the-art technique.
Future work can use different optimizing algorithms such as
GA, PSO, and GWO for improving the model performance
and achieving the best hyperparameters of the model; large
dataset can be used for checking the proposed hybrid CNN-
HHO model, to improve the accuracy of bug severity
classification problem, and other DL approaches such as
LSTM, RNN etc. can be used with the optimizing algorithm
for bug severity prediction problem.

Data Availability

-e [IoT Medical Device’s Dataset for Bug Sever- ity pre-
diction] data used to support the findings of this study have
been deposited in the [Kaggle] repos- itory ([https://www.
kaggle.com/datasets/iqrayousaf/iot- medical-devices-dataset]).

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Acknowledgments

-is research was supported in part by Basic Science Re-
search Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education (NRF-
2021R1A6A1A03039493), in part by the NRF grant funded
by the Korea Government (MSIT) (NRF-
2022R1A2C1004401), and in part by the 2022 Yeungnam
University Research Grant. -is research has also been
conducted by the Research Grant of Kwangwoon University,
Seoul, Korea, in 2022.

References

[1] R. Bibyan, S. Anand, and A. Jaiswal, “Assessing the severity of
software bug using neural network,” in Strategic System As-
surance and Business Analytics, pp. 491–502, Springer, Berlin,
2020.

[2] A. R. Javed, L. G. Fahad, A. A. Farhan et al., “Automated
cognitive health assessment in smart homes using machine
learning,” Sustainable Cities and Society, vol. 65, Article ID
102572, 2021.

[3] R. J. Oskouei, Z. MousaviLou, Z. Bakhtiari, and K. B. Jalbani,
“Iot-based healthcare support system for alzheimer’s pa-
tients,” Wireless Communications and Mobile Computing,
vol. 2020, pp. 1–15, Article ID 8822598, 2020.

[4] M. -oma, “Don’t let your iot prescription become a risky
affliction,” Fe Travelers Indemnity Company, 2017.

[5] N. Lalband and D. Kavitha, “Software engineering for smart
healthcare applications,” International Journal of Innovative
Technology and Exploring Engineering, vol. 8, pp. 325–331,
2019.

Table 6: Performance comparison of baseline-CNN and hybrid CNN-HHO model on healthcare dataset.

Models Accuracy (%) Precision (%) Recall (%) F1-measure (%) WSM (fitness value)
Baseline-CNN 84.58 75.98 83.93 85.52 82.50%
CNN-HHO 96.21 88.06 92.54 94.68 92.86%

Accuracy Precision Recall F1-measure WSM
(fitness)

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

(%
)

Baseline-CNN
CNN-HHO

Figure 6: Comparison of the hybrid proposed approach with
baseline-CNN model.

12 Computational Intelligence and Neuroscience

https://www.kaggle.com/datasets/iqrayousaf/iot-%20medical-devices-dataset
https://www.kaggle.com/datasets/iqrayousaf/iot-%20medical-devices-dataset

[6] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu, and I. Illahi, “Deep
neural network-based severity prediction of bug reports,”
IEEE Access, vol. 7, Article ID 46846, 2019.

[7] M. N. Pushpalatha and M. Mrunalini, “Predicting the severity
of open source bug reports using unsupervised and supervised
techniques,” in Research Anthology on Usage and Develop-
ment of Open Source Software, Pages 676–692IGI Global,
Pennsylvania, USA, 2021.

[8] A. Kaur and S. Goyal Jindal, “Severity prediction of bug re-
ports using text mining: a systematic review,” in Proceedings of
the 2018 International Conference on Advances in Computing,
Communication Control and Networking (ICACCCN),
pp. 774–780, IEEE, India, October 2018.

[9] K. Korosh Sabor, A. Hamou-Lhadj, A. Trabelsi, and Jame-
leddine Hassine, “Predicting bug report fields using stack
traces and categorical attributes,” in Proceedings of the 29th
Annual International Conference on Computer Science and
Software Engineering, pp. 224–233, Ontario, Canada, No-
vember 2019.

[10] R. Jetley and C. Ben, Diagnosing Medical Device Software
Defects Using Static Analysis”. CoverityMD&DI, 2009.

[11] H. Turabieh, M. Mafarja, and X. Li, “Iterated feature selection
algorithms with layered recurrent neural network for software
fault prediction,” Expert Systems with Applications, vol. 122,
no. 27–42, pp. 27–42, 2019.

[12] I. Tumar, Y. Hassouneh, H. Turabieh, and T. -aher, “En-
hanced binary moth flame optimization as a feature selection
algorithm to predict software fault prediction,” IEEE Access,
vol. 8, pp. 8041–8055, 2020.

[13] A. H. Dao and C.-Z. Yang, “Severity prediction for bug reports
using multi-aspect features: a deep learning approach,”
Mathematics, vol. 9, no. 14, 2021.

[14] L. A. F. Gomes, R. d S. Torres, and M. L. Cortes, “Bug report
severity level prediction in open source software: a survey and
research opportunities,” Information and Software Technol-
ogy, vol. 115, pp. 58–78, 2019.

[15] M. N. Pushpalatha and M. Mrunalini, “Predicting the severity
of closed source bug reports using ensemble methods,” in
Smart Intelligent Computing and Applications, pp. 589–597,
Springer, Berlin, 2019.

[16] A. Hamdy and A. El-Laithy, “Smote and feature selection for
more effective bug severity prediction,” International Journal
of Software Engineering and Knowledge Engineering, vol. 29,
no. 06, pp. 897–919, 2019.

[17] A. Kukkar, R. Mohana, A. Nayyar, J. Kim, B. G. Kang, and
N. Chilamkurti, “A novel deep-learning-based bug severity
classification technique using convolutional neural networks
and random forest with boosting,” Sensors, vol. 19, no. 13,
2964 pages, 2019.

[18] F. Khan, S. Kanwal, S. Alamri, and B. Mumtaz, “Hyper-pa-
rameter optimization of classifiers, using an artificial immune
network and its application to software bug prediction,” IEEE
Access, vol. 820954 pages, 2020.

[19] I. Y. Chen, E. Pierson, S. Rose, S. Joshi, K. Ferryman, and
M. Ghassemi, “Ethical machine learning in healthcare,”
Annual Review of Biomedical Data Science, vol. 4, no. 1,
pp. 123–144, 2021.

[20] A. Mubashar, K. Asghar, A. R. Javed et al., “Storage and
proximity management for centralized personal health rec-
ords using an ipfs-based optimization algorithm,” Journal of
Circuits, Systems, and Computers, vol. 31, no. 01, Article ID
2250010, 2022.

[21] K. Rashmikant Dalal, “Analysing the implementation of
machine learning in healthcare,” in Proceedings of the 2020

International Conference on Electronics and Sustainable
Communication Systems (ICESC), IEEE, Coimbatore, India,
July 2020.

[22] M. Supriya and A. J. Deepa, “Machine learning approach on
healthcare big data: a review,” Big Data and Information
Analytics, vol. 5, no. 1, pp. 58–75, 2020.

[23] C. Shyamala and S. A. Sahaaya Arul Mary, “Defect prediction
in medical software using hybrid genetic optimized support
vector machines,” Journal of Medical Imaging and Health
Informatics, vol. 6, no. 7, pp. 1600–1604, 2016.

[24] A. Naseer, T. Yasir, A. Azhar, T. Shakeel, and K. Zafar,
“Computer-aided brain tumor diagnosis: performance eval-
uation of deep learner cnn using augmented brain mri,”
International Journal of Biomedical Imaging, vol. 2021,
pp. 2021–2111, Article ID 5513500, 2021.

[25] M. Rizwan, A. Shabbir, A. R. Javed, M. Shabbir, T. Baker, and
D. Al-Jumeily Obe, “Brain tumor and glioma grade classifi-
cation using Gaussian convolutional neural network,” IEEE
Access, vol. 10, Article ID 29731, 2022.

[26] D. R. Wallace and D. R. Kuhn, “Failure modes in medical
device software: an analysis of 15 years of recall data,” In-
ternational Journal of Reliability, Quality and Safety Engi-
neering, vol. 08, no. 04, pp. 351–371, 2001.

[27] M. A. R. T. Y. N. -omas and Harold -imbleby, “Computer
bugs in hospitals: a new killer,” IT, cybersecurity and risk to
patients, gresham college, gresham college, 2018.

[28] S. Darwish, I. Nouretdinov, and S. D. Wolthusen, “Towards
composable threat assessment for medical iot (miot),” Pro-
cedia Computer Science, vol. 113, pp. 627–632, 2017.

[29] M. Kumari, M. Sharma, and V. B. Singh, “Severity assessment
of a reported bug by considering its uncertainty and irregular
state,” International Journal of Open Source Software &
Processes, vol. 9, no. 4, pp. 20–46, 2018.

[30] V. Mondreti and C. J. Satish, “Bug severity prediction system
using xgboost framework,” in Proceedings of the 2020 IEEE
International Conference on Machine Learning and Applied
Network Technologies (ICMLANT), IEEE, India, December
2020.

[31] L. Kumar, M. Kumar, L. Bhanu Murthy, S. Misra, V. Kocher,
and S. Padmanabhuni, “An empirical study on application of
word embedding techniques for prediction of software defect
severity level,” in Proceedings of the 2021 16th Conference on
Computer Science and Intelligence Systems (FedCSIS),
pp. 477–484, IEEE, Lodz, Poland, September 2021.

[32] M. Sharma, M. Kumari, and V. B. Singh, “Multi-attribute
dependent bug severity and fix time prediction modeling,”
International Journal of System Assurance Engineering and
Management, vol. 10, no. 5, pp. 1328–1352, 2019.

[33] A. Baarah, A. Aloqaily, Z. Salah, M. Zamzeer, and M. Sallam,
“Machine learning approaches for predicting the severity level
of software bug reports in closed source projects,” Interna-
tional Journal of Advanced Computer Science and Applica-
tions, vol. 10, no. 8, 14569 pages, 2019.

[34] A. Kukkar, R. Mohana, and Y. Kumar, “Does bug report
summarization help in enhancing the accuracy of bug severity
classification?” Procedia Computer Science, vol. 167,
pp. 1345–1353, 2020.

[35] G. Yang, T. Zhang, and B. Lee, “An emotion similarity based
severity prediction of software bugs: a case study of open
source projects,” IEICE - Transactions on Info and Systems,
vol. 101.D, no. 8, 2018.

[36] S. Guo, X. Chen, and D. Yu, “Defect report severity prediction
based on genetic algorithms and convolutional neural net-
work,” in Proceedings of the 2020 International Symposium on

Computational Intelligence and Neuroscience 13

Feoretical Aspects of Software Engineering (TASE),
vol. 17–24, IEEE, Hangzhou, China, December 2020.

[37] R. Malhotra and A. Chauhan, “Application of xgboost algo-
rithm and deep learning tech-niques for severity assessment
of software defect reports,” Indian Journal of Computer Sci-
ence and Engineering, vol. 11, no. 3, pp. 267–276, 2020.

[38] A. L.-J. Hamza, Detecting Bug Severity Level Using Machine
Learning Techniques, Middle East University, Oman, PhD,
2021.

[39] N. Leveson, Medical Devices: Fe Ferac-25”. Appendix of:
Safeware: System Safety and Computers, 1995.

[40] M. Wang and F. Hu, “-e application of nltk library for
python natural language processing in corpus research,”
Feory and Practice in Language Studies, vol. 11, no. 9,
pp. 1041–1049, 2021.

[41] Q. A. Shreda and A. A. Hanani, Identifying Non-functional
Requirements from Unconstrained Documents Using Natural
Language Processing and Machine Learning Approaches, IEEE
Access, 2021.

[42] Cancer, Padding For Nlp. Why and what ? — by Caner
— Medium, https://medium.com/@canerkilinc/padding-for-
nlp-7dd8598c916a, 2020.

[43] J. Brownlee, How to Use Word Embedding Layers for Deep
Learning with Keras, https://machinelearningmastery.com/
use-word-embedding-layers-deep-learning-keras/, 2017.

[44] F. Altenberger and C. Lenz, A Non-technical Survey on Deep
Convolutional Neural Network Architectures, https://arxiv.
org/abs/1903.10921, 2018.

[45] D. Alsaleh and S. Larabi-Marie-Sainte, “Arabic text classifi-
cation using convolutional neural network and genetic al-
gorithms,” IEEE Access, vol. 9, Article ID 91670, 2021.

[46] H. M. Balaha, E. M. El-Gendy, and M. M. Saafan, “Covh2sd: a
covid-19 detection approach based on Harris hawks opti-
mization and stacked deep learning,” Expert Systems with
Applications, vol. 186, Article ID 115805, 2021.

[47] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and
H. Chen, “Harris hawks optimization: algorithm and appli-
cations,” Future Generation Computer Systems, vol. 97,
pp. 849–872, 2019.

[48] E. H. Houssein, M. E. Hosney, D. Oliva,W.M.Mohamed, and
M. Hassaballah, “A novel hybrid Harris hawks optimization
and support vector machines for drug design and discovery,”
Computers & Chemical Engineering, vol. 133, Article ID
106656, 2020.

[49] N. Van -ieu, A Collection of the State-Of-Fe-Art Meta-
Heuristics Algorithms in python: Mealpy, 2020.

[50] T. R. Gadekallu, G. Srivastava, M. Liyanage, C. L. Chowdhary,
S. Koppu, and P. K. R. Maddikunta, “Hand gesture recognition
based on a Harris hawks optimized convolution neural net-
work,” Computers & Electrical Engineering, vol. 100, Article ID
107836, 2022.

14 Computational Intelligence and Neuroscience

https://medium.com/@canerkilinc/padding-for-nlp-7dd8598c916a
https://medium.com/@canerkilinc/padding-for-nlp-7dd8598c916a
https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/
https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/
https://arxiv.org/abs/1903.10921
https://arxiv.org/abs/1903.10921

