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Abstract
How to determine the spatial distribution and population dynamics of animals are some
of the key questions in ecology. These two have been coupled before, but there is no
general method for determining spatial distributions based on instantanous behavior
coupled with population dynamics.We proposemodeling interacting populations with
instantaneous habitat choice through mean-field games. By using the framework of
variational inequalities, we are able to determine existence and uniqueness for habitat
distributions of interacting populations, in both continuous and discrete habitats. With
some additional restrictions, we are also able to show existence and uniqueness of
fixed-points of the population dynamics along with spatial distributions. We illustrate
our theoretical results by studying a Rosenzweig–MacArthur model where predators
and consumers inhabit a continuous habitat. This study is conducted both theoreti-
cally and numerically. Analyzing the emergent dynamics is possible as viewing the
system from the vantage point of variational inequalities allows for applying efficient
numerical methods. The generality of our theoretical approach opens up for studying
complex ecosystems, e.g. the impact of enrichment on spatial distributions in marine
ecosystems.
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1 Introduction

Game theory is a natural tool to model the behavior of animals, who must respond to
the behavior of other animals as well as complex and rapidly shifting environments.
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A classical application of game-theory is patch-choice models, where the ideal free
distribution emerges to explain spatial distributions of populations (Cressman et al.
2004). A game theoretical approach has been fruitful in studying habitat choice in
simple ecosystemsunder the assumptionof static populations or simplifying the habitat
to a fewdiscrete patches (Cressman andKřivan 2010;Valdovinos et al. 2010). Real-life
habitat choice consists of animals choosing where to forage in a continuous landscape,
with varying intra-specific competition and external risk factors. Building models that
canhandle these challengeswould represent a significant step forward in understanding
natural systems (Morris 2003).

A population game is a system of interacting populations where each individual
chooses the best strategy at every instant. Typically, this is the strategy that maximizes
individual fitness. That is, population games generalize the ideal free distribution
(Cressman et al. 2004). The single-species ideal free distribution is characterized by
evolutionary stability, but stability in the multi-species case is more complex (Křivan
et al. 2008). In the multi-species case evolutionary stability is not immediate when
each animal optimizes their fitness. We refer to the ideal free distribution without
stability assumptions as the simple ideal free distribution. When including behavior
in population models using game-theory a common simplification is to assume that at
least one payoff is linear in the choice of strategy (Krivan 1997). Linear models are
suffficient to explain simple predator–prey dynamics with optimal behavior (Křivan
2007), but non-linear effects in natural systems are substantial (Gross et al. 2009).

A general model for population games based on fitness is set out in Vincent and
Brown (2005) where optimal behavior is introduced by every population maximizing
the per capita growth at every instant. This implicitly assumes monomorphic popu-
lations, where all individuals intrinsically act as one (Malone et al. 2020; Stump and
Chesson 2017). The assumption of monomorphic populations is the typical approach
to population games with instantaneous migrations (Křivan 2013; Vincent and Brown
2005), but it is well-known that this does not generalize the ideal free distribution and
dramatically increases the per capita gain (Křivan et al. 2008). We propose a modifi-
cation of the approach from Vincent and Brown (2005) in the vein of Cressman and
Křivan (2010), based on individual optimization in the context of habitat selection.
Rather than assuming a population where all individuals act in lockstep, we allow each
anima to act independently with its risk-reward calculus affected by the population
mean behavior (Fretwell 1969; Smith 1982; Cressman and Křivan 2010). Then the
game at every instant game becomes a mean field game with multiple types, which
leads to the simple ideal free distribution if the animals are optimizing their fitness.

We model instantaneous movement, but the underlying reality is that ani-
mals migrate between adjacent patches, e.g. through advection–diffusion dynamics
(Cantrell et al. 2010). If population dynamics are sufficiently slow, then the migra-
tion dynamics which lead to the simple ideal free distribution are those which are
evolutionarily stable (Averill et al. 2012; Cantrell et al. 2010), and even very basic
migration dynamics lead to the simple ideal free distribution (Avgar et al. 2020). As
such, populations at a population-dynamical equilibrium can be expected to follow
a distribution where each individual has optimal fitness (Cantrell et al. 2007; Cress-
man and Křivan 2010), which in this case is zero. When the population dynamics and
migratory time-scales are sufficiently decoupled, the migration dynamics which lead
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to the simple ideal free distribution are also evolutionarily stable (Cantrell et al. 2020;
Cressman and Křivan 2006), even when predators do not directly optimize their own
fitness (Avgar et al. 2020). Therefore a wide range of natural systems can be modeled
by coupling population dynamics to optimal patch distribution. Currently there is no
general approach to do so, but we introduce an approach based on mean-field games
and optimization.

We essentialy unite the two parallel tracks which mean-field games have followed
since their inception. One track is in mathematical biology through the ideal free
distribution and habitat selection games (Fretwell 1969; Parker 1978; Cressman et al.
2004; Křivan et al. 2008; Cressman and Křivan 2010; Broom and Rychtár 2013), and
the other in mathematical optimization based directly on anonymous actors (Lasry and
Lions 2007; Aumann 1964; Blanchet and Carlier 2016). The main focus in the game-
theoretically focused ecological work has been studying specific families of games in
depth (Broom and Rychtár 2013), while the focus in mathematical optimization has
been in establishing uniqueness and existence of Nash equilibria through the toolbox
of variational inequalities (Karamardian 1969; Gabay 1980; Nabetani et al. 2011).

Using the theory of variational inequalities, we show that population games based
on individual optimization have a unique equilibrium under very mild assumptions.
Our approach allows us to handle both continuous and discrete strategy spaces, but
more technical assumptions are required for existence in the continuous setting. The
simple ideal free distribution emerges as a special case of our approach, providing
a compelling argument for the mean-field approach. By working with variational
inequalities, we can generalize the classical definition of a multi-species evolution-
ary stable state to the continuous setting (Cressman et al. 2001). We demonstrate our
approach by applying it to a Rosenzweig–MacArthur system with intraspecific preda-
tor competition in continuous space modeling a marine ecosystem. We modify the
system so both predators and consumers have instantaneous optimal behavior based
on maximizing the individual growth rate. We show that the Rosenzweig–MacArthur
system with optimal behavior satisfies the criteria for existence and uniqueness of
equilibria as a population game, and perform numerical experiments to see the effect
of the carrying capacity and competition on the system.

In addition to our theoretical advances, we implement a simple and efficient
numerical method of finding Nash equilibria and equilbria of population games. The
numerical method is applied to the behaviorally modified Rosenzweig–MacArthur
system. We examine the population dynamics through a phase portrait, where they
appear to be asymptotically stable. We study the population levels and spatial distri-
bution at equilibrium as a function of the carrying capacity and intraspecific predator
competition. With optimal behavior, increased competition causes a drastic change in
behavioral patterns for consumers and predators and an increase in consumer popu-
lations with a very low impact on predator populations. Increasing carrying capacity
causes both predator and consumer populations to increase, while consumers move
towards more cautious behavior.

The paper is organized as follows: We start with the general setting. After build-
ing the general setting, we introduce the machinery of variational inequalities in the
context of game theory. Here we show the general uniqueness and existence results.
We proceed to study the concrete Rosenzweig–MacArthur model, showing existence
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and uniqueness of the Nash equilibrium and population equilibrium. We analyze the
results, and discuss the implications of both numerical and theoretical results.

2 Population games based on habitat choice

We build the general setting piece-by-piece, from the environment to the foraging
strategies. First we define the environment, then we introduce the mean-field setting,
as it is necessary to handle the strategy of an entire population. With this in place, we
can give an exact definition of a population game in our sense. Once we have laid the
building blocks for our setting, we show that mean-field games generalize the ideal
free distribution.

We envision a setting with M different unstructured populations of animals co-
existing in an environment, each with biomass Ni . We only model behavior as patch
choice, excluding e.g. mating behavior. The distribution of population i in the envi-
ronment is described by σ i . More rigorously, we assume that the environment is a
probability space (X , μ). Modeling the environment as a probability space allows us
to model habitats which are continuous, discrete and mixtures thereof in the same
context. As an example, bats forage over a continuous area while the caves where they
rest are discrete and disconnected (Collet 2019). We model that the populations Ni ,
i ∈ {1, . . . , M} are large compared to a single individual. This allows us to consider the
population as continuous, consisting of infinitely many individuals. We assume that
the population dynamics depend both on the distributions and the population sizes:

Ṅi = Ni fi ((N jσ j )
M
j=1) (1)

That is, we consider population dynamics which can be described by a Kolmogorov
model.

We suppose that the migration dynamics happen on a faster time-scale than the
population dynamics, as is seen with e.g. vertical migrations in marine ecosystems
(Iwasa 1982). This slow-fast dynamic allows us to model the migrations as instan-
taneous, with each individual picking the optimal foraging ground at every instant
(Křivan 2013; Cressman and Křivan 2006).

We assume that every animal has an area where it forages at every instant. For an
animal of type i this is described by a probability distribution σi over the environment
X . We require that the distribution σi is absolutely continuous with respect to the
measure μ. In an abuse of notation, we will denote this density by σ . We denote the
space of probability densities over X with respect to μ by Pμ. We suppress X for
notational brevity. By requiring absolute continuity with respect to the base measure
we remove degenerate Nash equilibria e.g. Dirac-type distributions in a continuous
setting, avoiding for example all gazelles stacked exactly at a single point in space.
We hereby generalize both the continuous and discrete approach to habitat selection
(Fretwell 1969; Broom and Rychtár 2013; Thygesen and Patterson 2018).
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2.1 Foraging strategies andmean-field

In habitat choice games an animal faces the essential choice of where to forage,
weighing risk and reward.Hence the densityσi describingwhere it forages is a strategic
choice. As we assume instantaneous migrations and perfect information, an animal of
type i faces the foraging choices of all other inhabitants. Modeling the influence of the
foraging choices necessitates the introduction of the mean-field strategy, σ j for type
j . The mean-field strategy σ j is the average strategy of all individuals of type j . As a
consequence, we can describe the foraging presence from type j at a point x ∈ X by
N jσ j (x).

The choice of optimal foraging strategy σ ∗
i for an animal of type i is a trade-off

based on the presence of competitors, predators and prey. When considering animal
populations, finding the optimal behavior for all individuals simultaneously quickly
becomes infeasible. For this reason, we need to simplify the problem. This is where
mean-field games come into play. The fundamental idea behind a mean-field game
is that in a sufficiently large population, the decision of a single individual has no
discernible impact on the average behavior of the population. In this case we can
decouple the behavior of an individual and the mean behavior of the population, and
assume that an individual plays against the average behavior of the population. That is,
an individual plays the field (Smith 1982). The fundamental assumption in the mean-
field game thatwe consider is that the populations consist of infinitelymany individuals
acting instantaneously and independently so the choice of a single individual does not
change the mean-field strategy (Aumann 1964)

The mean density of competitors, predators and prey at a point x is described
by N jσ j (x). We capture this trade-off for for each individual in a payoff function
Ui (σi , (N jσ j )

M
j=1). The payoff Ui we have in mind is the instantanenous growth

of an individual, i.e. individual fitness. This is given by the difference between the
instantaneous per capita reproduction and mortality for an individual in Eq.1. When
using the individual fitness as payoff, the Nash equilibria we find should be the same
as simple ideal free distributions.

Given that each type j is distributed according to σ j , the goal of a single animal of
type i is finding the optimal strategy σ ∗

i by playing the field at each instant such that

σ ∗
i ∈ argmaxσi∈Pμ

Ui (σi , (N jσ j )
M
j=1) (2)

Whether such a Nash equilibrium exists is well established when no additional regu-
larity is imposed on the probability distributions (Glicksberg 1952), we will tackle the
general problem of existence later. At theNash equilibrium of amean-field game every
individual of type i follows the same strategy σ ∗

i , (Lasry and Lions 2007; Aumann
1964). Heuristically, this is due to interchangeability as if any individual of type i
gains by deviating from σ ∗

i , any one of them would also gain from making the same
deviation, hence doing so. Therefore if all individuals follow the optimal strategy, they
follow the same strategy. This allows us to go from the individual-level optimization
to the Nash equilibrium in Eq. (2).
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Using N to denote the Nash equilibrium, a mean-field equilibrium σ N
i is a solution

to the equation:

σ N
i =

(
argmaxσi∈Pμ

Ui (σi , (N jσ j )
M
j=1, j �=i , Niσ

N
i )

)
(3)

A solution is guaranteed to exist by the results of Glicksberg (1952). Hence a Nash
equilibrium of a game with M interacting populations is a solution to the system of
equations:

σ N
1 =

(
argmaxσ1∈Pμ

U1(σ1, (N jσ
N
j )Mj=1)

)

...

σ N
M =

(
argmaxσM∈Pμ

UM (σM , (N jσ
N
j )Mj=1)

)
(4)

This system of equations looks intractable, but in the next section we will see that
in many cases it can actually be solved using the toolbox of variational inequalities.
Introducing Eq. (4) allows us to define a population game exactly.

Definition 1 A population game consists of M unstructured populations with each
population having a biomass of size Ni with dynamics given byEq. (1). Each individual
of type i has a payoff function Ui (σi , (N jσ j )

M
j=1)). Migrations are instantanenous,

and at every instant the populations are distributed according to the mean-field Nash
equilibrium Eq. (4), σ N

i .

The canonical example of Definition 1 is the case where the payoff functions Ui are
given by the individual fitness. TheNash equilibriumEq. (4) becomes a situationwhere
all individuals of each type have the samefitness and do not gain fromdeviatingEq. (4),
i.e. the simple ideal free distribution (Fretwell 1969). We repeat the caveat that this
version of the ideal free distribution does not incorporate any stability criteria (Křivan
et al. 2008). For this reason we refrain from using the terminology "the ideal free
distribution" and instead refer to Eq. (4) as the Nash equilibrium of a mean-field game
or the simple ideal free distribution. We will give a definition of the multi-species
ideal free distribution once we have introduced the entire framework of variational
inequalities and their coupling with Nash equilibria.

Thoughwe focus on population gameswith the individual fitness as payoff function,
an appeal of the mean-field approach is that it allows general payoff functions. As an
example, the impact of cooperation in a spatially extended game can be investigated
by using a mean-field approach (Antonov et al. 2021).

3 Nash equilibria and variational inequalities

Calculating Nash equilibria, Eq. (4) is generally a hard problem. A fruitful approach
to calculating Nash equilibria is via the theory of complementarity problems and vari-
ational inequalities (Karamardian 1969; Nabetani et al. 2011). We unite the approach
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of variational inequalities and mean-field games which allows us to characterize a
situation that guarantees uniqueness and existence of Nash equilibria in population
games (Definition 1), and the existence of fixed-points of these games.

As in Sect. 2, our habitat is a probability space (X , μ). We have M different ani-
mal types coexisting with individual payoff-functions Ui . The simplest example our
framework needs to handle is that of a single type with population N inhabiting X with
following a distribution with density σ . The pointwise encounter rate of an individual
following the strategy σ with the entire population also following the strategy σ is
Nσ(x)2. The expected total encounter for an individual with its conspecifics is then

N
∫

X
σ 2dμ (5)

and this quantity must be finite. This motivates that the appropriate setting for our
work is the space L2(X).

Definition 2 Define the real Hilbert space H = L2(X), where X is a probability space.
Define H+ ⊂ H as the a.e. positive functions in H .

3.1 From Karush–Kuhn–Tucker to complementarity

In order to find the Nash equilibrium at every instant in a population game, we need
to solve Eq. (4). We recall the setup of the M-player mean field game, now restricted
to H . Assume we have M different types of animals, with payoff functions Ui , and
strategies σi , with corresponding mean-field strategies σ i . Before we proceed, we
need to recall a simple version of the Karush–Kuhn–Tucker (KKT) conditions that we
need. We denote the identity operator on H by 1H . For the full version of the KKT
conditions, see e.g. Deimling (2010).

Theorem 1 A minimum x∗ of a Gateaux differentiable function f in P2,μ ⊂ L2(X)

satisfies the necessary condition that there exists an element ν ∈ H+ and a scalar
λ ∈ R such that:

f (x∗) + ν = 1Hλ〈
x∗, ν

〉 = 0
(6)

The condition 〈x∗, ν〉 = 0 is described as the complementary slackness conditions,
and the requirements that x∗ ≥ 0 and

∫
x∗dμ = 1 are the primal conditions. The

variable λ is a Lagrange multiplier, and ν is typically referred to as a slack variable.

The Nash equilibrium of the game specified by the family (Ui ) corresponds to finding
a system σ ∗

i satisfying the KKT conditions simultaneously for every Ui , with σ = σ

as in Eq. (3). The total criterion for a Nash equilibrium of a mean-field game Eq. (4)
is:
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∇σi Ui ((σ j )
M
j=1) |σi=σ i +νi − λi · 1H = 0

〈σi , νi 〉 = 0

νi ∈ H+, σi ∈ H+∫

X
σi dμ(x) − 1 = 0

(7)

Remark that the last two conditions are equivalent to σ ∈ Pμ ∩ H . This motivates the
definition:

Definition 3 Assumewehave aprobability space (X , μ). Consider the spaceof square-
integrable functions H = L2(X , μ) and space Pμ of probability densities over X .
Define the space P2,μ = H ∩ Pμ consisting of square-integrable probability densities.

Solving the system in Eq. (7) is highly non-trivial, but it turns out that reinterpreting
the problem is helpful. Finding Nash equilibria by interpreting the problem as a com-
plementarity problem is one of the the original solutions to the hardness of finding
Nash equilibria (Karamardian 1969). It turns out that the set of equations in Eq. (7)
is very close to being a complementarity problem, but first we need to introduce the
notion (Hadjisavvas et al. 2006, p. 507).

Definition 4 Let H be a realHilbert space, and K ⊂ H be a closed convex cone.Define
K ∗ = {x ∈ H : 〈x, y〉 ≥ 0, ∀y ∈ K }. Assume T : K → H . The complementarity
problem CP(T , K ) is the problem of finding an element x such that

〈x, T x〉 = 0

T x ∈ K ∗, x ∈ K
(8)

In Definition 4 we recover the notion of a linear complementarity problem if T is
affine.

With Definition 4 we can write Eq. (7) as an equivalent family of complementarity
problems. Introduce K = H+ ⊕ R, with K ∗ = H+ ⊕ {0} and define

T (σi , λi ) = (−∇σi Ui + λi · 1H |σi=σ i , 0) (9)

Then the equations in Eq. (7) can be recast as finding (σi , λi ) ∈ K such that:

〈T (σi , λi ), (σi , λi )〉 = 0

T (σi , λi ) ∈ K ∗ (10)

Which, when writing out the definition of T , becomes:

〈−∇σi Ui |σi=σ i +λi · 1H , σi
〉 + 〈0, λi 〉 = 0(− (∇σi Ui |σi=σ i +λi · 1H

)
, 0

) ∈ K ∗ (11)
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There are dedicated tools available allowing for fast numerical resolution of comple-
mentarity problems in finite dimensions (Acary et al. 2019; Dirkse and Ferris 1995),
which can be applied after suitable discretization of the problem. There is still the prob-
lem of establishing existence and uniqueness of the solution to this complementarity
problem, which is generally hard, (Hadjisavvas et al. 2006).

3.2 Results on variational inequalities

Before we can proceed with the main theme of the article, we recount some results
on existence and uniqueness of variatinoal inequalities, which also show their general
utility in optimization. We define a variational inequality:

Definition 5 Let H be a real Hilbert space and K ⊂ H be a non-empty convex subset
of H . Let T : K → H . The variational inequality V I (T , K ) is the following system
for x �= y:

x ∈ K , 〈y − x, T x〉 ≥ 0, ∀y ∈ K (12)

The relationship between variational inequalities and complementarity problems is
captured in (Hadjisavvas et al. 2006, Proposition 12.1):

Proposition 1 Let K ⊂ H be a convex cone, and T : K → H. Then the variational
inequality V I (T , K ) is equivalent to the complementarity problem CP(T , K ).

The solutions to a variational inequality are not generally unique, but with certain
restrictions on T the solutions become unique.

Definition 6 The function T : K → H is strictly pseudomonotone if for every pair
x �= y we have

〈x − y, T (y)〉 ≥ 0 ⇒ 〈x − y, T (x)〉 > 0 (13)

Likewise, the function T is pseudomonotone if for every pair x �= y we have:

〈x − y, T (y)〉 ≥ 0 ⇒ 〈x − y, T (x)〉 ≥ 0 (14)

Which enables the uniqueness result:

Theorem 2 (Lemma 12.3, p. 516, (Hadjisavvas et al. 2006)) Let K ⊂ H be a non-
empty subset of H. If T is a strictly pseudomonotone function, then the problem
V I (T , K ) has at most one solution.

Strict pseudomonotonicity is related to strict monotonicity, in that every strictly mono-
tone function is also strictly pseudomonotone. A natural question is how strictly
pseudomonotone arise, and they arise from a corresponding generalization of strict
convexity.
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Definition 7 Let Ω ⊂ H be an open subset of H , and let f : Ω → R be Gateaux-
differentiable. The function f is strictly pseudoconvex if

〈y − x, (∇ f )(x)〉 ≥ 0 ⇒ f (y) > f (x) (15)

Where a strictly convex function has a strictly monotone derivative, a variant holds
for strictly pseudoconvex functions which have strictly pseudomonotone derivatives.
Hence minimizing a differentiable strictly pseudoconvex f function over a convex set
K is equivalent to solving the variational inequality (Hadjisavvas et al. 2006, P. 521)

x ∈ K , 〈(∇ f )(x), x − y〉 ≥ 0,∀y ∈ K (16)

Having given a criterion for uniqueness, the next question is whether a solution exists
at all. The existence of solutions to a variational inequality given by a pseudomonotone
function can be determined by a simple criterion (Maugeri and Raciti 2009, Theorem
3.4), which we abridge:

Theorem 3 Let K be a closed convex set and A : K → H a pseudo- monotone map
which is continuous on finite dimensional subspaces of H. A variational inequality
〈A(x), y − x〉 has a solution if and only if There exists a point u0 ∈ K such that the
set

{v ∈ K : 〈A(v), v − u0〉 < 0} (17)

is bounded. This provides uswith a testable criterion forwhether a variational inequal-
ity admits a solution.

Remark 1 Boundedness of K , or more precisely weak compactness, also ensures that
V I (T , K ) has a solution in K (Hadjisavvas et al. 2006, Theorem 12.1, P. 510). This
also ensures existence of solutions to variational inequalities in the finite-dimensional
case.

Intuitively, the criterion in Theorem 3 states that as long as there a direction where
A(v) becomes positive eventually, there exists a solution to the variational inequality
in K . Or, on a more formal level, what the criterion says is that instead of K being
weakly compact, it is sufficient that 〈A(v), v − u0〉 changes sign on weakly compact
set. In practice this criterion should always be satisfied in a population game, as a
negative density dependence should eventually outweigh any gain from clumping as
an infinite concentration should not be advantageous.

Though strictly pseudomonotone functions initially arise as gradients of strictly
pseudoconvex functions, they can bemuchmore general. Checkingwhether a function
is strictly pseudomonotone from the definitions can also be hard in practice, hence we
state another characterizationof strict pseudomonotonicity for differentiable functions.

Lemma 1 Let K be a convex subset of H. A function f : K → R is strictly pseu-
domonotone if the following implication holds for any x, h ∈ K:

〈 f (x), h〉 = 0 ⇒ 〈(∇x f (x))h, h〉 > 0 (18)
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A proof can be found in Hadjisavvas et al. (2006, Proposition 2.8, p.96)

3.3 The Nash equilibrium as a variational inequality

We have recast the problem of finding a Nash equilibrium to a complementarity prob-
lem, which allows for numerical resolution. To establish existence and uniqueness,
we need to use the relationship between complementarity problems and variational
inequalities.Wewill show that in case the payoff-functionsUi are sufficiently nice, the
machinery of variational inequalities can be applied to show existence and uniqueness
of the Nash equilibrium.

We can now turn the problem finding a Nash equilibrium into a variational inequal-
ity. Consider the problem as stated in Eq. (10). This is a complementarity problem over
the convex cone H+ ⊕ R. Hence it is equivalent to a variational inequality over the
same convex cone with T as in Eq. (10) by Proposition 1. The equivalent variational
inequality becomes that of finding a pair σi , λi such that:

〈
T (σi , λi ), (σ

′
i − σi , λ

′
i − λi )

〉 ≥ 0, ∀(σ ′
i , λ

′
i ) ∈ K , (σ ′

i , λ
′
i ) �= (σi , λi ) (19)

Recalling the definition of T , T = (−∇σi Ui |σi=σ i −λi , 0), we see the second
coordinate is identically zero. Hence solving Eq. (19) is equivalent to solving

〈−∇σi Ui |σi=σ i −λi , σ
′
i − σi

〉 ≥ 0 ∀σ ′
i ∈ K , σ ′

i �= σi〈−∇σi Ui |σi=σ i , σ
′
i − σi

〉 − 〈
λi , σ

′
i − σi

〉 ≥ 0 ∀σ ′
i ∈ K , σ ′

i �= σi
(20)

If we constrain the solution set to the convex set P2,μ where it must lie due to the
Lagrange multiplier, both σi and σ ′

i integrate to 1, therefore the term
〈
λi , σ

′
i − σi

〉
van-

ishes. Hence solvingEq. (20) over K is equivalent to solving the variational inequality:

〈−∇σi Ui |σi=σ i , σ
′
i − σi

〉 ≥ 0, ∀σ ′
i ∈ P2,μ, σ ′

i �= σi (21)

We can now state the problem of finding the Nash equilibrium Eq. (4) as finding the
solution of a variational inequality.

Definition 8 (Nash equilibrium as variational inequality) Defining

dU =
⎛
⎜⎝

∇σ1U1 |σ1=σ 1
...

∇σNUN |σN=σ N

⎞
⎟⎠ (22)

the problem of determining the Nash equilibrium Eq. (4) is the variational inequality
of finding a vector S = (σi )

M
i=1 such that:

〈−dU (S),W − S〉 ≥ 0 ∀W ∈ (P2,μ)M ,W �= S (23)

with P2,μ as defined in Definition 3
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With Definition 6 in hand, we can finally give sufficient criteria for existence and
uniqueness of the Nash equilibrium of the game specified in Eq. (4).

Theorem 4 Consider a game with M players with payoff functions Ui such that the
total operator −dU from Definition 8 is strictly pseudomonotone. Assume the strate-
gies σi are in P2,μ. The game has a unique Nash equilibrium if−dU as in Definition 8
satisfies the criterion in part (2) of Theorem 3 or H is finite dimensional.

Proof By Theorem 2 any Nash equilibrium will be unqiue since dU is strictly pseu-
domonotone. So if the solution exists, it is unique. By assumption Theorem 3 gives
existence of a solution of V I (dU , PM

2,μ) in case H is infinite dimensional. If H is

finite-dimensional then PM
2,μ is compact and there exists a solution by Remark 1. ��

With Theorem 4, we can show that there exist unique fixed points of population
games where dU is strictly pseudomonotone and the vector fields specifying the
population dynamics are sufficiently regular.

Theorem 5 We have a population game as Definition 1 with M populations of size
Ni , payoff functions Ui (σi , (N jσ j )

M
j=1) and dynamics given by fi ((N jσ j )

M
j=1)):

Ṅi = Ni fi (24)

Assume that the that the set of stationary points of the population dynamics is uniformly
bounded in (σi )

M
i=1, and that the stationary points can be described by a continuous

function Φ : PM
2,μ → R

M+ . Let −dU = (∇σi Ui |σi=σ i ) be strictly pseudomonotone
and satisfy the criterion of Theorem 3. Then the population game has a fixed point.
If further the system fi defines a pseudomonotone operator F : R

M+ → R
M+ with

F = ( f1, . . . , fM ), the fixed-point is unique.

Proof The game specified by the family (Ui )
M
i=1 defines a variational inequality prob-

lem over PM
2,μ with operator −dU . This variational inquality has a unique solution for

each x ∈ R
M+ , due to the existence and uniqueness of the solution by Theorem 4. This

solution defines a continuous a function fromR
M+ , denoted G, whereG : RM+ → PM

2,μ
(Barbagallo and Cojocaru 2009, Theorem 4.2).

Finding a fixed point of the dynamical system along with a Nash equilibrium then
corresponds to finding a fixed point of the mapping Φ ◦ G : RM+ → R

M+ . Since the
set of stationary points is assumed bounded, G has compact range, and Φ ◦ G has
compact image. Therefore Φ ◦ G : RM+ → R

M+ has a fixed point (x∗
1 , . . . , x

∗
m) by

Schauder’s fixed point theorem (Granas and Dugundji 2003, Theorem 3.2, p. 119).
We can conclude that a fixed-point exists, hence a combined Nash and population

equilibrium.
To show uniqueness, we need to shift perspectives. We are searching for zeros

of the system fi , i.e. solutions of the variational inequality V I (F,RM+ ) constrained
by the fact that the system of σi constitute a Nash equilibrium, i.e. they need to
solve the variational inequality V I (−dU , PM

2,μ). This is an example of a so-called
bi-level variational inequality. As we have already established existence, the strict
pseudomonotonicity of −dU and pseudomonotonicity of F give us uniqueness of the
solution (Chen et al. 2014). This shows the desired result. ��
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3.4 The ideal free distribution

Having introduced the framework of variational inequalities allows us to connect with
the ideal free distribution. As noted in the introduction, the ideal free distribution is
classically defined as emerging fromplaying thefield in single-species habitat selection
games (Fretwell 1969). As such, the ideal free distribution is informally characterized
by no individual gaining anything from moving from their spot in a habitat selection
game. This definition, while perfectly suitable for single-species games is insufficient
for the multi-species case. A stability requirement should also be introduced so a
small deviation from the ideal free distribution will not change the overall distribution
and such that best-response dynamics converge to the ideal free distribution (Křivan
et al. 2008). The ideal free distribution can also be expanded to incorporate population
dynamics (Cressman and Křivan 2010), but we refrain from going in this direction
here as it would bring us too far afield. As in Sect. 2 we consider M populations
with mean-field strategies (σ i )

M
i=1, individual strategies (σi )

M
i=1 and individual payoff

functions Ui . We assume that we have a population game with a total operator −dU
Definition 8, with components −dUi .

We generalize the definition of Křivan et al. (2008) and go with a rather restrictive
definition of the multi-species ideal free distribution which ensures stability. It is
typically posed as a result that the ideal free distribution is an evolutionarily stable
strategy (ESS), but we take it as a part of the definition. We introduce the notion
of evolutionary stable strategies based on the definition on evolutionary stable states
using variational inequalities (Migot and Cojocaru 2021). For simplicity, we do not
take weakly evolutionary stable strategies into account but concern ourselves with the
strict case.

In Cressman et al. (2004) the notion of an M-species evolutionarily stable strategy
is introduced, which is equivalent to the ideal free distribution defined in terms of best
responses, Křivan et al. (2008, Section 3.3).

Definition 9 A set of strategies (σ N )i )
M
i=1 in an M-species population game is an

evolutionarily stable strategy if invaders following the slightly perturbed strategies
(σ ′

i )
M
i=1 do not have an advantage against the resident population. In our notation,

implies that for at least one i , we have Ui (σ
′
i , (σ j )

M
j=1) < Ui (σ i , (σ j )

M
j=1).

We can now relate strict pseudomonotonicity and evolutionary stable strategies, which
motivates that strict pseudomonotonicity is the correct notion to look for in population
games, apart from the uniqueness properties.

Theorem 6 Given a population gamewith payoff functions (Ui )
M
i=1 with total operator−dU, if each component −dUi is strictly pseudomonotone, the Nash equilibrium

(σ N
i )Mi=1 is an evolutionarily stable strategy.

Proof Wewish to show thatUi (σ
′
i , (σ j )

M
j=1) < Ui (σ i , (σ j )

M
j=1). As the in assumption

in Definition 9 is that σ ′
i is a slight perturbation of σ i , we can equivalently show

〈
σi

N − σ ′
i ,−dUi ((σ j )

M
j=1)

〉
> 0 (25)
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As we assume each −dUi is strictly pseudomonotone and that σ N
i is the Nash equi-

librium for the game defined by Ui (σ, σ ), by definition of pseudomonotonicity any
strategy ω different from σ N

i satisfies the inequality:

〈−dUi (σ i ), ω − σ i 〉 > 0 (26)

which is exactly the criterion for evolutionary stability of the strategy σ i . ��
This allows us to define an M-species ideal free distribution.

Definition 10 A Nash equilibrium (σ N
i )Mi=1 of an M-species population game with

payoff-functions Ui given by the individual fitness is an M-species ideal free distri-
bution if the Nash equilibrium (σ N

i )Mi=1 is an evolutionarily stable strategy.

This allows us to state the result which motivates that strict pseudomonotonicity is the
correct notion to look for in population games, apart from the uniqueness properties.

Corollary 1 If−dU and each component−dUi are strictly pseudomonotone, the Nash
equilibrium (σ N

i )Mi=1 in a population game is unique and an ideal free distribution.

Proof The uniqueness of the Nash equilibrium follows from the strict pseudomono-
tonicity of −dUi . As we assume each −dUi is strictly pseudomonotone the Nash
equilibrium also constitutes an ESS by Theorem 6. ��
The strict pseudomonotonicity in Theorem 1 is also sufficient for asymptotic conver-
gence of the replicator dynamics to the Nash equilibrium (Migot and Cojocaru 2021),
providing additional motivation for the choice of strict pseudomonotonicity as the
defining characteristic in population games. Our definition of an evolutionarily stable
strategy is closely related to that of an evolutionarily stable state (Migot and Cojocaru
2021). If all components −dUi are strictly pseudomonotone as in Theorem 1 and not
just a single one or a few, the resulting ESS is even stable in the sense that it can invade
other states (Apaloo et al. 2009).

Having established the general results for population games based on habitat choice
with instantaneous migrations and introduced the connection to the ideal free distri-
bution, we are ready to apply the theory to a Rosenzweig–MacArthur system with fast
adaptive behavior.

4 Revisiting the Rosenzweig–MacArthur model

We consider a predator–prey system modeled as a Rosenzweig–MacArthur system
where each individual consumer and predator seeks to maximize its growth at every
instant, in the vein of Krivan and Cressman (2009). We represent consumer, respec-
tively predator, per capita growth byGc and Gp. Likewise, we represent the per capita
mortality by Mc and Mp. We denote the growth and mortality rates of an individ-
ual by the superscript ind . Defining the per capita dynamics fc = Gc − Mc and
f p = Gp − Mp, we can write the dynamical system for the population dynamics as:

Ṅc = Nc fc

Ṅp = Np f p
(27)
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The payoff functions for an individual consumer and predator are given by the indi-
vidual growth rates Uc,Up, and they are:

Uc(σc, Ncσ c, Npσ p) = Gind
c − Mind

c

Up(σp, Ncσ c, Npσ p) = Gind
p − Mind

p

(28)

We consider a systemwith zooplankton as consumers (Nc) and forage fish as predators
(Np) in the water column, modeled as the interval [0, 100], with 0 as the top of the
water column and 100 as the bottom. The choice of strategy is the depth at which to
forage. Both forage fish and zooplankton have large populations, so it is reasonable
to model this system as a mean-field game. We denote the mean strategies of the
predator and consumer populations by σ c, and σ p. The productive zone of the water
column, i.e. where zoo-plankton can find food, is near the top where sunlight allows
phytoplankton to grow. Forage fish are visual predators, so their predation success is
greatest near the top of the water column (Schadegg and Herberholz 2017). We model
an arctic summer where there is constant sunlight which allows us to to ignore the
influence of the day-night cycle. Both zooplankton and foraging fish populations in
the arctic are mainly driven by the summer (Astthorsson and Gislason 2003; Mueter
et al. 2016).

As zooplankton are olfactory foragers, we model that their growth rate βc is con-
stant throughout the water column but the carrying capacity varies. We assume the
zooplankton are not limited either by maximal consumption or handling (Kiørboe
2011), which coupled with the varying capacity leads to a logistic model for their
growth. Summarizing, we assume that the maximal potential growth for a consumer
from a location depends both on the absolute carrying capacity and how many con-
sumers are already occupying the spot. We model the carrying capacity as K0 + Kφ

where K0 is the minimal carrying capacity, K is the varying capacity and φ is a
probability density function. The per capita growth rate of a consumer becomes:

Gc(Nc, σ c) = βc

〈
σ c, 1 − Nc

σ c

Kφ + K0

〉
(29)

The mortality of the consumers is directly related to the growth of the predators,
so we define the growth of the predators and then come back to the mortality of the
consumers. Predator–prey interactions are fundamentally governed by the clearance
or catch rate βp which describes the change in encounter rate from an increase in con-
sumer or predator concentration. The encounter rate incorporates the light-dependent
nature of forage fish, while incorporating that that there is still a minimal chance of
catching prey without light. Concretly, we define:

βp = βl + β0

where βl varies locally and β0 is the minimal clearance rate. We define the maximal
consumption rate for a predator Fp as the reciprocal of the handling time of a predator
Hp:
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Fp = 1

Hp
(30)

The choice of maximal consumption rate as a parameter rather than handling time
reflects that marine animals are rarely limited by handling (Schadegg and Herberholz
2017). We assume the maximal predator consumption rate is Hp, and the predators
have a conversion efficiency of ε. Consumption events are assumed local, so the
expected encounter rate between predators and prey is NcNp

〈
βpσ p, σ c

〉
. We assume

that predators have a Type II functional response, and their consumption is limited by
prey-capture and digestion rather than handling, which causes a non-linearity in the
functional response as a function of the strategy (Kiørboe et al. 2018). This gives a
per capita predator growth rate Gp:

Gp(Np, σ p, Nc, σ c) = ε
Fp

〈
βpNcσ c, σ p

〉

Fp + 〈
βpσ c, σ p

〉
Nc

(31)

Having defined the growth rate of the predators allows us to define the per capita
consumer mortality Mc = Np

εNc
G p. Predator losses stems both from a metabolic loss

μp and mortality from intraspecific predator competition, which we assume leads to
a quadratic loss for predators as there is no satiation. We assume that predators losses
from competition are greatest in the area where they are best specialized for hunting,
since this is where they are best able to confront their con-specifics. Introducing a
competition parameter c, the per capita predator mortality Mp is:

Mp(Np, σ p) = c
〈
σ p, Npβpσ p

〉 + μp (32)

Hence the population dynamics in Eq. (27) are a modified Rosenzweig–MacArthur
system, where behavior of both consumer and predator populations has been incorpo-
rated. Having considered the population dynamics, we now proceed to the individual
level.

4.1 The instantaneous game

Following the exposition in Sect. 2 we model predator and consumer movement as
instantaneous. We assume that each predator and consumer seeks to maximize their
instantanous growth at every instant. As we have switched to focusing on the individ-
uals, we have to distinguish between the strategy of an individual and the mean-field
strategy of the population. Denote the strategies of a focal consumer and predator
by σc and σp respectively. The growth of the focal individual depends on the mean-
field strategies of both predators and consumers, and can be arrived at by analysing
the expressions for Gc, Mc and Gp, Mp carefully, noting which terms depend upon
individual choice and which are dependent on the mean-field strategy.

The growthGind
c of an individual consumer depends on the choices of the consumer,

while the available food depends on the spatial distribution of the entire population.
Hence the growth of an individual consumer is:
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Gind
c = βc

〈
σc, 1 − Nc

σ c

Kφ + K0

〉
(33)

The loss from predation (Mc) for an individual consumer is more complex. The risk of
encountering a predator depends on the strategy of the focal consumer and the overall
predator distribution, while the satiation of the predator depends on how many total
consumers it encounters, hence the mean of the population behavior. Therefore the
individual mortality of a consumer Mind

c becomes

Mind
c = Fp

〈
βpσc, σ p

〉
Np

Fp + Nc
〈
βpσ c, σ p

〉 (34)

Going to a focal predator, the growth Gind
p of an individual predator has the same

expression as the per capita growth, since the satiation of an individual predator has
does not depend on the behavior of the other predators.

Gind
p = ε

Fp
〈
βpσ c, σp

〉
Nc

Fp + 〈
βpσ c, σp

〉
Nc

(35)

The individual predator mortality Mind
p depends on both the strategy of the individual

predator and the distribution of the entire predator population.

Mind
p = c

〈
σp, Npβpσ p

〉 + μp (36)

4.2 Existence and uniqueness of Nash and population equilibria

In order to establish existence and uniqueness of the Nash equilibrium we show that
the variational inequality defined by −dU is strictly pseudomonotone and admits a
solution. We start by showing that there is a unique Nash equilibrium for the cases
where the predator and consumer respectively have constant behavior, i.e. σi = 1, i ∈
{c, p}. First we need a small lemma to simplify the calculations.

Lemma 2 A function g : P2,μ → H is pseudomonotone if and only if g + λ is
pseudomonotone for any λ ∈ R.

Proof Consider 〈g(x) + λ, x − y〉 = 〈g(x), x − y〉 + λ
∫
xdμ − λ

∫
ydμ Using that∫

ydμ = ∫
xdμ = 1, we arrive at 〈g(x), x − y〉. Hence the pseudomonotonicity of

g and g + λ are equivalent. ��
Proposition 2 For every pair of non-zero abundances Nc, Np we have: There is a
unique mean-field Nash equilibrium in the Rosenzweig–MacArthur system where the
consumers have adaptive behavior and predators have constant behavior σp = 1.
Likewise, there is a unique Nash equilibrium in the Rosenzweig–MacArthur system
where the predators have optimal behavior and the consumers have constant behavior
σc = 1.
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Proof To show the uniqueness of the Nash equilibrium when the consumers have
optimal behavior, consider dUc = ∇σcUc |σc=σc . Without loss of generality, we may
assume σ p = 1 as the difference may be absorbed in βp. By Lemma 2 it suffices to
show that f = −dUc + 1 is strictly pseudomonotone. To de-clutter the calculations
we set βc = 1 in the following calculations, but the necessary changes for an arbitrary
value are straightforward. For Lemma 1 assume 〈 f ((σc)), h〉 = 0, then

〈 f (x), h〉 = 0
〈
σc

Nc

Kφ + K0
, h

〉
+ NpFp

〈
βp, h

〉

Fp + Nc
〈
βp, σc

〉 − 〈1, h〉 + 〈1, h〉 = 0
(37)

Hence

〈
σc

Nc

Kφ + K0
, h

〉
= − NpFp

〈
βp, h

〉

Fp + Nc
〈
βp, σc

〉 (38)

Introducing 〈x | as the functional defined from x , consider

H((σc, h) = 〈
(∇ f )((σc, σp))h, h

〉

, where 〈 f (σc), h〉 = 0. We calculate ∇ f :

∇ f =
(

Nc
Kφ+K0

− FpNc〈βp |〈βp |
(Fp+Nc〈βp,σc〉)2

)
(39)

So

H(σc, h) =
〈

Nc

Kφ + K0
h, h

〉
−

〈
FpNcNp

〈
βp, h

〉
βp

(Fp + Nc
〈
βp, σc

〉
)2
h, h

〉
(40)

Inserting Eq. (38) in Eq. (40), we arrive at

H(σc, h) =
〈

Nc

Kφ + K0
h, h

〉
+ Nc

NpFp

(〈
σc

Nc

Kφ + K0
, h

〉)2

(41)

As Nc
Kφ+K0

is strictly positive, we conclude that H(σc, h) > 0. Therefore f is strictly
pseudomonotone by Lemma 1. The situation for the predators is even simpler, since
−dUp is strictly monotone, hence strictly pseudomonotone, so the Nash equilibrium
is unique. The existence of the Nash equilibria follows from the proof of existence in
Proposition 3. ��
Remark 2 In Proposition 2 we considered the single-species game where the constant
behavior was a uniform distribution. The proofs for constant behavior different from
the uniform distribution are the same, but are heavier in notation.

Having shown that each of the underlying mean-field games has a unique Nash equi-
librium, we can consider the total game.

123



Population games with instantaneous behavior and the… Page 19 of 31 52

Proposition 3 The game defined by Uc and Up has a unique Nash equilibrium for
every non-zero pair Nc, Np. Further, this Nash equilibrium constitutes an ideal free
distribution.

Proof By Remark 2 and Proposition 2, any Nash equilibrium of this game is an ideal
free distribution as both single-species game are strictly pseudomonotone by Theo-
rem 1. Again, to simplify the notational load in the calculations we set βc = 1, but
the changes to accomodate an arbitrary value are straight-forward. To show existence
of a Nash equilibrium, we need to show that the variational inequality defined by the
function

dU =
( −∇σcUc |σc=σc

−∇σpUp |σp=σ p

)
(42)

satisfies the criteria of Theorem 3 and is strictly pseudomonotone. To reduce notational
clutter we write σc in place of σc and σp in place of σp through the remainder of the
proof. To show that there exists a solution, start by noting that for all S ∈ H2, S �→
−dU (S) is Lipschitz continuous, hence continuous on finite-dimensional subspaces,
fulfilling the first criterion of Theorem 3. For the second criterion, consider

〈−dU (σc, σp), (σc − 1, σp − 1)
〉

(43)

We relegate the calculations to the “Appendix A.1”, but we conclude

〈−dU (σc, σp), (σc − 1, σp − 1)
〉 ≥ C1 ‖σc‖22 + C2

∥∥σp
∥∥2
2 − W (σc, σp) (44)

where W is uniformly bounded on P2
2,μ, and C1,C2 strictly positive. Recall that

constraining the problem to P2,μ is equivalent to ‖σc‖1 = 1,
∥∥σp

∥∥ = 1. Hence
Eq. (44) tends to infinity as

∥∥(σc, σp)
∥∥
2 tends to infinity. Therefore Eq. (43) is only

negative on a bounded subset of P2
2,μ, showing existence of a solution to the variational

inequality defined by the function Eq. (42) by Theorem 3.
To show strict pseudomonotonicity, we again apply Lemma 1. Assume that

〈−dU ((σc, σp)), (h1, h2)
〉 = 0 (45)

Re-arranging gives:

εFpNc
〈
βpσc, h2

〉

(Fp + Nc
〈
βpσc, σp

〉
)2

= c
〈
βσp, h2

〉
Np +

〈
σc

K0 + Kφ
, h1

〉
+ FpNp

〈
βpσp, h1

〉

(Fp + Nc
〈
βpσc, σp

〉
)

(46)

Introducing 〈x | as the functional defined by the inner product with x , we calculate:

H(x) = (∇ − dU )(x)
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=
⎡
⎢⎣

Nc
K − FpNcNp〈βpσp |〈βpσp |

(Fp+Nc〈σc,βpσp〉)2
F2
p Np〈βpσp |

(Fp+Nc〈βpσc,σp〉)2
εNcF2

p (Nc〈βpσp |βp−〈βpσp |Fp)

(Fp+Nc〈βpσc,σp〉)3
εN2

c F
2
p 〈βpσc|〈βpσc|

(Fp+Nc〈βpσc,σp〉)3 + cNp〈βp|

⎤
⎥⎦ (47)

We need to show that 〈H(x)h, h〉 > 0. We immediately see that the negative con-
tribution from the lower-left corner is cancelled by the upper-right corner. Inserting
the relationship Eq. (46) in the term from the lower right right corner in 〈H(x)h, h〉
allows cancellation of the negative terms from the upper left corner in 〈H(x)h, h〉.
This shows the desired result. ��
Remark 3 From the proof of existence in Proposition 3, we can extract that a negative
density dependence described by a quadratic form is enough for existence of a Nash
equilibrium in a population as long as all other terms have sub-quadratic growth.

As we are interested in the fixed-points of the population dynamics Eq. (27), we
show that a fixed-point of the population dynamics exists and is unique.

Theorem 7 The population game Eq. (27) has a unique co-existence fixed point.

Proof The stationary-point mapping of the behaviorally modified Rosenzweig–
MacArthur system is clearly continuous as a function of σc, σp. Due to the metabolic
terms and logistic terms the set of fixed-points of is uniformly bounded in σc, σp,
and non-empty for sufficiently large K . By Proposition 3 the Nash equilibrium exists
and is unique for every Nc, Np. The operator (− fc,− f p) can be shown to be pseu-
domonotone in an entirely analogous fashion as (−dUc,−dUp), and we omit the
calculations. Therefore, by Theorem 5 any coexistence equilibrium for the population
game is unique and this will exist for K sufficiently large. Hence the equilibrium is
unique as desired. ��

4.3 Parameters

We parametrize the model according to Kleibers’ law (Yodzis and Innes 1992), hence
that clearance rates, metabolic loss and the maximal consumption rate all scale with
the mass to the power of 0.75. We decompose the depth-dependent predator clearance
rate into a constant and a depth-dependent function D(x). Denoting the consumer
mass by mc and the predator mass by mp, the parameters of the model are given by:

Fp = αm0.75
p

βl(x) = bm0.75
p D(x)

βc = bm0.75
c

μp = γm0.75
p (48)

We model light decay I (x) throughout the water column as I (x) = exp(−kx), hence
the depth-dependent carrying capacity as following the light-curve:

φ(x) = exp(−kx) (49)
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And the depth-dependent predator clearance rate as being specialized in hunting near
the top of the water-column:

D(x) = exp(−k/m · x2) (50)

The scaling parameters for the model are taken fromAndersen (2019, Table 2), except
for the zooplankton mass which is from Kiørboe (2011).

Name Value Meaning

mc 0.01 g Consumer mass
mp 10 g Predator mass
α 1.25 g1/4/month Scaling of consumption rate
b 27.5 g1/4 m3/month Scaling of clearance rate
γ 0.2 Ratio between max growth and respiration
K0 10−4 g m3·month Minimal carrying capacity
βp,0 10−4 m3/month Minimal predator clearance rate
μp 0.35 g/(m3· month) Predator metabolic rate
Fp 7 g/(m3· month) Predator maximum growth rate
ε 0.1 Trophic efficiency
k 0.05 m−1 Light attenuation
κ 1

10 m2 Decay of predation success

5 Numerical approach and results

5.1 Numerical implementation

In order to find Nash equilibria and fix-points of the behaviorally modified
Rosenzweig–MacArthur system Sect. 4, we use the formulation of Eq. (10). We dis-
cretize space uniformly, using the trapezoidal rule to evaluate the integrals. By using
the trapezoidal rule, we keep a banded sparsity pattern in the coupling of the loca-
tions. The equations Eq. (27) and the functions −dUc,−dUp are formulated via. the
symbolic language CasADi (Andersson et al. 2019), where we then solve the comple-
mentarity problem as a feasibility problem using IPOPT (Wächter and Biegler 2006)
using the HSL subroutines for linear algebra (HSL 2007). We verified the numerical
results by also solving the problem with a non-linear complementarity routine from
the open-source package SICONOS (Acary et al. 2019).

The numerical approach for finding Nash equilibria and fixed points is extremely
fast, and should scale to much larger problems. It allows for determination of fixed-
points of the dynamics in less than 1s with several hundred grid points. Simulating
the population dynamics is, in contrast, a comparatively slow affair since we simulate
the population dynamics using a forward Euler method.
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A B

Fig. 1 Phase portrait of the Rosenzweig–MacArthur system without optimal behavior (σc = 1, σp = 1),
(A) and with optimal behavior (B) at carrying capacity of K = 40 and a competition of c = 0. The green
lines show a system trajectory

A B

Fig. 2 Transient strategies of consumers (A) and predators (B) at carrying capacity of K = 40 and a
competition of c = 0 corresponding to the phase portrait Fig. 1

5.2 Population dynamics

With a numerical approach in place, we can perform numerical experiments to study
the population dynamics and the impact of carrying capacity (K ) and intraspecific
predator competition (c) on the distributions and populations at equilibrium on the
model in Sect. 4.

The direction of the flowwith optimal behavior (Fig. 1B) is consistent with the usual
Rosenzweig–MacArthur system (Fig. 1A). The phase portrait reveals that the system
dynamics have been stabilized. Looking at the sample trajectory, the system has been
been damped. The stable dynamics stand in contrast to the Rosenzweig–MacArthur
model with constant behavior (σp = σc = 1) where the point of the Hopf bifurcation
has been passed (Rosenzweig 1971), leading to limit cycles (Fig. 1).

Both consumer and predator strategies change rapidly at the start of the time-
interval, before stabilizing towards the equilibrium values (Fig. 2). It appears that the
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A B

Fig. 3 Panel (A) shows population levels of consumers (blue) and predators (red) at equilibrium with
changing carrying capacity (K ). Panel (B) again shows the population levels, but with varying intraspecific
predator competition (C)

consumers are more present in the most productive area when the predator population
is lower (Fig. 2A), which is not that surprising.

5.3 Population at equilibrium

Figure 3 reveals how the population levels of consumers and predators change at equi-
libriumwith varying carrying capacity (Fig. 3A) and intraspecific predator competition
(Fig. 3B).

A higher carrying capacity causes higher populations of both consumers and preda-
tors populations at equilibrium (Fig. 3A). The increase in both populations is probably
because the behavioral choice allows the consumers to avoid the risk of predation,
while achieving the same fitness.

Varying the intraspecific predator competition causes an increase in the population
of predators (Fig. 3B, red) until a point where the population stabilizes (Fig. 3(c ≈
1/3)). The population of consumers continues to increase (Fig. 3B, blue) throughout.

5.4 Spatial distributions

We start by investigating the spatial distribution of consumers and predators compared
to their spatially varying fitness (−dUc, − dUp).

Both consumers and predator distributions have a constant fitness of zero in the area
with coexistence, where the fitness of the predators changes when their concentration
is zero. In this we recognize the emergence of the ideal free distribution (Fig. 4B).

At low carrying capacity consumers are relatively spread out in the most optimal
part of the habitat (0−0.3), while predators are concentrated near themost optimal part
(0). As the carrying capacity increases, the distribution of consumers becomes more
concentrated, distributed around a peak of 0.4. The peak slowlymoves downward with
increasing carrying capacity. The consumers can be found throughout the habitat, even
at the points of lowest productivity.
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A B

Fig. 4 Spatial distribution (full lines) and fitness (dashed lines) of consumers (A) and predators (B) at the
equilibrium with carrying capacity K = 3

A BA B

Fig. 5 Spatial distribution of consumers (A) and predators (B) at the equilibrium with increasing carrying
capacity (K )

Predators go from being concentrated to very spread out, but surprisingly the peak
of the predator distribution is just above the peak of the consumer distribution. There
are no predators below the band of highly concentrated consumers. This is quite
surprising since they have a non-zero encounter rate everywhere. The predator and
consumer distributions follow each other as the carrying capacity increases, and appear
to approach a stable asymptote (Fig. 5).

When there is no intraspecific predator competition consumers are highly con-
centrated at about 0.4, while the predator distributions spreads from 0.4 to 0. The
distribution of predators spreads out as we increase competition, before concentrating
in the safest zone (1) again (Fig. 6B). The foraging benefits from clustering on the
consumers is outweighed by the risk of encountering other predators. The movement
of predators is echoed by the consumers. The consumers spread out and gradually
migrate to the most productive area (0) (Fig. 6A). The spreading out of the consumer
population though the predator population is concentrated far away is caused by the
intraspecific competition between consumers, akin to the ideal free distribution. It
appears that both consumer and predator densities are converging to asymptotic den-
sities (Fig. 6).
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A B

Fig. 6 Distribution of consumers (A) and predators (B) at equilibrium under changing predator competition
(c)

6 Discussion and conclusion

We study population games through the introduction of mean-field games, which
generalize the ideal free distribution (Fretwell 1969) to multi-species settings, albeit
without the dynamical considerations of the multi-species ideal-free distribution
(Cressman and Křivan 2010). We establish existence and uniqueness of Nash equilib-
ria for a large class of population games using variational inequalities. In particular, we
are able to handle a wide class of payoff functions with unique extrema and continuous
strategy spaces. Having determined existence and uniqueness of Nash equilibrium for
the instantaneous game, we showed the existence and uniqueness of fixed-points for
suitably nice population games. This provides a simple criterion for population games,
extending theorems based on specific models (Cressman and Křivan 2010; Sandholm
2010). As such, our work provides a multi-species generalization of the work on two-
species ideal free distributions (Cressman and Křivan 2010; Cressman et al. 2004) and
provides a generalization of the criteria for a unique equilibrium in a habitat selection
game (Cressman and Křivan 2006, Appendix B).

We demonstrate the utility of our results by applying them to study a Rosenzweig–
MacArthur system with fast optimal behavior. We establish existence and uniqueness
of Nash equilibria, both for only consumers or predators and when both have optimal
behavior. The method of proof is computational, and hence can almost certainly be
extended to larger more complex ecosystems where the Nash equilibrium appears
unique but has not been shown to be unique (Pinti et al. 2019). This shows that our
general results open up the study of population games from a general mathematical
viewpoint than has otherwise been the case (Cressman and Křivan 2010; Křivan 2013;
Krivan and Cressman 2009; Broom and Rychtár 2013).

After showing existence and uniqueness, we analyzed the modified Rosenzweig–
MacArthur game numerically by discretizing space. Adding optimal individual
behavior appears to eliminate the paradox of enrichment (Rosenzweig 1971), which is
a common consequence of optimal behavior in ecosystemmodels (Abrams 2010). We
were unable to find a Lyapunov function to provide a theoretical justification (Krivan
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and Cressman 2009). In the sensitivity analysis we saw that the intraspecific predator
competition did not noticeably affect the predator population levels, while elevating
the consumer population levels, which was surprising (Abrams 2010). The increase
in carrying capacity increased both predator and prey levels, as is usually the case in
models with optimal behavior (Valdovinos et al. 2010). The numerical analysis also
showed the emergence of an interesting pattern of consumer predator co-existence,
with an ideal-free distribution emerging in the areas without any predators. In our
numerical experiments we saw that changing the predator competition had a pow-
erful indirect on both distribution and population of prey. The ecological interest of
these results is supported by corresponding effects appearing when movement is not
instantanenous and information is limited (Flaxman et al. 2011).

Our definition of an evolutionarily stable strategy (ESS) follows (Cressman et al.
2001), but generalized to function spaces. This definition allows for verification of
whether a Nash equilibrium is an ESS, without taking population dynamics into
account (Cressman and Křivan 2010). Though the definition does directly draw on
population dynamics, whether a Nash equilibrium constitutes an ESS can be tested by
studying the population dynamics (Grunert et al. 2021). This method of attack may
reveal greater insights on the coupling of the population dynamics and the inner game,
but is computationally heavy.

The key assumption in our modeling approach is the of instantaneous optimal
behavior. Instantaneous optimal behavior in a transient population is reasnoablemodel
if there is a decoupling between behavioral and population-dynamical time-scales. If
this decoupling is not present, then the populations cannot be expected to follow the
simple ideal free distribution at transient states (Abrams et al. 2007; Lou et al. 2014).
The evolutionary stability of strategies leading to the simple ideal free distribution
can break down, for instance when migrations driven by diffusion (Cantrell et al.
2010), or the resources and interactions are too irregular (Averill et al. 2012). As
such, the model of instantaneous optimal behavior must be used with care, but is
particularly suited for studying populations at steady-state (Cantrell et al. 2020, 2010,
2012a, b) or populations with separate behavioral and population-dynamical time-
scales (Cressman and Křivan 2006; Křivan 2013).

Though the instantanenous ideal free distribution may serve to stabilize the dynam-
ics, this is not always the case when the population dynamics and migration dynamics
cannot be modeled on separate time-scales. When the simple ideal free distribu-
tion emerges through an explicit advection–diffusion model in a two-species setting,
the simple ideal free distribution can serve to destabilize the population dynamics
with a slightly sub-optimal strategy leading to stable population dynamical regime
(Zelenchuk and Tsybulin 2021). Showing stability in systems with optimal behavior
like the behaviorally modified Rosenzweig–MacArthur system is a hard analytical
problem (Krivan and Cressman 2009). It seems a general approach could be drawing
on the rapidly developing theory of dynamical variational inequalities (Adly 2018;
Brogliato and Tanwani 2020; Tang et al. 2020) or studying dynamical systems asso-
ciated to bi-level variational inequalities (Anh and Hai 2021). This could also provide
a general theory of why optimal behavior generally enhances stability (Valdovinos
et al. 2010). It appears that using these tools could be a promising future direction of
research.
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Wehave not touched on the topic of differential games,where the optimization is not
instantaneous but takes e.g. the entire life-history into account. Variational inequalities
can be applied to differential games (Pang and Stewart 2008), so this seems like
a tantalizing next step. This could also provide a logical coupling with advection–
diffusion dynamics to study e.g. habitats which are periodic in time (Cantrell et al.
2021).

By introducing mean-field games and studying them through variational inequal-
ities, we show that it is possible to model the distribution of coexisting animal
populations where all seek to optimize their foraging in models with strong time-
scale separation or at the fixed-point. This enables accurate modeling of the spatial
distribution of animals along with their populations, which moves us closer to the
ultimate goal of being able to model the spatial distribution of animals exactly (Morris
2003).
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A Calculations

A.1 Existence

We complete the omitted calculations from the main text. Initially,

〈−dU (σc, σp), (σc − 1, σp − 1)
〉 =

〈
Ncσc

K0 + Kφ
− 1, σc − 1

〉
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+
〈

FpNpβpσp

Fp + Nc
〈
βpσp, σc

〉 , σc − 1

〉

−
〈

εF2
p Ncβpσc

(Fp + Nc
〈
βpσp, σc

〉
)2

, σp − 1

〉

+ 〈
Npcβpσp, σp − 1

〉
(51)

Using that 〈1, σ 〉 = 1, we can write out Eq. (51) and gather the positive and negative
terms

〈−dU (σc, σp), (σc − 1, σp − 1)
〉

=
〈

Ncσc

K0 + Kφ
, σc

〉
+ 〈

Npcβpσp, σp
〉

+
〈

FpNpβpσp

Fp + Nc
〈
βpσp, σc

〉 , σc
〉

−
〈

εF2
p Ncβpσc

(Fp + Nc
〈
βpσp, σc

〉
)2

, σp

〉

− ∥∥Npcβpσp
∥∥
1 −

∥∥∥∥
Ncσc

K0 + Kφ

∥∥∥∥
1
−

∥∥∥∥∥
NpFpβpσp

Fp + Nc
〈
βpσp, σc

〉
∥∥∥∥∥
1

−
∥∥∥∥∥

εF2
p Ncβpσc

(Fp + Nc
〈
βpσp, σc

〉
)2

∥∥∥∥∥
1

(52)

To handle Eq. (52), we consider the individual terms. We start by considering the
terms:

〈
FpNpβpσp

Fp + Nc
〈
βpσp, σc

〉 , σc
〉

,

〈
εF2

p Ncβpσc

(Fp + Nc
〈
βpσp, σc

〉
)2

, σp

〉
(53)

We see both terms in Eq. (53) are uniformly bounded in (σc, σp) over P2
2,μ, hence so

is their differenceW0(σc, σp). Defining C1 = 1
K0+K ess supφ

and C2 = c ess inf βp we
can rewrite Eq. (52) as:

〈−dU (σc, σp), (σc − 1, σp − 1)
〉 ≥ C1 ‖σc‖22 + C2

∥∥σp
∥∥2
2

− ∥∥cβpσp
∥∥
1 −

∥∥∥∥
σc

K0 + Kφ

∥∥∥∥
1
−

∥∥∥∥∥
FpNpβpσp

Fp + Nc
〈
βpσp, σc

〉
∥∥∥∥∥
1

−
∥∥∥∥∥

F2
p Ncβpσc

(Fp + 〈
βpσp, σc

〉
)2

∥∥∥∥∥
1

+ W0(σc, σp)

(54)
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Since ‖σi‖1 = 1, i ∈ {c, p}, all terms involving ‖·‖1 in Eq. (52) are uniformly
bounded, and can be gathered with W0 in a single uniformly bounded function W .
Hence we end with:

〈−dU (σc, σp), (σc − 1, σp − 1)
〉 ≥ C1 ‖σc‖22 + C2

∥∥σp
∥∥2
2 − W (σc, σp) (55)
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