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Wavelength of a Turing‑type 
mechanism regulates 
the morphogenesis of meshwork 
patterns
Shan Guo1,2, Ming‑zhu Sun1,2 & Xin Zhao1,2*

The meshwork pattern is a significant pattern in the development of biological tissues and organs. It 
is necessary to explore the mathematical mechanism of meshwork pattern formation. In this paper, 
we found that the meshwork pattern is formed by four kinds of stalk behaviours: stalk extension, tip 
bifurcation, side branching and tip fusion. The Turing‑type pattern underlying the meshwork pattern 
is a Turing spot pattern, which indicates that the Turing instability of the spot pattern promotes 
activator peak formation and then guides the formation of meshwork patterns. Then, we found 
that the Turing wavelength decreased in turn from tip bifurcation to side branching to tip fusion 
via statistical evaluation. Through the functional relationship between the Turing wavelength and 
model parameters ( ε, ρ

A
 and ρ

H
 ), we found that parameters ε and ρ

H
 had monotonic effects on the 

Turing wavelength and that parameter ρ
A

 had nonmonotonic effects. Furthermore, we performed 
simulations of local meshwork pattern formation under variable model parameter values. The 
simulation results verified the corresponding relationship between the Turing wavelength and stalk 
behaviours and the functional relationship between the Turing wavelength and model parameters. 
The simulation results showed that the Turing wavelength regulated the meshwork pattern and 
that the small Turing wavelength facilitated dense meshwork pattern formation. Our work provides 
novel insight into and understanding of the formation of meshwork patterns. We believe that studies 
associated with network morphogenesis can benefit from our work.

Meshwork patterns are a significant pattern for the development of biological tissues and organs, such as alveolar 
microvascular networks, which are very important for nutrient transport and gas exchange. Our previous work 
simulated the generation of meshwork patterns based on an activator-inhibitor reaction–diffusion  model1. How-
ever, the formation of a meshwork pattern is a complicated process that is formed by sprouting, sprout extension 
and  anastomosis2. It is not easy to explain the transformation of stalk behaviour in the process of meshwork 
pattern formation by the interaction between morphogens. To further explain meshwork pattern formation, the 
mathematical mechanism underlying the meshwork pattern is explored in this paper.

A mathematical model—the Meinhardt  model3—is used in this paper to investigate the mechanism of mesh-
work pattern formation. The Meinhardt model is a reaction–diffusion model based on molecular mechanisms. 
It describes the interaction between morphogens. Some other models of meshwork morphogenesis based on 
other mechanisms also exist. For example, the Murray model is based on a mechanical mechanism that describes 
meshwork pattern formation through cell aggregation in the culture  system4, and the Chaplain-Anderson model 
is based on a cellular mechanism that describes meshwork pattern formation by multigenerational tip bifurcation 
under exogenous  stimulation2. Compared with the Murray model and Chaplain-Anderson model, the Mein-
hardt model can perform similar simulation  results5,6, perform more modes of branching (side branching and 
tip bifurcation)7, and form complex patterns by branch growth. Based on the model, the meshwork pattern was 
performed in our previous work. In a spherical shell domain, a tree-like pattern is first formed by multigenera-
tional branches and then transferred to the meshwork pattern through branch tip  fusion1. In this paper, we aim 
to further explore the mathematical mechanism underlying meshwork pattern formation.

The Meinhardt model used in this paper is a reaction–diffusion model based on the Turing activator-inhib-
itor  theory3. The Turing-type model uses dynamic interactions between activator and inhibitor molecules to 
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determine the wavelength of patterns and produces periodic patterns of spots or stripes by Turing  instability8–13. 
In nature, the formation of repetitive structures is often consistent with a reaction–diffusion mechanism, or the 
Turing model, of self-organizing  systems14,15. For example, Hox genes regulate the polydactyly in mice by control-
ling the wavelength of a Turing-type  mechanism16. Therefore, Turing mechanism research is an effective way to 
explore the formation of patterns. In our previous study on branching patterns, Turing instability was shown in 
the dynamics of side branching and tip  bifurcation6, and the Turing wavelength underlying the branching pat-
terns was  explored17. In this paper, we conduct Turing instability analysis to reveal the mathematical mechanism 
underlying the meshwork pattern.

The formation of meshwork patterns is a complicated process. Various stalk behaviours occur in the process 
of meshwork pattern formation, such as sprouting, sprout growth, sprout splitting and anastomosis. In fact, 
these stalk behaviours exist widely in the network structure development of biological tissues and organs, such 
as the sprout growth of a mosaic embryoid body in vitro (Supplementary Fig. S1a)18,19, arterial arborescence in 
the intracortical capillary networks from the collateral sulcus in the temporal lobe (Supplementary Fig. S1b)20, 
intersegmental vessel (ISV) sprouting from the dorsal aorta in zebrafish embryos (Supplementary Fig. S1c)18,21, 
and vessel fusion of the dorsal longitudinal anastomotic vessel (DLAV) in zebrafish embryos (Supplementary 
Fig. S1d)21. As the meshwork structure is composed of these stalk behaviours, we attempt to discern the Turing 
characteristics of meshwork patterns by exploring the Turing characteristics of stalk behaviours.

In this paper, we aimed to explore the mathematical mechanism of meshwork patterns through Turing 
instability analysis. First, we performed local meshwork pattern formation, including four kinds of stalk behav-
iours, and explored the Turing-type patterns underlying the stalk behaviours. Second, we explored the Turing 
wavelength corresponding to the stalk behaviours through statistical evaluation. Third, we obtained the method 
of adjusting the Turing wavelength by the functional relationships between the Turing wavelength and model 
parameters. Then, we explored the influences of model parameters on meshwork pattern formation, which veri-
fied the regulatory function of the Turing wavelength on meshwork patterns.

Methods
Mathematical model. Our mathematical model consists of a set of partial differential equations for reac-
tion and diffusion between biochemical morphogens, as shown in Eqs. (1–4)3. There were four variables in 
the model: activator A, inhibitor H, substrate S, and cell differentiation marker Y. Variable Y is the marker for 
recording the state of cell differentiation (Y ~ 0 means undifferentiated state, Y ~ 1 means differentiated state).

This model assumes that activator and inhibitor mutually react and diffuse under the participation of sub-
strate, form local high concentration signals of activator, and then induce cell differentiation to form the struc-
ture. In the model, Eq. (1) indicates that activator A is produced in autocatalytic reaction kinetics with a depend-
ence on substrate S and is simultaneously inhibited by inhibitor H ( cA

2S
H  ), and activator A is concurrently secreted 

by differentiated cells Y at rate ρA ( ρAY  ), diffuses with diffusion coefficient DA ( DA∇
2A)A , and degrades at rate 

µ ( −µA ); Eq. (2) indicates that inhibitor H is catalysed by activator A with a dependence on substrate S ( cA2S ), 
secreted by differentiated cells Y at rate ρH ( ρHY  ), diffuses with diffusion coefficient DH ( DH∇

2H ), and degrades 
at rate v ( −νH );  Eq. (3) indicates that substrate S is produced at a constant rate c0 , is consumed by differentiated 
cells Y at rate ε ( −εYS ), diffuses with diffusion coefficient DS ( DS∇

2S ), and degrades at rate γ ( −γ S ); Eq. 4 indi-
cates that marker Y of cell differentiation is activated by high concentrations of activator A ( dA ), degrades at rate 
e ( −eY  ), and has a positive feedback effect on itself, and this effect will be saturated at high concentration of Y 
( Y2

1+fY2).

Turing instability underlying the model. In our mathematical model, the interaction between cell dif-
ferentiation marker Y and substrate S produced the spatial extension of the Y-stalk, and the interaction between 
activator A and inhibitor H formed the local pattern on the stalk. Therefore, the model could be decoupled into 
two semi-independent subsystems: classical activator-inhibitor dynamics (A/H local dynamics) and extension 
of the Y-stalk (Y/S dynamics). The Turing instability was exhibited by the local pattern formed by the A/H local 
dynamics. Thus, we used the decoupled model of A/H local dynamics to explore the Turing instability underly-
ing the meshwork patterns.

The model of the activator-inhibitor subsystem was decoupled from the 4-variable model by making Y and 
S controllable parameters in the local A/H dynamics (as depicted in Fig. 1a,b). When the Turing instability 
region (see Supplement Information for the Turing instability analysis) and the differentiation trajectory of a 
cell (SY-curve) were achieved, a (S, Y) pair had to be obtained at the centre of the overlapping segment of the 

(1)∂A

∂t
=

cA2S

H
− µA+ ρAY + DA∇

2A,

(2)
∂H

∂t
= cA2S − vH + ρHY + DH∇

2H ,

(3)
∂S

∂t
= c0 − γ S − εYS + DS∇

2S,
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Y2
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.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4813  | https://doi.org/10.1038/s41598-021-84313-7

www.nature.com/scientificreports/

SY-curve and Turing instability region. Then, the (S, Y) pair was substituted into parameters S and Y of the A/H 
subsystem, and the Turing-type pattern could be obtained by the A/H subsystem model (as depicted in Fig. 1c). 
A Turing pattern corresponds to a Turing wavelength. The dispersion relations describe a function of Re(�) on 
wavenumber k , where � is the eigenvalue with the largest real part (see Supplement Information for obtaining 
the dispersion relations). The Turing wavelength was calculated by dividing 2π by the critical wavenumber at 
which the maximum value of Re(�) occurred (as depicted in Fig. 1d).

Numerical simulation. Simulation environment settings of meshwork patterns. In this paper, the simula-
tion environment settings of meshwork patterns were basically the same as those in our previous  works1,7. A two-
dimensional (2D) square domain was established for local meshwork pattern formation. The square computing 
space was orthogonally discretized into a uniform grid with a space step �x = �y = 0.3 . The grid size was 100 
× 100. The finite-difference scheme was used for spatial discretization. The time step was �x ×�y × 0.4× DH . 
The initial conditions of the simulations were set as follows. In the growth domain, activator, inhibitor and sub-
strate were uniformly distributed. The concentrations of activator and inhibitor were set to very small values: 
A = 0.001 , H = 0.01 , the concentrate of substrate was set to a high value: S = 1.0 . The initial growth site of 
structures was represented by Y = 1 in a small region, and the other part of the domain was set as Y = 0 . Then, 
the model was numerically simulated using a forward Euler method with no-flux boundary conditions. The dif-
fusion operator was a four-point Laplacian on a uniform Cartesian grid. The stalk growth was described by con-
verting variable Y from Y = 0 to Y = 1 in the presence of high concentrations of activator (the dA term in Eq. 4).

Simulation environment settings of Turing patterns. The Turing pattern was performed in a 2D 
square domain based on the model of the activator-inhibitor subsystem (Eqs. 1 and 2). The model was numeri-
cally simulated using a forward Euler method with periodic boundary conditions. The grid size was 200 × 200. 
The parameter values were set according to the full system. The initial values of the activator and inhibitor were 
set to A = 1.0 and H = 0.01 . The simulation started from a randomly perturbed uniform initial condition and 
stopped when the stationary spatial pattern was formed.

Figure 1.  Schematic diagram of the Turing instability research scheme. (a) The mathematical model for 
meshwork pattern formation. (b) The decoupled model of the activator-inhibitor subsystem. (c) A crescent-
shaped Turing region is presented in the S–Y parameter space of the activator-inhibitor model. The red curve 
is the SY curve for the cell differentiation trajectory at the site in the meshwork structure. Point p1 indicates the 
cell differentiation state with Turing instability, the (S, Y) pair of which is substituted into the activator-inhibitor 
subsystem to acquire the Turing-type pattern. In the Turing pattern, black indicates a low concentration of 
activator, while white indicates a high concentration of activator. (d) The dispersion relation for the Turing 
pattern. k1 is the critical wavenumber at which the maximum value of Re(�) occurs. The Turing wavelength is 
calculated by dividing 2 π by the critical wavenumber k1.
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Results
Turing spot patterns underlying the meshwork pattern. Meshwork pattern formation is a compli-
cated process. The network structures in biological tissues and organs include various stalk behaviours, such 
as sprouting, sprout growth, sprout splitting and anastomosis, as shown in Supplementary Fig. S118–21. In this 
section, a local meshwork pattern formation (Fig. 2a) was performed in a 2D square domain. There were four 
kinds of typical stalk behaviours in the meshwork pattern: stalk extension, tip bifurcation, side branching, and 
branch tip fusion (Fig. 2b). These stalk behaviours corresponded to sprouting, sprout growth, sprout splitting 
and anastomosis in biological network structures. The simulation result of the meshwork pattern confirmed that 
the meshwork pattern was formed by the four stalk behaviours. Then, the Turing patterns underlying the stalk 
behaviours for meshwork pattern formation were obtained.

The way to obtain Turing patterns is shown in Fig. 1c By calculating the S–Y parameter space of the A/H 
submodel for Turing instability, the Turing region was obtained, as shown in Fig. 2c. The SY curves (shown in 
Fig. 2c recording cell differentiation trajectories) of typical sites representing stalk behaviours were also plotted 
in the S–Y plane. Then, the simulation results of the Turing patterns (Fig. 2d) underlying the stalk behaviours 
were obtained by the A/H submodel, and the 3-dimensional (3D) form of the Turing patterns is shown in Fig. 2e. 
The density histogram of Turing patterns is shown in Fig. 2f.

Figure 2a shows the structure of a local meshwork pattern in a 2D square domain. This structure is generated 
from the two initial growth sites, which are located on the adjacent sides of the square domain. In the structure, 
there are four kinds of stalk behaviours for meshwork pattern formation: stalk extension, tip bifurcation, side 
branching and tip fusion. Figure 2b shows the dynamic process of the formation of the four stalk behaviours. The 
typical sites (p1–p4) of each stalk behaviour are marked by black triangles, such as the site on the stalk extension 
trajectory, the bifurcation site where one stalk splits into two, the sprouting site where a new lateral branch occurs, 
and the fusion site where two stalks merge into one. These sites represent the four kinds of stalk behaviours. Then, 
the SY curves of the cell differentiation trajectories of the stalk behaviours are extracted from the typical sites (as 
shown in Fig. 2c). Moreover, the crescent-shaped Turing region of the model is also plotted in the S–Y plane in 
Fig. 2c. The points (1,2,3,4 marked by ‘×’) are located at the centre of the overlapping segments of SY-curves and 
the Turing region. By extracting the (S, Y) pairs of these points and substituting them into the A/H subsystem, 
the Turing-type pattern can be obtained by simulation of the A/H submodel. Figure 2d shows the Turing patterns 
underlying the four stalk behaviours, which are all spot patterns. Figure 2e shows the Turing spot patterns in 3D 
form. The spot patterns are in the form of peaks of activator concentration. This result indicates that the Turing 
instability of stalk behaviours promotes the formation of activator peaks. As a high concentration of activator 
activates irreversible differentiation, structure formation is facilitated by Turing instability of the spot pattern. 
Figure 2f shows the number of spots of the underlying Turing pattern of stalk behaviours. The number of spots 
of Turing spot patterns is quite different between different stalk behaviours.

Above all, we conclude that the meshwork pattern is formed via four kinds of stalk behaviours: stalk extension, 
tip bifurcation, side branching and tip fusion; the Turing patterns corresponding to the stalk behaviours are all 
spot patterns, and thus, the Turing-type pattern underlying the meshwork pattern is a Turing spot pattern; the 
Turing instability of spot pattern promotes activator peak formation and then guides the formation of meshwork 
patterns; the density of Turing spot pattern is quite different among the four stalk behaviours.

Turing wavelength underlying stalk behaviours of meshwork pattern formation. The mesh-
work pattern formation includes various stalk behaviours: stalk extension, tip bifurcation, side branching and 
tip fusion. These stalk behaviours have the same Turing-type pattern: Turing spot pattern (as shown in Fig. 2d,e). 
However, the spot density of the Turing spot pattern is quite different between the four stalk behaviours (as 
shown in Fig. 2f). This means that there are differences in the Turing characteristics of the four stalk behav-

Figure 2.  Turing patterns underlying the stalk behaviours for meshwork pattern formation. (a) The meshwork 
pattern formed in the square domain, which includes the four kinds of stalk behaviours: stalk extension, tip 
bifurcation, side branching and tip fusion. There are two initial growth sites located on the adjacent boundaries 
of the domain (marked by black arrows). In the image, red represents the generated meshwork structure, white 
represents the remaining region without structure generation, and black lines represent the outline of the 
structure. The blue dotted boxes indicate the areas where stalk behaviours occur. (b) The dynamic process of 
activator A during formation of the four stalk behaviours. (b1) stalk extension; (b2) tip bifurcation; (b3) side 
branching; (b4) tip fusion. Sites p1, p2, p3 and p4, marked by black triangles, indicate the typical sites of stalk 
behaviour. The differentiation process at these sites was used for further exploration of Turing characteristics. 
Blue represents a low concentration of activator A, red represents a high concentration of activator A, and the 
white dashed line indicates the outline of stalks. (c) The crescent-shaped Turing region and the SY curves of 
differentiation trajectories at the sites (p1, p2, p3 and p4 in (b)) in the four stalk behaviours. Points (1, 2, 3 and 
4, marked by ‘×’) indicate the cell differentiation state with Turing instability. The (S, Y) pairs of these points 
are used to acquire the Turing-type pattern. (d) The underlying Turing patterns of the four stalk behaviours. 
The Turing patterns are obtained by the A/H submodel when the (S, Y) pairs of points (1, 2, 3 and 4 in (c)) 
are substituted into the model. Black represents a low concentration of activator A, and white represents a 
high concentration of activator A. (e) The Turing patterns underlying the four stalk behaviours in 3D form. 
(f) The number of spots in the underlying Turing spot patterns of stalk behaviours. The mean and standard 
deviation of each stalk behaviour are calculated from ten Turing patterns with random initial disturbance. 
(Parameters: DA = 0.02,DH = 0.26,Ds = 0.06, c = 0.002, c0 = 0.02,µ = 0.16, v = 0.04, γ = 0.02,

ε = 0.475, d = 0.008, e = 0.1, f = 10, ρA = 0.03, ρH = 0.00005).

▸
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iours. To quantitatively evaluate the Turing characteristics underlying the stalk behaviours, the Turing wave-
length of each stalk behaviour is explored in this section because the Turing pattern is characterized by a criti-
cal  wavelength22. The Turing wavelength was explored by dispersion relation analysis. The dispersion relations 
describe a function of Re(λ) that depends on wavenumber k, where λ is the eigenvalue with the largest real part 
(see Supplementary Information for obtaining the dispersion relations). The wavelength is calculated by dividing 
2π by the critical wavenumber at which the maximum value of Re(λ) occurs.

To explore the Turing wavelength of stalk behaviours more conveniently, new simulation conditions were set 
for each stalk behaviour, as shown in Fig. 3. For stalk extension, an elongated rectangular channel was set as the 
growth domain for one stalk extension (black rectangular strip in Fig. 3a). The width of the channel was 19, and 
the grid size of the whole domain was 50× 100 . Figure 3b shows the square space, which was set as the growth 
domain for tip bifurcation and side branching. The grid size of the domain was 150× 150 . As the branching 
modes (tip bifurcation and side branching) are regulated by the parameter ε7,17, the square domain was used for 
tip bifurcation when ε was high and for side branching when ε was low. Figure 3c shows the simulation environ-
ment settings for branch tip fusion. Two initial growth sites were set on the top of a square domain, and a strip 
area with a higher concentration of substrate was set between the two initial growth sites to drive the branch 
tips to meet and fuse together. The grid size of the square domain was 120× 120 . The width of the strip with a 
higher concentration of substrate was 15. The substrate production rate was set to c0 = 0.05 in the strip area and 
c0 = 0.02 in the other region.

Then, under the simulation conditions shown in Fig. 3, simulations of each stalk behaviour were performed 
with variable parameters (ε, ρA and ρH). A large number of simulations of the four stalk behaviours were per-
formed to explore the Turing wavelength corresponding to each stalk behaviour through statistical evaluation. 
Part of the simulation results are shown in Supplementary Figs. S2–S5. Through dispersion relation analysis, 
the Turing wavelengths for each simulation of stalk behaviours were obtained and are shown in Fig. 4. Table 1 
records the sample size of each stalk behaviour and the mean and standard deviation of the Turing wavelength 
underlying stalk behaviours. Figure 4 shows the Turing wavelengths of the four stalk behaviours through statisti-
cal evaluation. The histogram intuitively indicates that the Turing wavelengths corresponding to the four stalk 
behaviours were different. Table 1 quantitatively shows the different Turing wavelengths underlying the stalk 
behaviours. Among the four stalk behaviours, tip bifurcation, side branching and tip fusion were closely related 
to the complexity of meshwork patterns. The Turing wavelength corresponding to tip bifurcation was the largest, 
and the Turing wavelength decreased in turn from tip bifurcation to side branching to tip fusion. The Turing 
wavelength of stalk extension was close to that of tip fusion. Therefore, we concluded that a larger Turing wave-
length was more conducive to tip bifurcation, and a smaller Turing wavelength was more conducive to tip fusion.

Figure 3.  Simulation environment settings for each stalk behaviour formation. (a) Simulation environment for 
stalk extension. The black channel is the growth region for one stalk extension. The width of the channel is 19, 
and the grid size of the whole domain is 50× 100 . In the black region, the substrate production rate is c0 = 0.02 , 
and the initial value of the substrate is Sinit = 1.0 . (b) Simulation environment for tip bifurcation and side 
branching. The square region is set as the growth region, and the grid size is 150× 150 . This domain is used for 
tip bifurcation when parameter ε is high and for side branching when ε is low. (c) Simulation environment for 
tip fusion. A local high concentration substrate region, set between the two initial growth sites, will drive stalk 
tips to meet and fuse. The grid size of the whole domain is 120× 120 . In the local high concentration region 
(black strip), the substrate production rate is higher ( c0 = 0.05) and the initial value of substrate is Sinit = c0/γ 
( Sinit = 2.5 ), while in the other area, c0 = 0.02 and Sinit = 1.0 . The width of the strip region is 15. The distance 
between the strip region and the upper boundary of the growth domain is 12. The distance between the 
strip region and the initial growth sites in the horizontal direction is 10. The initial growth sites, set as small 
rectangular regions in which Y = 1, are indicated by the black arrows in (a–c).
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Relationship between Turing wavelength and model parameters. Figure 4 shows that the differ-
ent stalk behaviours were facilitated by different Turing wavelengths. Stalk behaviours appeared to be regulated 
by the Turing wavelength and then the meshwork pattern. However, a way to control the Turing wavelength is 
needed before exploring the effects of the Turing wavelength on meshwork patterns. As the meshwork pattern is 
formed based on a mathematical model, a strategy for Turing wavelength regulation is to vary the values of the 
model parameters.

In our model, there were 14 different parameters, most of which were the biological parameters of mor-
phogens, such as the diffusion coefficients ( DA,DH ,Ds ), degradation rates ( µ, v, γ ) and autocatalytic rate 
of activator (c); these are certain for given  morphogens23. For example, the effective diffusion coefficient of 
Dpp (a BMP homologue as activator) in tissue is (0.1 ± 0.05) ×  10−8  cm2  s–1, and the Dpp degradation rate is 
(2.52 ×  10−4) ± (1.29 ×  10−4)s−123. The parameters ( d, e, f  ) are used to describe the cell differentiation, which are 
set to certain values ( d = 0.008, e = 0.1, f = 10 ). Therefore, the pattern is usually regulated by the remaining 
parameters ( c0, ε, ρA, ρH ). These parameters ( c0, ε, ρA, ρH ) have shown sensitive influences on patterns in our 
previous  work7. Among them, parameter c0 is the constant rate of substrate production, which provides the 
environment for stalk growth, while the other three parameters ( ε, ρA, ρH ) are directly related to stalks (param-
eter ε is the substrate consumption rate by differentiated cells, parameter ρA is the activator secretion rate by 
differentiated cells, and parameter ρH is the inhibitor secretion rate by differentiated cells). Thus, these three 
parameters ( ε, ρA, ρH ) were selected to regulate the Turing wavelength in this paper. The relationships between 
the Turing wavelength and the three model parameters are explored in this section.

Figure 4.  Turing wavelength of the four stalk behaviours under variable model parameter values. The scatter 
markers indicate the Turing wavelengths of each simulation of stalk behaviours. The histogram shows the mean 
and standard deviation of the Turing wavelength of each stalk behaviour. Parameter ρA ranges from 0.02 to 0.05 
at interval 0.01, ρH ranges from 0.00005 to 0.00009 at interval 0.00001, and ε ranges from 0.10 to 0.30 at interval 
0.05 for the mode of side branching and ranges from 0.5 to 0.9 at interval 0.1 for the mode of tip bifurcation.

Table 1.  Turing wavelength of four kinds of stalk behaviours.

Type Sample size Mean of Turing wavelength Standard deviation of Turing wavelength

Stalk extension 142 7.6493 0.9921

Tip bifurcation 84 8.1889 1.2713

Side branching 69 7.8114 1.0731

Tip fusion 124 7.6935 1.0351
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As mentioned in the Methods section, the Turing wavelength was calculated by dividing 2 π by the critical 
wavenumber at which the maximum value of Re(�) occurred. The function of eigenvalue � on wavenumber k 
was obtained through dispersion relation analysis. The dispersion relation analysis depends on the A/H sub-
model (Eqs. 1 and 2) (details are provided in Supplementary Information). The A/H model includes parameters 
ρAandρH directly. Therefore, the functional relationship between the Turing wavelength and parameters ρAandρH 
can be obtained by dispersion relation analysis. The function curves of the Turing wavelength on the parameters 
ρAandρH are shown in Fig. 5a,b, respectively.

The function curve in Fig. 5a shows that parameter ρA has a nonmonotonic effect on the Turing wavelength. 
With increasing ρA , the Turing wavelength decreases first and then increases. In Fig. 5b, the function curve 
shows that parameter ρH has a monotonic effect on the Turing wavelength. The Turing wavelength increases 
with increasing ρH.

Parameter ε was not able to obtain the functional relationship between the Turing wavelength and ε directly 
because it was not included in the A/H submodel. However, as mentioned in the Methods section, the A/H sub-
model was decoupled from the whole model by making S and Y controllable parameters in the A/H subsystem. 
When calculating the Turing wavelength through dispersion relation analysis, the selected (S, Y) pair satisfying 
Turing instability should be provided to the A/H subsystem. It is worth noting that the SY curve of the cell dif-
ferentiation trajectory was provided by the S/Y subsystem and closely related to parameters ε . Therefore, our 
strategy was to obtain the functional relations between the (S, Y) pair and parameter ε first and then substitute 
them into the dispersion relation analysis to obtain the relationship between the Turing wavelength and ε.

In this section, the structures were performed with parameter ε ranging from 0.1 to 1.1 at intervals of 0.2 in a 
square domain, as shown in Fig. 6a. With increasing ε , the structure changed from the mode of side branching to 
tip bifurcation. The crescent-shaped Turing instability region of the model and the SY curves of the cell differen-
tiation trajectory in these structures are shown in Fig. 6b. The (S, Y) pairs (marked by the symbol ‘x’ in Fig. 6b) 
satisfying Turing instability under different values of ε were extracted from the centre of overlapping segments 
of the SY-curves and Turing instability region. Through curve fitting based on the extracted (S, Y) pairs and the 
values of corresponding parameter ε , the fitting function between Y and S was Y = −0.1094× S−1.202 + 0.745 , 
the goodness of fit was R2 = 0.9998 , the fitting function between S and ε was S = −1.318× ε0.1134 + 1.611 , and 
the goodness of fit was R2 = 0.9955 . The curves of the Y–S fitting function and S–ε fitting function are shown 
in Fig. 6c,d, respectively. Then, parameter ε could be included in the A/H submodel by substituting the fitting 
functions. The functional relationship between the Turing wavelength and parameter ε could be obtained by 
dispersion relation analysis. The function curve is shown in Fig. 6e, revealing a monotonically increasing curve, 
which means that the Turing wavelength increased with an increasing parameter ε.

The Turing wavelength regulates meshwork pattern formation. According to the functional rela-
tionships between the Turing wavelength and model parameters (Figs. 5, 6e), the Turing wavelength could be 
regulated by the model parameters. The influences of the Turing wavelength on meshwork pattern formation are 
explored in this section. A square domain with two vertical initial growth points is set as the simulation condi-
tion for the local meshwork pattern formation.

Figure 5.  Function curves of the Turing wavelength on model parameters ρA and ρH . (a) 
Wavelength/ρA ; (Other parameters: DA = 0.02,DH = 0.26,Ds = 0.06, c = 0.002, c0 = 0.02,

µ = 0.16, v = 0.04, γ = 0.02, ε = 0.7, d = 0.008, e = 0.1, f = 10, ρH = 0.00008 .) (b) Wavelength/ρH . 
(Other parameters: DA = 0.02,DH = 0.26,Ds = 0.06, c = 0.002, c0 = 0.02,µ = 0.16, v = 0.04, γ = 0.02,

ε = 0.7, d = 0.008, e = 0.1, f = 10, ρA = 0.03).
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Figure 6.  Relationship between the Turing wavelength and parameter ε based on 
curve fitting and dispersion relation analysis. (a) The simulation results of structure 
formation under parameter ε ranging from 0.1 to 1.1 at intervals of 0.2. (Other 
parameters:DA = 0.02,DH = 0.26,Ds = 0.06, c = 0.002, c0 = 0.02,µ = 0.16, v = 0.04, γ = 0.02, d =

0.008, e = 0.1, f = 10, ρA = 0.03, ρH = 0.00008 ) (b) The (S, Y) pairs selected at the centre of overlapping 
segments of SY-curves and Turing instability region, which correspond to different values of parameter ε . The 
(S, Y) pairs are marked by symbol ‘x’ (shown as points 1–6). The yellow crescent-shaped region is the Turing 
instability region. The curves of different colours are SY curves of the cell differentiation trajectory in the 
structures corresponding to different values of parameter ε . (c) Curve fitting between Y and S. (d) Curve fitting 
between S and ε . (e) Function curve of the Turing wavelength on parameter ε through dispersion relation 
analysis.
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The simulation results of structure formation with different values of parameters ε and ρH are shown in Fig. 7, 
as parameters ε and ρH have monotonous effects on the Turing wavelength. Thus, when parameters ε and ρH were 
small, the number of branches in the structure was large, branch tip fusion occurred frequently, and the level of 
the meshwork structure was high, while when parameters ε and ρH were large, the branches in the structure were 
sparse, almost no branch tip fusion behaviour occurred, and the level of the meshwork structure was low. Accord-
ing to the functional relationships between the model parameters and Turing wavelength, the Turing wavelength 
was small when parameters ε and ρH were small, while the Turing wavelength was larger when parameters ε 
and ρH were larger. Therefore, we concluded that a small Turing wavelength facilitated dense meshwork pattern 
formation. Moreover, according to the correspondence between stalk behaviours and Turing wavelength, branch 
tip fusion corresponded to a small wavelength. As branch tip fusion facilitates meshwork pattern  formation1, it 
can be inferred that branch tip fusion occurred frequently for dense meshwork structure formation with a small 
Turing wavelength. Surprisingly, the simulation results in Fig. 7 were completely consistent with the prediction.

In addition, more details in Fig. 7 confirmed the correspondence between stalk behaviours and Turing 
wavelength and the functional relationship between model parameters ( ε and ρH ) and the Turing wavelength. 
For example, Fig. 7a shows the meshwork patterns affected by parameter ε . When ε was small, a large number of 
side branches were generated, and branch tip fusion occurred frequently, leading to dense meshwork structure 
formation. With the increase in ε , the behaviour of side branching gradually changed into tip bifurcation, the 
number of branch tip fusions was reduced, and the meshwork structure became sparse. According to the rela-
tionships between parameter ε , Turing wavelength and stalk behaviours, the Turing wavelength increased with 
the increase in parameter ε , and the Turing wavelength corresponding to the stalk behaviour of tip fusion, side 

Figure 7.  Simulation results of local meshwork pattern formation under variable parameters ε and 
ρH . ε ranges from 0.1 to 0.9 at intervals of 0.1, and ρH ranges from 0.00002 to 0.00010 at intervals of 
0.00001. (a) Example of the influence of parameter ε on meshwork patterns when ρH = 0.00006 . (b) 
Example of the influence of parameter ε on meshwork patterns when ε = 0.4 . Grid size is 100 × 100. 
(Other parameters:DA = 0.02,DH = 0.26,Ds = 0.06, c = 0.002,= 0.02,µ = 0.16, v = 0.04, γ = 0.02, d

= 0.008, e = 0.1, f = 10, ρA = 0.03).
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branching and tip bifurcation increased in sequence. Therefore, the phenomena of side branching turning into 
tip bifurcation and reduction of branch tip fusion behaviour with increasing ε in Fig. 7a were consistent with 
the relationships between parameter ε , Turing wavelength and stalk behaviours. For another example, Fig. 7b 
shows the meshwork patterns affected by parameter ρH . With the increase in ρH , the number of branches in 
the structure decreased, the branch tip fusion behaviour decreased, and the meshwork structure became sparse. 
This phenomenon was also consistent with the relationship between parameter ρH , Turing wavelength and stalk 
behaviours: the larger ρH was, the larger was the Turing wavelength, and the behaviour of branch tip fusion was 
reduced with a larger Turing wavelength.

As parameter ρA had nonmonotonic effects on the Turing wavelength, it might have irregular influences on 
meshwork pattern formation. The simulation results of structure formation with different values of parameters ε 
and ρA are shown in Fig. 8. Among the simulation results, the meshwork structures with better quality are marked 
by red square boxes, in which branch tip fusion occurred and there were many branches. The distribution of these 
meshwork structures was irregular. For example, a small ρA corresponded to good meshwork structures when 
ε = 0.1 , while a larger ρA corresponded to good meshwork structures when ε = 0.3or0.5 . This phenomenon was 
probably related to the nonmonotonic functional relationship between ρA and the Turing wavelength, indicating 
that parameter ρA was not good for controllable regulation of meshwork patterns.

Discussion
The meshwork pattern is a very important pattern for the development of biological organs and tissues, such 
as the alveolar microvascular network, which is essential for nutrient transport and gas exchange. This paper 
aims to explore the Turing mechanism underlying meshwork pattern formation. During the dynamic process of 
meshwork pattern formation, we found that the meshwork pattern is formed by four kinds of stalk behaviours: 
stalk extension, tip bifurcation, side branching and tip fusion. We determined the Turing-type patterns cor-
responding to the four stalk behaviours and found that they were all Turing spot patterns, which indicated that 

Figure 8.  Simulation results of local meshwork pattern formation under variable parameters 
ε and ρA . ε ranges from 0.1 to 0.9 at intervals of 0.2, and ρA ranges from 0.02 to 0.06 at 
intervals of 0.01. The red square boxes indicate the meshwork structures, including the 
branch tip fusion behaviour and a large number of branches. Grid size is 100 × 100. (Other 
parameters:DA = 0.02,DH = 0.26,Ds = 0.06, c = 0.002,= 0.02,µ = 0.16, v = 0.04, γ = 0.02,

d = 0.008, e = 0.1, f = 10, ρH = 0.00008).
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the Turing-type pattern underlying the meshwork pattern was a Turing spot pattern and that the activator peaks 
produced by Turing instability guided the formation of meshwork patterns. Then, we obtained the Turing wave-
length corresponding to each stalk behaviour through statistical evaluation. We found that the Turing wavelength 
decreased in turn from tip bifurcation to side branching to tip fusion. Through dispersion relation analysis, we 
also obtained the functional relationships between the Turing wavelength and model parameters ( ε, ρA and ρH ). 
We found that parameters ε and ρH had monotonic effects on the Turing wavelength and that parameter ρA had 
nonmonotonic effects. Then, we regulated the meshwork patterns by the Turing wavelength by controlling the 
model parameters. We performed simulations of the local meshwork pattern formation under variable values 
of model parameters. The simulation results were consistent not only with the relationship between the Turing 
wavelength and model parameters, but also with the correspondence between the Turing wavelength and stalk 
behaviours. We concluded that the meshwork pattern was regulated by the Turing wavelength and that a small 
Turing wavelength facilitated dense meshwork pattern formation.

In this paper, we found that the Turing-type pattern underlying the meshwork pattern was a Turing spot 
pattern. The spot pattern was in the form of concentration peaks. It induced activator concentration peak for-
mation in the structures. The activator peak activated the irreversible differentiation of cells, and the migration 
of activator peaks guided the growth of stalks. This result indicated that activator peaks played a key role in the 
formation of meshwork patterns, which is consistent with a previous study of branching  patterns17, showing that 
the activator peak at the branch tip guided the growth of branches. As activator peak formation relies on the 
Turing spot pattern, these findings indicated that Turing instability of the spot pattern guided the formation of 
meshwork patterns, which might represent the mathematical mechanism by which genes control the formation 
of network structures.

Our simulation result of the local meshwork pattern included various stalk behaviours: stalk extension, tip 
bifurcation, side branching, and branch tip fusion. These stalk behaviours corresponded sequentially to the 
branching behaviours in biological networks. For example, stalk extension corresponds to sprout growth, such 
as the sprout growth of a mosaic embryoid body in vitro18,19; tip bifurcation corresponds to sprout splitting, such 
as arterial arborescence in the intracortical capillary networks in the temporal  lobe20; side branching corresponds 
to sprouting, such as intersegmental vessel (ISV) sprouting from the dorsal aorta in zebrafish  embryos18,21; and 
branch tip fusion corresponds to anastomosis, such as vessel fusion of the dorsal longitudinal anastomotic vessel 
(DLAV) in zebrafish  embryos21. The simulation result of the meshwork pattern confirmed that meshwork pattern 
formation was a complicated process and was formed by the four stalk behaviours.

In this paper, we explored the Turing wavelength corresponding to the four stalk behaviours. The Turing 
wavelength of each stalk behaviour was obtained by dispersion relation analysis of typical sites in the structures, 
which is quite different from a previous study on the Turing mechanism of branching  patterns17. In that study, a 
whole branching pattern corresponds to a certain Turing wavelength, even for a mixed branching pattern includ-
ing different branching behaviours (the coexistence of tip bifurcation and side branching). However, this was 
not sufficiently accurate because the Turing wavelength between stalk behaviours might be obviously different, 
although the model parameters were the same, such as the different spot densities of Turing patterns shown in 
Fig. 2d–f. Therefore, typical sites (representing stalk behaviours) were selected for accurate calculation of the 
Turing wavelengths of stalk behaviours in this paper. These typical sites are on the stalk extension trajectory: 
the bifurcation site where one stalk splits into two, the sprouting site where a new lateral branch occurs, and the 
fusion site where two stalks merge into one.

In this paper, we found that parameters ε and ρH had monotonic increasing effects on the Turing wave-
length. The meshwork pattern was regulated by controlling parameters ε and ρH . However, the detailed effects 
of parameters ε and ρH on meshwork structures were different. With the increase in ρH , the number of branches 
was reduced, and with the increase in ε , the stalk behaviour changed from side branching to tip bifurcation. This 
means that regulation of the Turing wavelength on the meshwork pattern could be realized in various ways. The 
different regulatory mechanisms may correspond to different gene functions in organisms. Therefore, it will be 
important to explore and classify the genes affecting meshwork patterns in the future, which has the potential 
to thoroughly elucidate the mechanism of meshwork pattern formation.

We also found that parameter ρA had a nonmonotonic function on the Turing wavelength and had irregu-
lar influences on meshwork patterns. We obtained the Turing instability regions of the model under different 
values of parameter ρA (see Supplementary Fig. S6). This result showed that the position and size of the Turing 
instability region changed greatly with a slight change in parameter ρA . We suppose that the high sensitivity of 
parameter ρA to Turing regions was closely related to its irregular influences on meshwork patterns, meriting 
for further research in the future.

We propose that the morphogens bone morphogenetic protein-4 (BMP4), matrix carboxyglutamic acid pro-
tein (MGP) and fibroblast growth factor 10 (FGF10) corresponded to the activator, inhibitor and substrate of the 
model, respectively. Since BMP4 has autostimulatory positive  feedback24, the expression of BMP4 is positively 
stimulated by  FGF1025,26, MGP is a well-known inhibitor of  BMP427,28, BMP4 induces the expression of  MGP29, 
and BMP4 signalling activates vascular cell differentiation and vascular  formation30. We believe that this set of 
morphogens will help biologists verify our work in biological experiments.
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