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Abstract

A cornerstone of statistical inference, the maximum entropy framework is being 

increasingly applied to construct descriptive and predictive models of biological 

systems, especially complex biological networks, from large experimental data sets. 

Both its broad applicability and the success it obtained in different contexts hinge 

upon its conceptual simplicity and mathematical soundness. Here we try to concisely 

review the basic elements of the maximum entropy principle, starting from the notion 

of ‘entropy’, and describe its usefulness for the analysis of biological systems. As 

examples, we focus specifically on the problem of reconstructing gene interaction 

networks from expression data and on recent work attempting to expand our system-

level understanding of bacterial metabolism. Finally, we highlight some extensions 

and potential limitations of the maximum entropy approach, and point to more 

recent developments that are likely to play a key role in the upcoming challenges 
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of extracting structures and information from increasingly rich, high-throughput 

biological data.

Keywords: Systems biology, Molecular biology, Mathematical bioscience, 

Computational biology, Bioinformatics

1. Introduction

It is not unfair to say that the major drivers of biological discovery are currently 

found in increasingly accurate experimental techniques, now allowing to effectively 

probe systems over scales ranging from the intracellular environment to single cells 

to multi-cellular populations, and in increasingly efficient bioinformatic tools, by 

which intracellular components and their putative interactions can be mapped at 

genome and metabolome resolution. Yet, at least to some degree, these approaches 

still appear hard to integrate into quantitive predictive models of cellular behaviour. 

In a sense this is not surprising. Even if we possessed detailed information about all 

sub-cellular parts and processes (including intracellular machines, their interaction 

partners, regulatory pathways, mechanisms controlling the exchange with the 

medium, etc.), it would be hard to build a comprehensive mechanistic model of 

a cell, and possibly even harder to infer deep organization principles from it. In 

large part, this is due to the fact that cells have an enormous number of degrees 

of freedom (e.g. protein levels, RNA levels, metabolite levels, reaction fluxes, 

etc.) which, collectively, can take on an intimidatingly large number of physico-

chemically viable states. On the other hand, experiments necessarily probe only 

a tiny portion of these states. Therefore, understanding how all internal variables 

might coordinate so that certain “macroscopic” quantities, like the cell’s growth 

rate, behave as observed in experiments is quite possibly a hopeless task. In addition, 

these models would most likely require some tuning of the multitude of parameters 

that characterize intracellular affairs, rendering overfitting a very concrete prospect. 

At the same time, though, the deluge of data coming from both sides (experiments 

and bioinformatics) begs for the development of bridges connecting them, not just 

as descriptive frameworks and predictive tools but also as guides for novel targeted 

experiments and bioengineering applications.

The problem appears to be that of finding a reasonable ‘middle-ground’ between 

full fledged mechanistic approaches and qualitative phenomenological descriptions 

based on coarse-grained quantities only. Perhaps following the lesson of

thermodynamics (which, one might argue, has faced a similar question of bridging 

microscopic and macroscopic descriptions of physical systems), an increasing 

number of studies is undertaking a route different from – and in many ways inverse 

of – the mechanistic one. The key issues to be faced along such route are the 

following: To what degree do experimental results constrain the space of allowed 
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states of a living system? Can we learn something about internal variables from 

experiments that probe a relatively small number of states? Is there a way to perform 

reliable statistical inference on the values of un-observed internal variables from 

empirical data? Ultimately, all of these questions boil down to the problem of 

inferring probability distributions (or, in other terms, statistical models) from limited 

data. This age-old challenge dating back to the origin of probability theory (see e.g. 

Laplace’s ‘principle of indifference’, Ref. [1], Ch. 2) has found a self-consistent 

answer, the only such answer under certain conditions, in the so-called principle of 
maximum entropy.

Over the past decade, entropy maximization or closely related ideas have been 

repeatedly employed for the analysis of large-scale biological data sets in contexts 

ranging from the determination of macromolecular structures and interactions 

[2,3,4,5,6,7,8,9,10,11,12,13,14] to the inference of regulatory [15,16,17,18,19]

and signaling networks [20,21,22,23] and of the organization of coding in neural 

populations [24,25,26,27,28,29,30,31,32,33,34,35,36,37]; from the analysis of DNA 

sequences (e.g. for the identification of specific binding sites) [38,39,40] to the study 

of the HIV fitness landscape [41,42,43]; from the onset of collective behaviour 

in large animal groups [44,45,46] to the emergence of ecological relationships 

[47,48,49,50,51,52,53,54,55,56,57]. The type of insight derived from these models 

is remarkably diverse, from fundamental organization principles in structured 

populations to specific gene-gene interaction networks. Revealingly, the challenge 

of dealing with high dimensional and limited data posed by biology has in turn 

stimulated the search for novel efficient implementations of the maximum entropy 

principle at the interface between computational biology, statistical physics and 

information theory, leading to an impressive improvement of inference schemes and 

algorithms. Future ramifications of these studies are likely to explore new application 

areas, as more/better data become available, theoretical predictions get sharper, and 

computational methods improve. In many ways, the maximum entropy approach 

now appears to be the most promising provider of ‘middle grounds’ where empirical 

findings and bioinformatic knowledge can be effectively bridged.

Several excellent reviews, even very recent ones, cover the more technical aspects of 

maximum entropy inference from the viewpoint of statistical physics, computational 

biology or information theory (see e.g. [58,59,60,61,62]). Our goal here is to provide 

a compact, elementary and self-consistent introduction to entropy maximization and 

its usefulness for inferring models from large-scale biological data sets, starting 

from the very basics (i.e. from the notion of ‘entropy’) and ending with a recent 

application (a maximum entropy view of cellular metabolism). We mainly hope to 

convey its broad applicability and potential to deliver new biological insight, and to 

stimulate further cross-talk while keeping mathematics to a minimum. A few basic 

mathematical details are nevertheless given in the Supplementary Material for sakes 
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of completeness. Given the vastness of the subject, we shall take a shortcut through 

most of the subtleties that have accompanied the growth of the field since the 1940s, 

focusing instead on the aspects that (we believe) are of greater immediate relevance 

to our purposes. A partial and biased list of additional ingredients and new directions 

will be presented in the Discussion. The interested reader will however find more 

details and food for thought in the suggested literature.

For our purposes, the path leading to entropy maximization can start from the 

intuitively obvious idea that, when extracting a statistical model from data, one 

should avoid introducing biases other than those that are already present in the data, 

as they would be unwarranted and discretionary. For instance, if we had to model 

a process with 𝐸 possible outcomes (like the throw of a dice) and had no prior 

knowledge of it, our best guess for a probability law underlying this process would 

have to be the uniform distribution, where each outcome occurs with probability 

1∕𝐸. In essence, the framework of entropy maximization generalizes this intuition 

to more complex situations and provides a recipe to construct the ‘optimal’ (i.e. 

least biased) probability distribution compatible with a given set of data-derived 

constraints. Central to it is, of course, the concept of ‘entropy’.

2. Main text

2.1. Entropy and entropy maximization: a bird’s eye view

The notion of ‘entropy’ as originated in thermodynamics is usually associated to that 

of ‘disorder’ by saying that the former can be regarded as a measure of the latter. 

The word ‘disorder’ here essentially means ‘randomness’, ‘absence of patterns’, or 

something similar. While not incorrect, these words clearly require a more precise 

specification to be useful at a quantitative level. As we shall see, once the stage is 

characterized more clearly, the entropy of a system (e.g. of a population of cells) with 

prescribed values for certain observables (e.g. the rate of growth of the population) 

quantifies the number of distinct arrangements of its basic degrees of freedom 

(e.g. the protein levels, RNA levels, metabolic reaction rates, etc. of each cell) that 

lead to the same values for the constrained observables. The larger this number, 

the larger the entropy. In this sense, the entropy of a system is really a measure 

of the microscopic multiplicity (the ‘degeneracy’) underlying its macroscopically 

observable state. What makes entropy a powerful inference tool is closely connected 

to this characterization.

To make things more precise, one can consider a classical, highly stylized example. 

Imagine having 𝑁 identical balls distributed in 𝐾 urns so that 𝑛𝑖 balls are placed 

in the 𝑖-th urn, with 𝑖 = 1, … , 𝐾 and 𝑛1 + ⋯ + 𝑛𝐾 ≡
∑𝐾

𝑖=1 𝑛𝑖 = 𝑁 . (To fix ideas, 

one can think of the 𝑁 balls as the 𝑁 different cells and of the 𝐾 urns as 𝐾 distinct 
on.2018.e00596
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configurations for the basic degrees of freedom of each cell. An arrangement {𝑛𝑖}
defined by specific values of 𝑛1, … , 𝑛𝐾 therefore represents how cells are distributed 

over the allowed internal states, with 𝑛1 cells in state 1, 𝑛2 in state 2, and so on.) By 

simple combinatorics (see [63], Ch. 3), the number of ways in which the 𝑁 balls 

can be placed in the 𝐾 urns leading to the same values of 𝑛1, … , 𝑛𝐾 is given by the 

multinomial coefficient

Ω = 𝑁!
𝑛1!𝑛2!⋯ 𝑛𝐾 !

. (1)

This number1 describes the ‘microscopic’ degeneracy underlying the specific 

arrangement of balls described by the numbers {𝑛1, … , 𝑛𝐾} and grows fast with 𝑁 . 

Actually, for sufficiently large 𝑁 , (1) turns out to be well approximated (see 

Supplementary Material, Sec. S1) by

Ω ≃ 𝑒𝑁𝐻 , (2)

where

𝐻 = −
𝐾∑
𝑖=1

𝑛𝑖

𝑁
ln

𝑛𝑖

𝑁
. (3)

The quantity 𝐻 defined in (3) is the entropy of the arrangement described by the urn 

occupation numbers 𝑛1, … , 𝑛𝐾 . Note (see Supplementary Material, Sec. S2) that 

𝐻 ≥ 0. In a nutshell, Equations (2) and (3) say that, for large 𝑁 , some arrangements 

{𝑛1, … , 𝑛𝐾} can be realized in a huge number of ways (as a matter of fact, in a 

number of microscopic ways that is exponentially large in 𝑁), and that the entropy 

𝐻 ultimately quantifies this number. On the other hand, some specific arrangements 

can have a very small degeneracy. For instance, the arrangement with 𝑁 balls in urn 

1 and no balls elsewhere (i.e. with 𝑛1 = 𝑁 and 𝑛𝑖 = 0 for 𝑖 ≠ 1) can be realized in a 

unique way, having 𝐻 = 0 and Ω = 1.2

Note that the quantity 𝑛𝑖∕𝑁 ≡ 𝑝𝑖 represents the fraction of balls appearing in urn 

𝑖 in arrangement {𝑛1, … , 𝑛𝐾} or, equivalently for our purposes, the probability that 

a ball selected at random and uniformly comes from the 𝑖-th urn. Therefore 𝐻 is a 

function of the probabilities {𝑝𝑖} (𝑖 = 1, … , 𝐾), i.e.

𝐻 ≡ 𝐻[{𝑝𝑖}] = −
𝐾∑
𝑖=1

𝑝𝑖 ln 𝑝𝑖 , (4)

1 To give an idea, for 𝑁 = 10 and 𝐾 = 3, the arrangement with 𝑛1 = 5, 𝑛2 = 3 and 𝑛3 = 2 has Ω = 2520. If 𝐾 = 4, 
the arrangement with 𝑛1 = 5, 𝑛2 = 3 and 𝑛3 = 𝑛4 = 1 has instead Ω = 5040 (twice as large). If 𝑁 = 100 and 𝐾 = 3, 
the arrangement with 𝑛1 = 50, 𝑛2 = 30 and 𝑛3 = 20 has instead Ω ≃ 1042.

2 Notice however that many arrangements have 𝐻 = 0. In particular, any arrangement with 𝑁 balls in one urn and 
none in the others has 𝐻 = 0. Hence there are 𝐾 ways to realize an 𝐻 = 0 arrangement, corresponding to the fact that 
there are 𝐾 possible choices for the urn in which to place the 𝑁 balls.
on.2018.e00596
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and the condition 
∑𝐾

𝑖=1 𝑛𝑖 = 𝑁 simply corresponds to the fact that probabilities 

should sum to one, i.e. 
∑𝐾

𝑖=1 𝑝𝑖 = 1.

It is rather intuitive that, if balls were ‘thrown’ into urns randomly (i.e. so that 

each of the 𝑁 balls has equal probability of ending up in any of the 𝐾 urns), 

the resulting arrangement {𝑛1, … , 𝑛𝐾} would much more likely be one with large 

Ω (and entropy) than one with small Ω (and entropy). In particular, the most 

likely arrangement {𝑛⋆1 , … , 𝑛⋆
𝐾
} (or, equivalently, the most likely distribution of 

probabilities {𝑝⋆1 , … , 𝑝⋆
𝐾
}) should coincide with that carrying the largest degeneracy, 

or maximum entropy, satisfying the constraint 
∑𝑁

𝑖=1 𝑛
⋆
𝑖

= 𝑁 (or, equivalently, ∑𝐾

𝑖=1 𝑝
⋆
𝑖

= 1). In this sense, the safest bet on the outcome of an experiment in 

which 𝑁 balls are randomly assigned to 𝐾 urns would be to place money on the 

maximum entropy (MaxEnt) distribution.

This is the gist of the maximum entropy principle: if one is to infer a probability 

distribution given certain constraints, out of all distributions {𝑝𝑖} compatible with 

them, one should pick the distribution {𝑝⋆
𝑖
} having the largest value of (4). The only 

constraint considered in the above example of balls and urns is the normalization 

of probabilities, i.e. the fractions 𝑝𝑖 should sum to one: 
∑𝐾

𝑖=1 𝑝𝑖 = 1. In this case, 

the MaxEnt distribution is uniform, namely 𝑝⋆
𝑖
= 1∕𝐾 for each 𝑖 = 1, … , 𝐾 (see 

Supplementary Material, Sec. S3). However, constraints can involve other quantities, 

leading to different MaxEnt distributions (see Supplementary Material, Sec. S4 for 

a few simple examples). This just reflects the diverse information that constraints 

inject into the inference problem in each case.

It is important to understand that, because they correspond to maximal underlying 

degeneracy, MaxEnt distributions are the least biased given the constraints: any other 

distribution compatible with the same constraints would have smaller degeneracy 

and therefore would artificially exclude some viable (i.e. constraint-satisfying) 

configurations of the underlying variables. In other terms, a MaxEnt distribution is 

completely undetermined by features that do not appear explicitly in the constraints 

subject to which it has been computed.

These ideas, which ultimately make the maximum entropy principle the central 

conceptual tool for inferring probability distributions subject to constraints, have 

been placed on firmer and firmer mathematical ground starting from the 1940s. In 

our view, three classical results are especially noteworthy in the present context.

Firstly, landmark work by Shannon [64] and Khinchin [65] formally characterized 

𝐻 , Equation (4), as the only function complying with a set of a priori requirements 

(known as Shannon–Khinchin axioms) to be satisfied by a measure of the

‘uncertainty’ or ‘lack of information’ associated to a probability distribution {𝑝𝑖}. 

Here, ‘uncertainty’ relates in essence to how (im)precisely one can identify the 

configuration of basic degrees of freedom from knowledge of the distribution {𝑝𝑖}. 
on.2018.e00596
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In this sense, a larger uncertainty corresponds to a larger underlying degeneracy Ω
and hence to a larger entropy 𝐻 . Therefore, MaxEnt distributions compatible with 

given constraints formally correspond to those that maximize the uncertainty on 

every feature except for those that are directly encoded in the constraints.

A strict characterization of MaxEnt distributions is instead encoded in a result known 

as the ‘entropy concentration theorem’ [61]. In short, and referring to the urn-and-

balls example discussed above, it rigorously quantifies the observation that, when 

𝑁 is sufficiently large, the number of microscopic states underlying the MaxEnt 

distribution is exponentially larger (in 𝑁) than the number of microscopic states 

underlying any other distribution. This is also seen from (2), albeit at a heuristic 

level. Denoting respectively by Ω⋆ and 𝐻⋆ the degeneracy and the entropy of the 

MaxEnt distribution, one sees that, for sufficiently large 𝑁 ,

Ω⋆

Ω
≃ 𝑒𝑁(𝐻⋆−𝐻) (5)

for any Ω and 𝐻 corresponding to a distribution different from the MaxEnt one. 

Because 𝐻⋆ is the maximum value attained by the entropy, 𝐻⋆ −𝐻 > 0. Hence, 

(5) states that microscopic arrangements underlying the MaxEnt distribution are 

more numerous than those underlying any other distribution by an exponentially 

large (in 𝑁) factor. In turn, for large enough 𝑁 , observing an arrangement of balls 

that corresponds to a distribution different from the MaxEnt one is exponentially (in 

𝑁) less likely.

Finally (and perhaps most importantly for our purposes), 𝐻 has been shown to be 

the only quantity whose constrained maximization allows for least-biased inference 

satisfying certain generic logical requirements (known as Shore–Johnson axioms) 

[66]. This result ultimately provides a rigorous basis for using the maximum entropy 

principle as a general inference technique, independently of the meaning assigned 

to Eq. (4). In other words, by maximizing 𝐻 one is not looking for a state of 

maximum indeterminacy (apart from constraints), but rather following the only 

recipe for self-consistent inference having certain desirable properties. In this sense, 

the maximum entropy principle ‘simply’ allows to infer least-biased, constraint-

satisfying probability distributions in a mathematically rigorous and logically sound 

manner.

It is clear at this point that the nature of the microscopic variables and the constraints 

one wants to impose are crucial in the business of using maximum entropy inference 

in general, and specifically to obtain information about biological systems from 

complex, high-dimensional data. In addition, the concrete usefulness of MaxEnt 

distributions besides their theoretical appeal is not a priori obvious. Mathematical 

arguments guarantee that they can provide a compact statistical description of a 

dataset that is least-biased and compatible with empirical observations. But can that 

description be employed e.g. for predictive purposes?
on.2018.e00596
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2.2. Maximum entropy inference in biology: the case of gene 

interaction networks

The answers to the questions posed above clearly depend on the specifics of 

the system under consideration and of the available data, and require a case-by-

case discussion. Applications of the maximum entropy framework to biology have 

however become more numerous as the size and quality of data sets has increased, 

and currently range from protein science and neuroscience to collective animal 

behaviour and ecology. Such an impressive span suggests that at least some aspects 

must be recurrent across many if not all of these instances (see the discussion 

presented in [67] for a broader perspective). It is on these and on the lessons that 

can be drawn from them that we shall try to focus now. For sakes of clarity and 

simplicity, we shall phrase things in the context of the study of gene expression. 

Similar considerations can however be formulated in almost all of the cases listed 

above.

We begin by re-considering the urn-and-balls model described above in the gene 

expression scenario. The 𝑁 balls would now represent 𝑁 cellular samples whose 

complete expression profiles (e.g. RNA levels) have been experimentally

characterized, while the 𝐾 urns would represent all possible expression profiles. 

An expression profile of 𝑅 genes is described by a vector 𝐱 = {𝑥𝑖}, where 𝑥𝑖 stands 

for the expression level of gene 𝑖, with 𝑖 = 1, … , 𝑅. Usually, the expression of a 

large set of genes is monitored (𝑅 ≫ 1). A specification of an expression profile for 

each of the 𝑁 cells corresponds to an assignment of the 𝑁 balls to the 𝐾 urns, and 

fully describes our experimental sample. Note that the number of possible vectors 𝐱, 

corresponding to the number 𝐾 of urns, is in principle huge. By contrast, the number 

of samples (i.e. 𝑁) is typically much smaller than 𝐾 , so that experiments will vastly 

under-sample the space of possible expression profiles.

Given the data (i.e. the measured expression profiles), the problem is that of inferring 

a probability distribution 𝑝(𝐱) of expression profiles that is (i) least-biased with 

respect to unavailable information, and (ii) consistent with empirical constraints. 

According to the maximum entropy principle, we have to find the distribution 𝑝(𝐱)
that maximizes the entropy

𝐻 = −
∑
𝐱

𝑝(𝐱) ln 𝑝(𝐱) , (6)

subject to data-derived constraints, the above sum being formally carried out over 

all possible expression profiles. Whether a quantity should be constrained or not is 

ultimately determined by whether one can reliably estimate it from data or not. In 

the instances encountered most often and of greater practical relevance, constraints 

involve low-order moments of the underlying variables, especially averages (first 

moments) and correlations (second moments). This is because the statistically 
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accurate computation of moments requires more and more experimental samples 

as the order of the moment increases, so that higher-order moments are generically 

harder to estimate than lower-order ones. We shall therefore consider only the 

simplest case in which the mean expression levels of each gene and the gene-gene 

correlations are required to match those derived from data, namely

𝑥𝑖 =
1
𝑁

𝑁∑
𝑎=1

𝑥𝑖,𝑎 , 𝑥𝑖𝑥𝑗 =
1
𝑁

𝑁∑
𝑎=1

𝑥𝑖,𝑎𝑥𝑗,𝑎 , (7)

where the index 𝑎 runs over samples from 1 to 𝑁 , while 𝑖 and 𝑗 range over genes from 

1 to 𝑅. (It should however be kept in mind that this aspect is ultimately limited by 

data availability only.) Hence, we must look for the distribution 𝑝(𝐱) that maximizes 

(6) with the usual normalization condition
∑
𝐱

𝑝(𝐱) = 1 , (8)

and such that the mean expression levels and the correlations match empirical ones 

(7), i.e.
∑
𝐱

𝑥𝑖𝑝(𝐱) = 𝑥𝑖 for all 𝑖 = 1,… , 𝑅 , (9)

∑
𝐱

𝑥𝑖𝑥𝑗𝑝(𝐱) = 𝑥𝑖𝑥𝑗 for all 𝑖 and 𝑗 . (10)

Such a distribution 𝑝⋆(𝐱) can be computed as shown in Supplementary Material, 

Sec. S5 (see also [16]) and reads

𝑝⋆(𝐱) = 1
𝑍

𝑒
∑𝑅

𝑖=1 𝛽𝑖𝑥𝑖+
∑

𝑖≤𝑗 𝛾𝑖𝑗𝑥𝑖𝑥𝑗 , (11)

where 𝑍, 𝛽𝑖 (𝑖 = 1, … , 𝑀) and 𝛾𝑖𝑗 (𝑖, 𝑗 = 1, … , 𝑀 with 𝑖 ≤ 𝑗) are constants 

known as ‘Lagrange multipliers’ that are introduced to enforce the constraints [68]. 

Equation (11) is often referred to as the ‘pairwise MaxEnt probability distribution’ 

[24,28,40,62], as it involves at most couplings between pairs of variables through 

the last term in the argument of the exponential. Clearly, this is due to the fact that 

only moments up to the second are constrained.

Eq. (11) provides a formal solution to our problem. To fully evaluate it, though, 

the values of the Lagrange multipliers 𝑍, 𝛽𝑖 and 𝛾𝑖𝑗 have to be computed self-

consistently from (8), (9) and (10).3 As (11) represents, after all, the least-biased 

data-informed model for the expression profiles, solving this problem amounts to 

inferring the model’s parameters from data. Performing this task in a realistic context 

with 𝑅 ≫ 1 genes, which is ultimately the key for the effective implementation 

of the maximum entropy framework with biological data sets, can be an extremely 

3 Note that, because 𝑥𝑖𝑥𝑗 = 𝑥𝑗𝑥𝑖, the number of constraints is 1 +𝑅 +𝑅(𝑅 +1)∕2 (where the three addends correspond 
respectively to (8), (9) and (10)), and it matches the number of constants to be determined. This makes the problem of 
retrieving the values of the above parameters mathematically well defined.
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challenging computational problem. Luckily, a number of mathematically subtle 

but computationally effective methods have been developed for this goal over 

the past decade at the interface between statistical physics and computer science. 

A discussion of these techniques is however beyond our scopes, and excellent and 

up-to-date overviews can be found e.g. in [62,69]. We shall henceforth assume that 

the parameters 𝛽𝑖’s and the 𝛾𝑖𝑗’s have been computed, and focus on their physical 

and biological interpretation.

Based on the MaxEnt distribution (11), one sees that 𝛽𝑖 measures the intrinsic 

propensity of gene 𝑖 to be expressed, as larger (resp. smaller) values of 𝛽𝑖 favor 

expression profiles 𝐱 with larger (resp. smaller) values of 𝑥𝑖. On the other hand, 

the 𝛾𝑖𝑗’s characterize the strength of pairwise gene-gene interactions as well as 

their character (via their signs: positive for positive interactions, negative for 

negative ones). Hence the 𝛾𝑖𝑗’s can in principle yield regulatory information that 

may be scaled up to the reconstruction of an effective genome-resolution gene-

gene interaction network. In [16], for instance, such coefficients were used to infer 

regulatory interactions in S. cerevisiae, after expression profiles were experimentally 

characterized in cultures at different time points (representing the different samples) 

via microarrays. Ultimately, knowledge of the 𝛾𝑖𝑗’s allowed to extract a putative, 

highly-interconnected gene-gene interaction network that emphasized a few hub 

regulators (including ribosomal and mitochondrial genes as well as genes involved 

in TOR signaling) implicating global mechanisms devoted to the coordination of 

growth and nutrient intake pathways.

The ability to bring to light interconnections between genes belonging to different 

functional categories is a major advantage of the maximum entropy method over 

alternatives based on the straightforward analysis of correlations, such as clustering 

techniques. While the latter naturally focus on the identification of genes having a 

similar expression profile (and therefore tend to group functionally related genes 

together), the 𝛾𝑖𝑗’s point to a refined notion of correlation. The origin of this fact is 

especially transparent when the 𝑥𝑖’s are taken to be continuous unbounded variables 

ranging from −∞ to +∞ (a reasonable approximation whenever expression levels 

are quantified via centered log-fluorescence values). In this case, Eq. (11) describes 

a multivariate Gaussian distribution and it can be shown that the matrix of 𝛾𝑖𝑗’s is 

related to the inverse of the matrix of Pearson correlation coefficients, rather than 

to the correlation matrix itself [16,62]. This makes a substantial difference. Indeed, 

the covariance of the expression levels of two genes (say, 𝐴 and 𝐵) can be large 

both when 𝐴 and 𝐵 are mutually dependent (e.g. when 𝐴 codes for a transcription 

factor of 𝐵) and when, while mutually independent, they both separately correlate 

with a third gene 𝐶 . In the latter case, though, the behaviour of 𝐶 would explain 

the observed correlation between 𝐴 and 𝐵. Specifically, by conditioning on the 

expression level of 𝐶 , one would see that 𝐴 and 𝐵 are roughly uncorrelated. In 
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Figure 1. Sketch of the two examples of applications of the maximum entropy principle to biological data 
analysis discussed in the text. (A) Inference of gene interaction networks from empirical expression data 
(see Sec. 3 for details). (B) Inference of genome-scale metabolic flux patterns from empirical growth rate 
distributions in bacteria (see Sec. 4 for details). For each case, we describe schematically the empirical 
input (left column), the formulation of the maximum entropy inference problem (middle column), and an 
example of the inferred biological insight (right column).

other terms, the correlation matrix captures the unconditional correlation between 

variables and therefore contains effects due to both direct and indirect mechanisms. 

On the other hand, its inverse describes the correlations that remain once the indirect 

effects are removed [70,71], and thereby provides a more robust and consistent 

characterization of the interactions between variables. (See Figure 1A for a summary 

of the scenario just discussed.)
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Naturally, some adjustments must come in place when one is to go beyond the 

Gaussian case. Yet, it can be argued that the above picture is quite generic. While 

the term ‘interaction’ can acquire different meanings in different cases, the MaxEnt 

distribution focuses on the most relevant part of the correlations and is therefore 

capable of extracting a more reliable interaction structure from data than that 

obtainable via a more standard correlation analysis. This property lies in our view 

at the heart of the success encountered by the maximum entropy method in several 

applications, in biology as well as in other fields [72,73,74]. The above example 

also shows the centrality of empirical data for maximum entropy inference. In some 

cases, though, constraints that are not derived from experiments can be employed, 

together with empirical ones, to guide the inference. An example of this is found in 

the maximum entropy approach to the analysis of metabolic networks.

2.3. Maximum entropy approach to cellular metabolism

Novel experimental techniques employing e.g. microfluidic devices are capable of 

probing growth in bacterial populations at single cell resolution, yielding detailed 

data that monitor growth in thousands of individual cells over many generations 

[75,76]. These experiments have quantified a number of features linking gene 

expression and metabolism to overall control mechanisms in proliferating bacteria 

[77,78,79,80,81]. While the emergent picture is being increasingly refined, tracking 

its ‘microscopic’ origin, and particularly the causes of growth rate fluctuations, 

is largely an open problem. Given the time scales involved in these processes, 

it is reasonable to think that the regulatory layer controlling energy metabolism 

is crucially involved in establishing this scenario. Indeed, substantial empirical 

evidence is connecting growth physiology and heterogeneity to metabolic activity 

in bacteria [77]. Experimental approaches to characterize the fluxes of intracellular 

metabolic reactions can provide a population-level picture of the mean activity of 

central carbon pathways [82]. On the other hand, cellular metabolic networks have 

been mapped, for many organisms, at the scale of the whole genome [83], and a 

host of self-consistent computational frameworks exist that can connect metabolic 

phenotypes (i.e. patterns of material fluxes through the enzyme-catalyzed network of 

intracellular reactions that processes nutrients into macromolecular building blocks, 

free energy and biomass) to physiological observables such as the growth rate [84]. 

The question is whether the reverse problem of relating measured growth rates to flux 

states of genome-scale networks is feasible. In particular, given the distribution of 

growth rates found in experiments, can one infer the state of the underlying metabolic 

network, e.g. the rates of individual reactions? Such knowledge might provide 

important insight into the metabolic bottlenecks of growth in proliferating cells, 

which could be especially useful in view of the limited experimental accessibility 

of intracellular reactions.
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To progress along this route, it is important to characterize the map between 

metabolic networks and growth rates in some more detail. The so-called Constraint-

Based Models (CBMs) [85] represent highly effective in silico schemes to obtain 

information about cellular metabolic activity from minimal input ingredients known 

at genome resolution. To be more specific, the central assumption behind CBMs is 

that, because of the timescale separation between metabolic (fast) and regulatory 

(slow) processes, over a sufficiently long time (compared to the cell’s cycle) 

metabolic reactions operate close to a non-equilibrium steady state (NESS) where 

metabolite and enzyme levels are stationary. Under this homeostatic scenario, a 

viable configuration of fluxes through enzyme-catalyzed reactions can be represented 

by a vector 𝐯 = {𝑣𝑖}𝑅𝑖=1 (with 𝑖 indexing reactions) that satisfies the linear system of 

equations taking the matricial form

𝐒𝐯 = 𝟎 , (12)

where 𝐒 denotes the reaction network’s matrix of stoichiometric coefficients. 

From a physical viewpoint, if exchange fluxes with the surrounding medium are 

included in 𝐒 (as usually done), the above conditions simply express the fact that, 

at stationarity, the total mass of each chemical species should be conserved, and 

correspond to Kirchhoff-like laws: the overall production (including external supply) 

and consumption (including excretions) fluxes of every metabolite should balance. 

𝐒 is obtained from genome-scale reconstructions and has 𝑅 columns (one per 

reaction, numbering to about 1,200 in an organism like E. coli) and 𝐶 rows (one 

per chemical species, amounting to several hundreds for E. coli). Therefore (12)

compactly represents 𝐶 linear equations with 𝑅 unknowns (the individual fluxes 𝑣𝑖). 

Any flux vector 𝐯 solving (12) corresponds in principle to a viable NESS flux pattern 

of the metabolic network specified by 𝐒, and the structure of stoichiometric matrices 

usually allows for an infinite number of solutions. In particular, when ranges of 

variability of the type 𝑣𝑖,min ≤ 𝑣𝑖 ≤ 𝑣𝑖,max are specified for each flux, reflecting 

empirical kinetic, thermodynamic or regulatory priors (see e.g. [86] for an overview 

of these data-driven factors), solutions of (12) form a particular kind of set called a 

‘convex polytope’ in mathematical jargon [87]. We shall denote convex polytopes by 

the letter  . On the other hand, to each of the solutions, i.e. to each point in  , CBMs 

associate a unique value for the biomass output (the growth rate), which we denote 

as 𝜆(𝐯). Therefore, any rule to sample points from  (i.e. to generate solutions of 

(12)) will in turn yield a distribution of values for the growth rate. Usually, though, 

convex polytopes corresponding to genome-scale stoichiometric matrices 𝐒 have 

very high dimensionality (e.g. several hundreds for E. coli), and therefore sadly tend 

to escape both imagination and computational analysis. We will not detail here how 

points from  can be generated. For our purposes, it will suffice to say that efficient 

algorithms exist that allow to extract solutions of (12) with any desired probability 

distribution for any metabolic network reconstruction, i.e. any 𝐒 (see e.g. [84,88,89]).
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Given this setup allowing to link metabolic phenotypes to their corresponding 

growth rates, we are interested in characterizing the inverse map. Specifically, what 

can we learn about flux configurations from empirical growth rate distributions? 

Following the maximum entropy idea, one can start by studying the least-biased 

distribution compatible with data. The simplest data-borne constraint one can impose 

concerns the mean growth rate. In addition, however, one can inject extra information 

by requiring that flux vectors are viable NESS of the metabolic network, i.e. that they 

belong to the polytope of solutions of (12) for the organism under study. This is a 

substantial change compared e.g. to the case of regulatory networks discussed in the 

previous section. There, no restriction on the vectors 𝐱 of expression profiles applied 

as no specific assumption on the ranges of variability and mutual dependence of 

individual expression levels was made. Here, instead, we are effectively adding a 

(reasonable and motivated) guess for the underlying model for flux profiles: they 

should satisfy (12) with pre-determined ranges of variability on each flux. The 

MaxEnt flux distribution for this case can be computed in full analogy with the 

previous ones (see Supplementary Material, Sec. S6), and it turns out to be given 

by

𝑝⋆(𝐯) =
⎧⎪⎨⎪⎩

1
𝑍
𝑒𝛽𝜆(𝐯) if 𝐒𝐯 = 𝟎 ,

0 otherwise ,
(13)

where 𝑍 and 𝛽 are the Lagrange multipliers respectively ensuring normalization 

(
∑

𝐯 𝑝
⋆(𝐯) = 1) and the given mean growth rate. The MaxEnt distribution is only 

defined on the feasible space  where 𝐒𝐯 = 𝟎 (i.e. flux vectors must be viable). 

In addition, the probability to observe a certain 𝐯 depends on its growth rate 𝜆(𝐯), 
while the parameter 𝛽 quantifies the inferred “degree of optimality”. In a nutshell, 

a sufficiently large value of 𝛽 causes 𝑝⋆ to concentrate around flux vectors yielding 

large values of the growth rate 𝜆. On the other hand, as 𝛽 decreases towards more and 

more negative values, the MaxEnt distribution selects metabolic phenotypes growing 

more and more slowly. For 𝛽 = 0, 𝑝⋆ becomes the uniform distribution over the 

polytope, in which case each viable flux vector 𝐯 is assumed to be equally probable.

When applied to modeling data describing steady growth of E. coli populations 

using the genome-scale metabolic network reconstruction given in [90], Eq. (13)

turned out to reproduce not just the mean growth rates obtained in different 

experiments for a number of growth medium/strain combinations, but the entire 

distributions [91]. The fact that the exponential form (13), which ultimately depends 

on the single parameter 𝛽 (see Supplementary Material, Sec. S6), coincides with 

empirical distributions confirms the observation that growth rate distributions are 

one-parameter functions (i.e., the variance is a function of the mean, at odds with 

Gaussian distributions where the mean and the variance are separate parameters) 

[79]. Strikingly, recent work has shown that the maximum entropy approach, besides 
on.2018.e00596

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00596
http://creativecommons.org/licenses/by/4.0/


Article No~e00596

15 https://doi.org/10.1016/j.heliy

2405-8440/© 2018 The Authors. Pub
Figure 2. Maximum entropy modeling of growth rate distributions describing E. coli growth at different 
temperatures. Data are taken from [76]. (A) Empirical distributions (markers) are shown together with the 
MaxEnt distributions obtained by fitting 𝛽 to match the corresponding means (continuous lines), for three 
different temperatures. For comparison, the dashed lines and the corresponding shaded areas describe 
the growth rate distributions corresponding to uniform samplings of the solution spaces of the metabolic 
model, Eq. (12), in the three cases. In each case, such distributions are described by Eq. (14), with 𝑎 = 0, 
𝑏 = 22 and different values of 𝜆max. (B) and (C): inferred distributions of the ATP synthase flux (B) and 
of the flux through phosphofructokinase (PFK) (C) at different temperatures.

capturing the statistics of the growth rate, is also capable of describing the behaviour 

of intracellular fluxes belonging to the central carbon processing pathways, which 

can be estimated by mass spectrometry, without additional assumptions [92]. 

Equation (13) is likewise capable of describing bacterial growth distributions 

obtained in a fixed medium at different temperatures (see Figure 2A), while two 

examples of predictions for how metabolic flux distributions will be modulated as the 

growth temperature increases are displayed in Figures 2B and 2C. (See Figures 1B 

for an overview of this case.)

An especially important feature that the maximum entropy approach brings to light 

is the fact that the value of 𝛽 that provides the best fit to experiments corresponds to 

mean growth rates that are significantly smaller (usually between 50% and 80%) than 

the maximum growth rate achievable in the same growth medium according to the 

CBM prediction, which we denote as 𝜆max. In other terms, based on the experimental 

data sets considered in [76,91], bacteria appear unable to strictly maximize their 
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growth rates. On the other hand, the distribution of growth rates implied by (13) at 

𝛽 = 0 (i.e., when all flux patterns satisfying (12) are equally likely) is of the form

𝑞(𝜆) = 𝐴𝜆𝑎(𝜆max − 𝜆)𝑏 , (14)

where 𝑎 and 𝑏 are constants that depend on the metabolic network reconstruction 

one is employing4 and 𝐴 is a normalization constant. The growth-rate landscape 

depicted by (14) is extremely heterogeneous, with a small set of states with growth 

rates close to 𝜆max living in a huge sea of slow-growing flux patterns (see the dashed 

curves in Figures 2A). This suggests that any random noise added to a fast-growing 

flux pattern will overwhelmingly likely causes a drastic growth rate reduction.

Taking these observations together, one sees that the space of allowed flux patterns 

can affect, in a quantitatively measurable way, the growth rate distributions that 

a population of cells in a given medium will achieve. In particular, one could 

argue that empirical growth rate distributions found in experiments at single-cell 

resolution might be explained in terms of a trade-off between the higher fitness 

of fast-growing phenotypes and the higher entropy (numerosity) of slow-growing 

ones that is established due to the action of noise. This idea has been tested in a 

mathematical model of an E. coli population evolving in time in the CBM-based 

fitness landscape (14). Indeed, when bacterial growth rates, along with driving 

replication, were assumed to fluctuate in time according a small diffusive noise 

in the feasible space (which contrasts, with high probability, the tendency of the 

population to concentrate around the fastest growth rates achievable), a scenario that 

is essentially identical to that described by the MaxEnt distribution was recovered 

despite starting from very different premises [91]. A more careful mathematical 

study of the same dynamical model has predicted, among other things, that, within 

such a scenario, response times to perturbations should be inversely correlated to the 

difference between the maximum achievable growth rate and the population average 

[93]. In other terms, populations growing sub-optimally may be more efficient in 

responding to stresses, a prediction that in principle can be tested experimentally.

Given that a single number, i.e. 𝛽, appears to provide a full description of empirical 

growth rate distributions via (13), it would be important to have a more thorough 

understanding of its physical and biological meaning. According to (13), a larger 

𝛽 implies a faster mean growth rate, but can one point to the physico-chemical 

and biological determinants of growth that contribute to establishing its value in a 

bacterial population? More specifically, can one identify the factors that limit 𝛽? In 

principle, one would expect the growth medium to play a central role in the answer to 

these questions. However, the picture emerging from a mathematical model in which 

4 For instance, one has 𝑎 = 22 and 𝑏 = 0 for E. coli’s on the carbon catabolic core, but 𝑎 = 171 and 𝑏 = 3 for the full 
genome-scale network given in [90].
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𝛽 can be computed from first principles is more involved. In particular, Ref. [94]

considered a population growing in a certain environment and characterized by a 

growth rate distribution 𝑟(𝜆). Imagine sampling 𝑁0 individuals from that population, 

each carrying its intrinsic growth rate sampled from 𝑟(𝜆), and subsequently planting 

them as the initial inoculum in a new growth medium with carrying capacity 𝐾 . 

By assuming that growth follows the basic logistic model, it was found that the 𝑁0

seeds evolve in time into a population with growth rate distribution proportional 

to exp(𝛽𝜆), where 𝛽 is now a quantity that depends in a mathematically precise 

way on the capacity-to-inoculum ratio 𝐾∕𝑁0 and on the growth rate distribution 

from which the seeds were sampled, i.e. on 𝑟(𝜆). The former dependence encodes, 

as expected, for the growth medium via 𝐾 . Interestingly, though, the presence of 

𝑁0 says that the population maintains a memory of initial conditions. On the other 

hand, the fact that 𝛽 is also a function of 𝑟(𝜆) points, perhaps unexpectedly, towards 

history-dependence. This theoretical picture, which characterizes the maximum 

entropy scenario at a deeper level and provides quantitative support to some possibly 

intuitive facts (such as history- and inoculum-dependence of growth properties), 

has been in part confirmed by empirical data on cancer growth rates [94]. Clearly, 

this oversimplified model does not account explicitly for factors like direct cell-cell 

interactions or feedbacks between growth and regulation or nutrient availability. 

Still, it is interesting that the parameter 𝛽, which in principle is introduced here 

only to enforce a constraint in the maximum entropy scenario, can be given a well 

defined physical interpretation. The integration of further empirical data and possibly 

constraints (e.g. concerning individual fluxes) will hopefully provide new insight 

into this picture. Preliminary results obtained in this direction are encouraging [95].

While the maximum entropy idea has been employed within CBMs for specific 

purposes like objective function reconstruction, metabolic pathway analysis or 

to compute distributions of individual fluxes or chemical potentials over the 

polytope [96,97,98,99,100,101,102,103,104,105,106,107,108,109], the approach 

just discussed presents an overall view of cellular metabolism that differs

significantly from that of mechanistic CBMs such as Flux Balance Analysis [110]

or related ideas [111,112,113], despite the fact that both rely on essentially the same 

physical NESS assumption via (12). In many ways, the two frameworks appear 

to be complementary. Flux Balance Analysis is capable of describing the optimal 

metabolic states of fastest growth achievable by a cell in a multitude of environmental 

and intracellular conditions. The maximum entropy approach, instead, can clarify 

in quantitative terms how far from the optimum an actual population is, and what 

population-level feature might be shaping the observed growth rate heterogeneity. 

These views might become more tightly linked upon further investigating the 

underlying regulatory mechanisms, molecular interactions or trade-offs limiting 

growth.
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2.4. Beyond the basic framework

The major advantage of the maximum entropy principle lies perhaps in its ability 

to cope effectively with limited data. The space of states accessible to a living 

system is huge and always undersampled in experiments. Still, as long as the 

available data permit the estimation of basic statistical observables with sufficient 

accuracy, a variety of efficient computational methods exist that allow to compute 

the parameters of the MaxEnt distribution reliably, leading to a compact, least-

biased and mathematically sound representation of a complex, high-dimensional 

interacting system. We have attempted to describe the fundamentals of entropy 

maximization and its use for biological applications, opting to focus on two of 

perhaps the simplest instances involving the study of biological genome-scale 

networks. Different applications do not require conceptual changes to the approach 

we presented, but may rely on a more careful and/or involved definition of the 

state variables (expression profiles or metabolic flux profiles in the examples we 

considered). Yet some of the issues that we have chosen to leave aside so far now 

deserve a deeper (albeit brief) discussion.

In first place, we have seen that computing the MaxEnt distribution is akin to 

constructing a statistical model of the system one is interested in. The inferred 

model will inevitably depend on the empirical information encoded in the constraints 

under which entropy is maximized. In turn, while MaxEnt models necessarily 

reproduce the information used to build them, their predictive power will depend 

on the encoded constraints as well. In many cases, maximum entropy models can 

correctly reproduce correlations of order higher than those included as constraints 

(see e.g. [16,24] for examples, and [114] for a broader theoretical analysis). Still, 

predictions concerning other quantities may turn out to be incorrect. Assuming the 

imposed constraints are factual, this can happen essentially for a unique reason: 

the constrained quantities do not, by themselves, localize the distribution over 

states where the new observations are matched. In other terms, more (or different) 

constraints are required. Clearly, as constraints map to physical or biological 

ingredients, missing constraints can point to useful insight about of the system 

under study. An example of this is shown in [115], where some phenomenological 

aspects of the coexistence between fast-growing and persister phenotypes in bacterial 

populations are explained in terms of a maximum entropy approach with a constraint 

on growth rate fluctuations.

Secondly, in our presentation we have taken for granted that cells are

indistinguishable (i.e., the arrangement {𝑛1, … , 𝑛𝐾} is indistinguishable from the 

arrangement obtained by exchanging the positions of two balls) and that the set 

of allowed states is discrete (e.g., 𝐾 urns). As it turns out, these are the simplest 

and ideal conditions for applying the maximum entropy principle. In many of 
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the biological applications discussed in the literature, it can be argued that both 

conditions are satisfied. However, this is not generally so. For instance, reaction 

fluxes are continuous variables and the space of allowed flux configurations is 

therefore continuous rather than discrete. While nothing invalidates the maximum 

entropy principle in such cases and the conclusions are unchanged, some more care 

is needed in setting the stage for it in presence of continuous variables. The interested 

reader will find more details e.g. in [61,116].

Thirdly, MaxEnt models like that described by (11) implicitly postulate, via the 

constraint (10), that the coefficients 𝛾𝑖𝑗 are symmetric, i.e. 𝛾𝑖𝑗 = 𝛾𝑗𝑖. This amounts 

to assuming that the gene-gene interaction network is a priori undirected, which 

obviously is at odds with a host of biological evidence. To overcome this limitation, 

which evidently occurs in the maximum entropy approach whenever correlations 

are constrained, one has to abandon the framework discussed here and resort to 

methods that infer dynamical models (as opposed to static ones that can be fully 

described by the probability to observe a certain state). The reasons are rooted in the 

fundamental distinction between equilibrium and off-equilibrium processes, a nice 

discussion of which can be found in [60]. Efficient computational methods have 

been developed to deal with such situations as well, and we again refer the reader to 

[69] for a recent overview. A specific generalization of the maximum entropy idea 

that focuses on inferring distributions of dynamical trajectories in the configuration 

space is known as ‘Maximum Caliber’ [117] (see also [118]). Applications of these 

ideas are presented e.g. in [119,120,121,122,123] (see also [60] for a review).

Fourth, in our presentation we have tacitly assumed that (i) a MaxEnt distribution 

exists (i.e., that, once the mathematical problem is constructed, there is a distribution 

that actually maximizes the entropy subject to the imposed constraints), and that (ii) 

it is unique (as intuitively desirable to avoid ambiguities, and in compliance with 

one of the Shore–Johnson axioms). Whether this is the case, ultimately depends on 

the imposed constraints. For our purposes, it should suffice to say that whenever the 

constraints are linear functions of the probability distribution {𝑝𝑖}, as are e.g. (8), 

(9) and (10), as well as in all instances discussed here, both (i) and (ii) are true. Yet, 

in certain situations this may not be the case [124]. The maximum entropy approach 

then loses some of its appeal and the problem of performing robust inference from 

limited data has to be treated on a case-by-case basis with extra care.

A final important point we have so far not addressed concerns the treatment of 

measurement errors affecting the features used to constrain entropy maximization. 

In practice, inference is always performed under uncertain constraints, which in 

turn leads to uncertain estimates of the inferred parameters (i.e., for instance, of 

the inferred interaction structure). The straightforward application of the Maximum 

Entropy idea discussed so far effectively ignores this aspect. In order to account for 

it, one can extend the MaxEnt framework presented here in the direction of Bayesian 
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inference, which explicitly deals with probability distributions of parameters given 

the data [125]. The reconciliation of the Maximum Entropy and Bayesian approaches 

poses several challenges and has a long and intriguing history [126,127], up to very 

recent applications [6,11,128,129,130]. A related aspect concerns MaxEnt inference 

with missing or incomplete data, a well-known example of which is discussed in 

[48,131]. Such cases have been long considered in the inference literature [132] and 

specific methods have been developed to deal with them [133,134,135]. As more 

high-resolution data probing large-scale biological networks become available, these 

techniques are highly likely to be extended well beyond their current application 

domains.

3. Conclusions

The existence of reproducible quantitative relationships connecting the growth of 

a bacterial population to the composition of the underlying cells (e.g. in terms 

of the RNA/protein ratio) suggests that, when integrated over large enough cell 

populations, regulatory and metabolic mechanisms can generate stable outcomes in 

spite of the heterogeneity and noise that affect them all [136]. Significant deviations 

from the expected outcome are rare. From a statistical viewpoint, one might say that 

in such cases the law of large numbers (or more precisely the central limit theorem 

[137]) is at work, and population-level properties will be roughly independent of the 

way in which cells in the population distribute over allowed states (or, equivalently, 

that all viable distributions lead to the same population-level properties). On the 

other hand, this distribution encodes for critical biological information related to 

robustness, selection and evolvability, and having access to it would be of paramount 

importance.

With detailed information about individual intracellular processes, one may hope 

to construct sufficiently comprehensive mechanistic models capable of mapping the 

behaviour of individual cells, in terms of their regulatory and metabolic activity, to 

population-level observables. It is however unclear whether such a ‘direct’ approach, 

whose concrete realization would be severely hampered by the huge number of 

variables and parameters to be accounted for, would allow to fully uncover how 

cells are distributed over allowed regulatory states, as the space of states to be 

explored would be dauntingly large. The ‘inverse’ route consists in trying to infer 

the distribution from the observed population-level behaviour. As many distributions 

are likely to be compatible with empirical results, one would ideally want to be able 

to sample all of them. The space of such distributions can however be prohibitively 

large for systems as complex as cells. Therefore, the problem of selecting, out of 

this space, the most informative distribution has to be faced. The maximum entropy 

principle provides a constructive and mathematically controlled answer: it is the 
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distribution that maximizes the entropy (4) subject to empirical constraints that 

yields the optimal choice.

Some of the issues raised above however suggest that, as much as the maximum 

entropy principle provides powerful means to extract models and/or useful low-

dimensional representations from complex, high-dimensional and limited data, there 

is room to dissect its fundamentals [138,139], re-analyze its use [140,141], or 

search for alternatives [142]. In our view, besides providing essential theoretical 

insight, these contributions also highlight some of the main practical challenges that 

biological datasets pose to computational and theoretical scientists, whose ultimate 

goals are interpreting them and using them to build e.g. predictive models and de 

novo design protocols. These challenges have ultimately been the key driver behind 

the massive progress achieved in the study of the so-called ‘inverse problems’ in 

statistical physics over the past decade. As one can only envision that data will 

continue to get more and more abundant, of higher quality and increasingly diverse 

(as novel conceptual schemes emerge), the push for technical improvements and 

new schemes will likely escalate. In turn, maximum entropy methods may spread 

further in the coming years, as they are capable of extracting the simplest and least 

biased conclusions that one can reliably draw from limited data. Some of the new 

directions that are being probed have already shown promise for applications in 

biology [143,144].
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