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Abstract Corning archeological reference glasses A, B, C,
and D have been made to simulate different historic tech-
nologies of glass production and are used as standards in
historic glass investigations. In this work, nanoseconds
(193, 266 nm) and femtosecond (800 nm) laser ablation
were used to study the elemental composition of Corning
glasses using laser ablation inductively coupled plasma
mass spectrometry. The determined concentrations of 26
oxides (Li2O, B2O3, Na2O, MgO, Al2O3, SiO2, P2O5,
K2O, CaO, TiO2, V2O5, Cr2O3, MnO, Fe2O3, CoO, NiO,
CuO, ZnO, Rb2O, SrO, ZrO2, SnO2, Sb2O5, BaO, PbO,
Bi2O3) are compared with values reported in the literature.
Results show variable discrepancies between the data, with
the largest differences found for Cr2O3 in Corning A; Li2O,
B2O3, and Cr2O3 in Corning B; and MnO, Sb2O5, Cr2O3,
and Bi2O3 in Corning C. The best agreement between the
measured and literature values was found for Corning D.
However, even for this reference, glass re-evaluation of the
data was necessary and new values for PbO, BaO, and
Bi2O3 are proposed.

Keywords Glass . Standards . Archeometry . LA-ICP-MS

Introduction

The knowledge about the elemental composition of historic
glasses is crucial for establishing their age, provenance, or
the technology used for their production [1–6]. The required
chemical information can be obtained from instrumental
techniques, which offer variable sensitivity as well as limits
of detection [7–10] exploiting various reference materials to
support method validation and evaluation of the measure-
ment uncertainty. The limited collection of available solid
reference materials limits the quality assurance and quality
control when analyzing solids. Archeometrical analyses are
additionally complicated by the uniqueness of the analyzed
historic objects, and measurements need to be performed
non-destructively or pseudo non-destructively using micro-
sampling [7, 11–21].

For historic glass analysis, laser ablation inductively cou-
pled plasma mass spectrometry (LA-ICP-MS) is a good
choice, because it offers direct micro-sampling by focused
laser beam and fast multielemental determination with low
detection limits [7, 22–25]. This method has been widely
and successfully used for elemental analysis of historic
glasses [5, 11, 21, 26–29], although the lack of suitable
matrix-matched solid standards is still recognized as an
important limitation and prevents insights into the accuracy
achievable with this technique.

Glass standards in analysis of historic objects

Taking into account the widely varying composition of his-
toric glass, the selection of appropriate matrix-matched solid
reference materials is difficult [2, 11]. The most popular glass
reference materials are those which are available from NIST
(National Institute of Standards and Technology) in form of
wafers. These have been widely used as calibration materials
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for LA-ICP-MS analysis of historic glass [21, 27–30]. The
silicate matrix (Si-Na-Ca-Al) of NIST SRM 610 to 617 is
doped with the well-known concentrations of 61 elements.
However, the composition of historic glasses usually differs
considerably from the major element composition of these
reference materials. To meet these analytical needs, Corning
archeological reference glasses: A, B, C, and D have been
produced by the Corning Museum of Glass (USA). These
materials reflect the different technologies of historic glass
production. Glasses A and B mimic the composition typical
for Egyptian, Mesopotamian, Roman, Byzantine, and Islamic
glasses; C is similar to glasses from East Asia, and D reflects
glasses, which have been produced from the seventeenth to
the nineteenth centuries [2, 31, 32].

High purity synthetic oxides and carbonates, NaCl,
NH4H2PO3, alumina hydrate, natural ZrSiO4, and SiO2 have
been used as precursor materials to produce the Corning
glasses [31]. Trace elements have been mixed in two groups
(Ti, Sn, B, Ba, Sr, Li, Rb and V, K, Ag, Zr, Ni, Zn, Bi) and
ball-milled prior to incorporation. The precursor mixtures
were melted, stirred, and quenched in deionized water, then
crushed, and re-melted again. The rehomogenized melt was
poured into 1-cm-thick sheets. Two groups of elements can
be distinguished in the elemental composition of Corning
glasses [31, 32]. The first group includes the elements which
oxides have been determined by a number of techni-
ques, i.e., gravimetry, polarography, flame photometry,
atomic absorption, X-ray fluorescence, or neutron acti-
vation (SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, MnO,
P2O5, TiO2, Sb2O5, CuO, PbO, CoO, BaO, SnO2, SrO, and
ZnO). The second group includes the oxides for which
nominal compositions were calculated from mass fractions
of the precursor constituents added to the batch (B2O3,
Li2O, Rb2O, V2O5, Cr2O3, NiO, ZrO2, Bi2O3). It can be
assumed that the results obtained by several laboratories
should be more reliable then indicative information about
the contents of the oxides calculated for the second group,
although Corning archeological reference glasses are not
characterized by a metrologically valid procedure. These
glasses have been mainly used for estimation of the preci-
sion and accuracy of measurements in several investigations
of historic glass objects [5, 11, 17, 27, 29, 30, 33–40],
because large amounts of elemental concentration data have
been published for them [11, 27, 31, 32, 37–40]. The con-
tents of the literature values of the oxides used in this study
are from Vicenzi [32] who referred to Brill [2] (Table 1).

Brief revision of the literature

Brill [2, 31] coordinated the first interlaboratory investiga-
tions of elemental compositions of the Corning archeolog-
ical reference glasses and published recommended and
nominal values. Tentative recommended values were given

in 1971 [31], with emphasis that these preliminary values
would need further evaluation. The final compositions of
Corning glasses were published by Brill [2] in 1999, and
they were then used as the recommended ones [32]. These
values have been used for calibration in quantitative analy-
ses of historic glasses and to check the accuracy of the
methods used, although the principles of quality control
were not always sufficiently documented [33, 40–43]. The
deficiency of information about the obtained precision and
accuracy can be noticed in some reports [33, 40, 43] as well
as the lack of identifying the Corning glass used [42]. In
some cases, even when the accuracy and precision were
given and discussed in the text, the detailed results of these
control measurements were omitted [17, 34, 35].

Corning C and D were used by Kuisma-Kursula [36, 37]
to determine the accuracy of the measurements. Bronk and
Freestone [38] validated the usefulness of the scanning
electron microscopy/energy-dispersive X-ray analysis in
analyzing glass objects with the use of Corning A and
B. They described the influence of the procedure used
for the preparation of the Corning glasses to the final
results and reported problems with quantification of
some oxides (Sb2O5, PbO in Corning B). Other authors
[39] reported inconvenience of quantification of SnO2, in
Corning C. The most comprehensive and multitechnique
(electron probe micro-analysis (EPMA), LA-ICP-MS, sec-
ondary ion mass spectrometry) investigations of Corning
archeological reference glasses were described by Vicenzi
et al. [32]. This study reports the determination of minor and
trace elements and their distribution in the Corning glasses.
The agreement of the presented EPMA results with recom-
mended values is highly variable, while the general agree-
ment between LA-ICP-MS and previously published data is
within 5% to 20%. EPMA measurements validated hetero-
geneous distribution of some elements (SrO, ZnO in all
glasses, and BaO, SnO2 in Corning B), while LA-ICP-MS
indicated relatively high degree of the compositional unifor-
mity of all the Corning glasses which were examined using
193 nm laser with beam diameter of 23 μm. The details of
the LA-ICP-MS results have been discussed for Corning A,
B, and D. A value of the MnO content in Corning C has
been reported here for the first time [32].

LA-ICP-MS has also been applied by Shortland et al.
[30] for the determination of trace elements in glass objects
using Corning A as a quality control for the accuracy of the
measurements. The authors concluded that the agreement of
their results with the values recommended by Vicenzi et al.
[32] was rather poor. It is important to note that the most
significant discrepancies have been observed for Cr2O3

(161%), PbO, SnO2, and SrO (about 30%). The quantitative
results of MnO in Corning C with a mean content of
0.001 wt.% obtained in our laboratory [11] or published
by Dussubieux [26, 27] varied strongly from the value given
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by Vicenzi [32]. Dussubieux [27] reported for few elements,
not only Mn in Corning C, that the concentrations provided
by Brill [2] might not be accurate.

Aim of the work

The evaluation of the published data revealed various incon-
sistencies between the recommended and determined values
of several constituents of Corning archeological reference
glasses, which are of interest to both archeologists and art
historians. Corning archeological reference glasses are
widely used as calibration or validation materials for the
analysis of historic glass. Therefore, the reliability and use-
fulness of the available data requires a careful re-
examination.

The aim of this work was focused on a detailed investi-
gation of the composition of Corning archeological refer-
ence glasses A, B, C, and D using LA-ICP-MS. Therefore,
various nanosecond (l0193, 266 nm) and femtosecond (l 0
800 nm) laser wavelengths were used for sampling. The
quantification scheme is based on NIST 610, and the results

of each individual sampling using commonly applied wave-
lengths for archeological studies are summarized and dis-
cussed in comparison to literature data.

Experimental

Samples and standard

Three different types of archeological reference glasses,
which were fabricated to mimic historic glass recipes, were
investigated: Corning glass A and Corning glass B are
Na-rich/Ca-bearing silicates; Corning Glass C is rich in
Pb and Ba while Corning Glass D is K- and Ca-rich silicate
[31, 32] (Table 1).

Standard glass NIST SRM 610 was used as the external
standard. The similarity of the bulk composition of NIST
610 to the composition of the Corning glasses [32] was
considered to be close to the matrix composition of the
Corning glass matrix. Therefore, reduced influence of ele-
ment fractionation effects on the calculated results was

Table 1 Major, minor and trace element oxide compositions of Corning archeological reference glasses A, B, C, D [32], and NIST 610

Corning A, wt.% Corning B, wt.% Corning C, wt.% Corning D, wt.% NIST SRM 610, wt.%

SiO2 66.56 61.55 34.87 55.24 70.20

Al2O3 1.00 4.36 0.87 5.30 1.880

Fe2O3 1.09 0.34 0.34 0.52 0.058

MgO 2.66 1.03 2.76 3.94 0.077

CaO 5.03 8.56 5.07 14.8 11.50

Na2O 14.3 17.0 1.07 1.20 12.80

K2O 2.87 1.00 2.84 11.3 0.059

MnO 1.00 0.25 0.82 0.55 0.056

P2O5 0.13 0.82 0.14 3.93 0.078

TiO2 0.79 0.089 0.79 0.38 0.072

Sb2O5 1.75 0.46 0.03 0.97 0.039

CuO 1.17 2.66 1.13 0.38 0.054

PbO 0.12 0.61 36.7 0.48 0.045

CoO 0.17 0.046 0.18 0.023 0.052

BaO 0.56 0.12 11.4 0.51 0.047

SnO2 0.19 0.04 0.19 0.10 0.050

SrO 0.10 0.019 0.29 0.057 0.059

ZnO 0.044 0.19 0.052 0.10 0.056

B2O3 0.20 0.02 0.20 0.10 0.115

Li2O 0.01 0.001 0.01 0.005 0.104

Rb2O 0.01 0.001 0.01 0.005 0.047

V2O5 0.006 0.03 0.006 0.015 0.079

Cr2O3 0.001 0.005 0.001 0.003 0.057

NiO 0.02 0.10 0.02 0.05 0.057

ZrO2 0.005 0.025 0.005 0.013 0.059

Bi2O3 0.001 0.005 0.001 0.003 0.040
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assumed. The comparison of the calibration materials and
samples with the correlation coefficient indicating the rela-
tionship between the oxides concentration in calibration and
unknown samples is given in Fig. 1. The matrix-matching is
acceptable for three of the four investigated glasses (R20
0.9864 for Corning A; R200.9880 for Corning B, and R20

0.9150 for Corning D), and it is most significantly different
for the Corning C (R200.4034), when compared with the
other glasses.

Instrumentation

LA-ICP-MS was used in this study with the involvement of
three different laser systems (Table 2):

1. The laser ablation system LSX-200+ (CETAC, USA)
combining a stable, environmentally sealed 266-nm
UV laser (Nd–YAG, solid-state, Q-switched) was cou-
pled to inductively coupled plasma mass spectrometer
ELAN 9000 (Perkin Elmer SCIEX, Canada). All experi-
ments were performed using Ar as the carrier gas.

2. The 193-nm ArF-Excimer laser (GeoLas Compex,
MicroLas, Goettingen, Germany) was coupled to ELAN
6100 (Perkin Elmer, Norwalk, CT, USA).

3. The Ti/sapphire femtosecond laser system (Legend, Coher-
ent Inc., Santa Clara, CA, USA) was coupled to Elan DRC
II (Perkin Elmer SCIEX, Thornhill, Canada). All ablations

Fig. 1 The relationship between the oxides concentration in calibra-
tion: NIST 610 (A) and unknown samples: Corning A (B); Corning B
(C), Corning C (D), and Corning D (E). White patterns in the middle

part of the chart visualizes limits of detection for the respective ele-
ments. The values of R2 given below the charts show correlation
coefficient of the NIST vs Cornings

Table 2 Instrumental settings, operating conditions, and data acquisi-
tion parameters

Laser system parameters and settings

Laser ablation characteristics and settings

Wavelength, nm 193 266 800

Pulse duration 15 ns 5 ns 150 fs

Energy density, Jcm−2 23.9 15.9 15.1

Beam diameter, μm 40 100 130

Repetition rate, Hz 10 10 5

ICP MS characteristics and settings

RF Power 1370 1050 1350

Neb. gas flow rate 0.85 0.98 1.0

Plasma gas flow rate 16.7 16.0 17.0

Carrier gas He Ar He

ICP MS data acquisition parameters

Scanning mode Peak hopping

Dwell time, ms 10

Pre-integration time, s 30

Integration time, s 60

Isotopes monitored 7Li, 11B, 23Na, 25Mg, 27Al, 29Si, 31P, 39K,
42Ca, 48Ti, 49Ti, 51V, 53Cr, 55Mn, 57Fe,
59Co, 60Ni, 61Ni, 65Cu, 66Zn, 85Rb, 88Sr,
90Zr, 118Sn, 121Sb, 135Ba, 137Ba, 208Pb,
209Bi
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which were carried out using the 193 and 800 nm lasers
were performed using He as the sample carrier gas, which
was mixed with Ar before entering the ICP.

For all measurements, the samples were placed inside the
ablation cell with NIST SRM 610. The calibration material
was measured twice at the beginning and twice at the end of
each run to correct for instrumental drift using the algorithm
proposed by Longerich et al. [44]. Seven replicate single
point ablations at locations randomly selected on the glass
surface were carried out on each sample. Transient signals
were recorded and evaluated for subsequent elemental quan-
tification. The LA-ICP-MS signals were background-
corrected and integrated using LAMTRACE program devel-
oped by Jackson [45]. Table 3 summarizes the average limits
of detection for the different types of laser wavelengths used
for sampling (for crater diameter, see operating conditions,
Table 2).

The results for all samples were calculated using SiO2 as
the internal standard, applying the data displayed in Table 1.
Normalization was performed to the total content reported

by Vicenzi [32] as 99.79 wt.% for Corning A; 99.33 wt.%
for Corning B; 99.80 wt.% for Corning C; and 99.97 wt.%
for Corning D. Therefore, although the initial contents of
SiO2 as the internal standard were given according to the
literature [34], the final contents differed from these recom-
mended values after normalization.

Results and discussion

Analysis of corning archeological reference glasses
by means of LA-ICP-MS

The results of Corning archeological reference glasses [31,
32] measured using various laser wavelengths and pulse
width for sampling by LA-ICP-MS are given in Table 4. It
was found that the results acquired with different laser
wavelengths varied significantly and that the 193 nm ns or
800 nm fs lasers provided the comparable results, while the
266 nm ns laser showed most significant deviations.

Homogeneity of Corning glasses

The homogeneity of the Corning glasses has already been
reported by Vicenzi et al. [32]. The majority of the concen-
trations of the elements reported in Table 4 were determined
with relative standard deviations less than 5%. The mean
Sb2O5 in Corning C is the only exception, with the high
relative standard deviations obtained for the all laser wave-
lengths used in this study (RSD019% for 193 ns-laser,
RSD012% for 266 ns-laser, and RSD026% for 800 fs-
laser ablation). The mean Sb2O5 in Corning C was calculat-
ed consequently as equal to the c00.0001 wt.%. irrespective
of the laser wavelength. However, these results suggest an
inhomogeneous distribution of Sb in Corning C.

Comparison of the results obtained after ablation by means
of 193 ns, 266 ns, and 800 Fs lasers

The ratios of the measured to the literature [32] values for
each oxide element of the Corning glasses are displayed in
Fig. 2.

The deviations of the results acquired within this study to
the recommended values caused variable shapes of radar-
charts for the overall chemical composition of particular
Corning glasses (Fig. 2). Analogous shapes of the charts
for different laser wavelengths could be obtained if the
interaction of these lasers with sample of identical compo-
sition was similar. However, it is known that both laser
wavelength and pulse duration affect the degree of fraction-
ation, therefore, some differences of the results were
expected. Fractionation effects often are reduced by the
use of shorter wavelengths (e.g., ns-193 nm) and shorter

Table 3 Calculated limits of detection (LOD) for the different types of
laser wavelengths used for sampling

wt.% LOD193 LOD266 LOD800

SiO2 0.02110 0.01640 0.00925

Al2O3 0.00018 0.00012 0.00004

Fe2O3 0.00068 0.00048 0.00019

MgO 0.00015 0.00030 0.00010

CaO 0.00553 0.02040 0.00134

Na2O 0.00007 0.00003 0.00017

K2O 0.00016 0.00006 0.00008

MnO 0.00006 0.00001 0.00001

P2O5 0.00103 0.00089 0.00074

TiO2 0.00024 0.00028 0.00007

Sb2O5 0.00004 0.00004 0.00002

CuO 0.00009 0.00003 0.00004

PbO 0.00002 0.00002 0.00002

CoO 0.00001 0.00001 0.00001

BaO 0.00004 0.00002 0.00002

SnO2 0.00002 0.00003 0.00000

SrO 0.00001 0.00001 0.00001

ZnO 0.00015 0.00060 0.00004

B2O3 0.00042 0.00023 0.00034

Li2O 0.00006 0.00002 0.00004

Rb2O 0.00001 0.00001 0.00001

V2O5 0.00003 0.00002 0.00001

Cr2O3 0.00045 0.00015 0.00007

NiO 0.00005 0.00070 0.00008

ZrO2 0.00001 0.00001 0.00001

Bi2O3 0.00001 0.00001 0.00001
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Table 4 Major, minor, and trace element oxide compositions of Corning archeological reference glasses A, B, C, and D

wt.% 193 nm 266 nm 800 nm 193 nm 266 nm 800 nm

Corning A Corning B

SiO2 67.82 (0.4) NA 68.90 (0.2) 62.02 (0.3) 57.72 (3.1) 63.94 (0.3)

Al2O3 0.820 (2.4) NA 1.08 (3.2) 4.63 (1.3) 7.76 (1.6) 4.02 (1.4)

Fe2O3 0.979 (1.3) NA 0.979 (0.1) 0.311 (1.5) 0.268 (0.7) 0.307 (1.2)

MgO 2.50 (1.6) NA 2.11 (0.4) 0.988 (0.7) 1.18 (2.0) 0.789 (1.7)

CaO 4.94 (1.9) NA 5.36 (3.3) 8.75 (1.4) 13.7 (0.6) 9.12 (1.2)

Na2O 13.4 (0.7) NA 13.6 (1.2) 16.5 (0.5) 13.9 (2.0) 16.0 (0.6)

K2O 3.46 (1.1) NA 2.46 (1.2) 1.30 (1.4) 0.876 (2.6) 0.827 (2.5)

MnO 1.13 (1.3) NA 0.969 (0.7) 0.241 (1.2) 0.238 (0.9) 0.230 (0.9)

P2O5 0.085 (0.8) NA 0.088 (1.1) 0.611 (0.8) 0.417 (2.8) 0.633 (1.2)

TiO2 0.739 (2.2) NA 0.771 (3.7) 0.099 (1.9) 0.145 (1.1) 0.101 (0.9)

Sb2O5 1.86 (1.0) NA 1.44 (1.4) 0.418 (1.8) 0.289 (1.1) 0.401 (0.8)

CuO 1.10 (1.8) NA 1.19 (0.5) 2.82 (1.7) 2.23 (4.4) 2.57 (0.6)

PbO 0.073 (0.9) NA 0.059 (2.9) 0.532 (2.5) 0.388 (1.5) 0.331 (2.3)

CoO 0.170 (1.3) NA 0.167 (0.7) 0.043 (0.8) 0.037 (2.4) 0.043 (1.0)

BaO 0.46 (2.2) NA 0.278 (3.3) 0.077 (2.5) 0.109 (3.0) 0.052 (5.1)

SnO2 0.171 (1.1) NA 0.173 (0.7) 0.024 (0.9) 0.022 (4.2) 0.024 (0.4)

SrO 0.106 (1.8) NA 0.110 (2.4) 0.017 (1.9) 0.028 (2.3) 0.019 (1.0)

ZnO 0.048 (1.6) NA 0.051 (2.4) 0.211 (1.7) 0.177 (1.4) 0.216 (0.9)

B2O3 0.274 (5.3) NA 0.214 (1.1) 0.036 (6.4) 0.021 (0.9) 0.032 (3.4)

Li2O 0.011 (2.9) NA 0.011 (1.9) 0.003 (4.6) 0.002 (4.3) 0.003 (0.9)

Rb2O 0.009 (1.4) NA 0.010 (0.4) 0.001 (2.3) 0.001 (6.4) 0.001 (1.1)

V2O5 0.007 (2.3) NA 0.007 (1.2) 0.034 (1.2) 0.029 (2.1) 0.033 (0.6)

Cr2O3 0.003 (4.9) NA 0.003 (8.0) 0.010 (3.1) 0.008 (2.1) 0.009 (2.4)

NiO 0.023 (2.2) NA 0.028 (11) 0.094 (1.1) 0.079 (3.1) 0.091 (1.5)

ZrO2 0.005 (2.7) NA 0.006 (3.8) 0.023 (2.7) 0.053 (1.6) 0.025 (1.9)

Bi2O3 0.001 (3.0) NA 0.001 (5.7) 0.004 (2.4) 0.004 (0.7) 0.004 (0.8)

Corning C Corning D

SiO2 31.41 (0.5) 32.87 (2.1) 28.36 (0.3) 28.36 (1.2) 56.59 (3.3) 57.11 (0.2)

Al2O3 0.736 (1.2) 1.58 (2.2) 0.772 (0.8) 5.19 (3.0) 4.82 (1.9) 4.40 (0.9)

Fe2O3 0.262 (0.8) 0.244 (3.5) 0.277 (0.9) 0.460 (2.1) 0.459 (2.9) 0.480 (0.8)

MgO 2.50 (0.7) 3.00 (1.4) 2.02 (1.1) 3.87 (1.3) 4.43 (0.6) 3.86 (0.9)

CaO 4.75 (0.8) 8.24 (0.7) 4.84 (0.4) 14.7 (2.4) 18.3 (2.4) 15.5 (0.6)

Na2O 0.966 (0.6) 1.17 (1.4) 0.848 (1.3) 1.30 (1.4) 1.31 (2.1) 1.31 (1.0)

K2O 3.21 (0.3) 1.87 (1.4) 2.45 (1.8) 14.2 (0.7) 8.69 (1.5) 11.1 (0.2)

MnO 0.001 (3.1) 0.001 (3.6) 0.001 (4.8) 0.597 (1.1) 0.499 (3.3) 0.531 (0.8)

P2O5 0.068 (1.8) 0.054 (3.9) 0.062 (0.4) 3.05 (0.9) 2.26 (4.4) 3.08 (0.8)

TiO2 0.706 (0.6) 1.10 (1.6) 0.753 (0.4) 0.356 (2.7) 0.413 (2.9) 0.371 (0.6)

Sb2O5 0.0001 (19) 0.0001 (12) 0.0001 (26) 0.961 (1.9) 0.572 (3.4) 0.780 (0.3)

CuO 1.10 (0.5) 1.00 (2.7) 1.15 (0.4) 0.370 (1.6) 0.356 (1.7) 0.37 (0.9)

PbO 39.8 (0.5) 34.2 (2.7) 47.8 (0.4) 0.241 (1.4) 0.213 (2.2) 0.222 (0.7)

CoO 0.164 (0.4) 0.150 (4.9) 0.170 (0.7) 0.018 (1.3) 0.018 (2.8) 0.020 (6.6)

BaO 13.3 (0.6) 13.4 (2.1) 9.47 (2.2) 0.291 (1.8) 0.374 (3.2) 0.285 (3.6)

SnO2 0.163 (0.8) 0.173 (1.5) 0.172 (0.8) 0.084 (1.9) 0.080 (6.9) 0.088 (0.8)

SrO 0.333 (0.5) 0.439 (4.1) 0.308 (1.5) 0.055 (2.6) 0.070 (5.1) 0.059 (0.3)

ZnO 0.042 (1.1) 0.050 (3.3) 0.046 (0.5) 0.102 (1.6) 0.097 (3.7) 0.104 (0.7)

B2O3 0.187 (1.3) 0.154 (2.3) 0.167 (1.0) 0.105 (3.0) 0.083 (1.3) 0.107 (0.7)

Li2O 0.009 (2.4) 0.008 (3.2) 0.008 (0.8) 0.006 (1.3) 0.006 (3.4) 0.006 (0.9)

Rb2O 0.008 (0.5) 0.008 (5.0) 0.010 (0.3) 0.005 (2.0) 0.005 (1.7) 0.005 (1.1)
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pulse widths (e.g., fs-800 nm) [46, 47], and the results
obtained with these laser wavelengths for the most of ele-
ments were comparable.

The analyzed Corning glass results obtained using a
266 nm laser differed to some extent from the results
obtained using ablation with 193- and 800-nm wavelength
lasers. The most pronounced difference was observed for
the soda–lime–silica glass (Fig. 2, Corning B) but can also
be seen in the pattern for the high-lead-and-barium glass
(Fig. 2, Corning C). The differences of the respective results

for potash–lime–silica glass (Fig. 2, Corning D) are low.
The highest differences in all samples were observed for
Al2O3, CaO, ZrO2, Bi2O3, SrO, and K2O when ablating at
266 nm when compared with 193 or 800 nm lasers. Incon-
sistent results for PbO were obtained for the high-lead-and-
barium glass (Corning C).

Apart from the mentioned inconsistencies, some system-
atic variations from the recommended values for each Corn-
ing glass can be noticed, and these values will be discussed
in more detail. Independent of the lasers used for ablation,

Table 4 (continued)

wt.% 193nm 266nm 800nm 193nm 266nm 800nm

V2O5 0.006 (0.9) 0.006 (2.2) 0.007 (0.6) 0.017 (1.1) 0.017 (2.3) 0.018 (0.6)

Cr2O3 0.002 (3.3) 0.002 (8.1) 0.003 (8.3) 0.003 (4.1) 0.003 (2.2) 0.004 (1.0)

NiO 0.018 (1.4) 0.016 (6.9) 0.022 (4.7) 0.048 (1.4) 0.048 (3.3) 0.053 (10)

ZrO2 0.004 (1.4) 0.012 (6.3) 0.006 (0.4) 0.011 (4.9) 0.014 (1.9) 0.012 (0.7)

Bi2O3 0.004 (1.1) 0.005 (4.2) 0.007 (1.0) 0.001 (3.7) 0.001 (2.9) 0.001 (1.8)

The average results expressed in weight percentage [wt.%] obtained after ablation of the glasses with various laser wavelengths are given in the
subsequent columns—193, 226, or 800 nm, respectively

RSD values are given in brackets (percent)
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Fig. 2 The ratios of the mea-
sured to the recommended val-
ues calculated for the results
obtained by means of LA-ICP-
MS for Corning B, C, and D
after ablation by 193, 800, and
266 nm lasers
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all data showed an underestimation of SnO2 and overestima-
tion of Li2O and Cr2O3 in Corning B as well as underesti-
mation of MnO and Sb2O2 and overestimation of Cr2O3 and
Bi2O3 in Corning C with respect to the recommended values
[32]. The data for Corning D are in good agreement with the
data reported by Brill [31], which indicates and accurate
characterization. However, Bi2O3, PbO, and BaO differ
significantly and indicate an overestimation in the literature.

The 266 nm shows the largest and non-coherent, with the
other lasers (193 ns and 800 fs lasers), deviations from the

expected values, therefore, the quantitative results obtained
using this laser wavelength are excluded from the further
comparisons. The use of 193-nm laser wavelength creates
smaller particles which are more effectively transported and
ionized in the plasma and thus exhibit less elemental frac-
tionation compared with 266 nm lasers [48]. Also, the use of
femtosecond laser pulses (800 nm) has been reported to be
beneficial for LA-ICP-MS measurements [49]. Therefore,
the data acquired using these two types of lasers will be
discussed in more detail.

Fig. 3 z-Score values for the
LA-ICP-MS results of Corning
glasses analyzed using 193 and
800 nm laser ablation
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Recommended and determined values for 800 and 193 nm
lasers

The recommended contents of the oxides were compared
with data acquired using 800 and 193 nm. Discrepancies
between these values were evaluated using the z-scores for
each individual result. The target standard deviation was
assigned as 10% of the recommended value for each ele-
ment, because the information about the relative standard
deviations could only be extracted from the report describ-
ing individual results of four repetitive inductively coupled
plasma-optical emission spectrometry measurements of
Corning glasses from Brill [2]. The calculated values of
RSDs exceeded 10% for three oxides: PbO in Corning A
(Xrec00.120 wt.%, SDt00.043 wt.%, RSD035.5%), Al2O3

in Corning C (Xrec00.870 wt.%, SDt00.115 wt.%., RSD0
13.2%), and Sb2O5 in Corning C (Xrec00.025 wt.%, SDt0

0.006 wt.%, RSD023.1%). The high RSD of the mean
content was confirmed by our LA-ICP-MS study only for
Sb2O5 in Corning C. Therefore, the SDt applied was taken
from Brill [2].

Generally, the z-scores are acceptable (within ±2; 95%)
and unacceptable when the score is outside ±3 (greater than
99%), and questionable with intermediated values. The cal-
culated z-score values for the oxides in Corning glasses
were used to indicate discrepancies between the measured
and recommended data (Fig. 3). The values which were
outside the calculated threshold for both wavelengths (193

and 800 nm) indicated the need of a re-evaluation of the
recommended concentrations in the Corning glass. Most of
the results acquired in this study agree with the published
and recommended values [2, 31, 32], but some discrepan-
cies were found for different oxides in all Corning glasses
(Fig. 3). The results of P2O5, PbO, BaO, and Cr2O3 were
found unacceptable in Corning A; BaO, SnO2, B2O5, Li2O,
Cr2O3, and BiO3 in Corning B; MnO, P2O5, Sb2O5, Cr2O3,
and Bi2O3 in Corning C; and PbO, BaO, and Bi2O3 in
Corning D.

Re-evaluation of the elemental composition of Corning
archeological reference glasses

Although the use of fs laser typically decreases laser-
induced elemental fractionation, increased errors due to
mass-load-induced matrix effects in the ICP can influence
the quantification capabilities and figures of merit such as
accuracy [50–53]. Furthermore, a detailed study about the
influence of the wavelength on the accuracy needs further
validation and has not been studied as extensively as for a
193 nm ns laser ablation system.

Therefore, the re-evaluation of the recommended values
is proposed using the mean of seven LA-ICP-MS measure-
ments at 193 nm. These values are summarized in Table 5
with their standard deviations (SD) and compared with
values from literature [2, 27, 30–32].

Table 5 New data set expressed in wt.%

Brill [2] Brill [31] Vicenzi [32] NEW193±SD Literature data [27, 30]

Corning A P2O5 0.13 0.13 0.13 0.0847±0.0007 0.0341±0.0022 [30]

PbO 0.12 0.05 0.12 0.0725±0.0007 0.0596±0.0022 [30]

BaO 0.56 0.55 0.56 0.46±0.01 0.3905±0.0125 [30]

Cr2O3 0.001 0.001 0.001 0.0033±0.0002 0.0018 [30]

Corning B BaO 0.12 0.10 0.12 0.077±0.002 0.08±0.02 [27]

SnO2 0.04 0.03 0.04 0.0241±0.0002 0.021±0.001 [27]

B2O3 0.02 0.02 0.02 0.035±0.001 –

Cr2O3 0.005 0.005 0.005 0.0096±0.0003 –

Bi2O3 0.005 0.005 0.005 0.0042±0.0001 –

Corning C P2O5 0.14 0.10 0.14 0.068±0.001 0.07±0.03 [27]

MnO – – 0.82 0.0011±0.0000 0.0013±0.0002 [27]

Sb2O5 0.03 – 0.03 0.0001±0.0000 0.0002±0.0001 [27]

Cr2O3 0.001 0.001 0.001 0.0023±0.0001 –

Bi2O3 0.001 0.001 0.001 0.0040±0.0001 –

Corning D PbO 0.48 0.25 0.48 0.241±0.003 0.23±0.01 [27]

BaO 0.51 0.33 0.51 0.291±0.005 0.38±0.09 [27]

Bi2O3 0.003 0.002 0.0025 0.0012±0.0000 –

Bold font was used to indicate the oxides for which recommended values were given by Brill [2]; normal-font entries indicate nominal composition.
The preliminary, tentative values proposed by Brill [31] are also shown here
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Conclusions

Three types of archeological reference glasses, reflecting
different historical technologies of glass production, were
investigated using LA-ICP-MS. The results obtained using
different laser wavelengths and pulse durations (nanosec-
onds, 193 and 266 nm, and femtoseconds, 800 nm) were
compared among each other and to recommended values
from the literature. Comparison of the re-evaluated values
which were proposed here with the data recommended by
Brill [2, 31] indicated that some tentative values [31] were
closer to the data set generated in this study using a 193 and
an 800 nm laser for sampling then the values published later
on [2]. The recommended quantification especially of PbO
in Corning A, BaO in Corning B, P2O5 or Sb2O5 in Corning
C, and PbO or BaO in Corning D were overestimated in the
final report [2], comparing to the published preliminary
results [31].

Based on this LA-ICP-MS study, some significant dis-
crepancies were found. The data indicate that the 266 nm
laser ablation used for sampling is not suitable for quantifi-
cation of these glasses using NIST 610 for calibration.
Therefore, the data set generated in this study using a 193
and an 800 nm laser for sampling was compared with the
recommended glass composition. The concentrations of
P2O5, PbO, BaO, and Cr2O3 in Corning A, as well as
BaO, SnO2, B2O5, Li2O, Cr2O3, and BiO3 in Corning B
differ most significant, and some new values are proposed.
This confirms reports in the literature where the determina-
tion of some trace elements, including Sn, have been
reported to be difficult (Corning B). Similar reports on Cr,
Rb, and Bi in Corning C have been found. Therefore,
corrected values for MnO, P2O5, Sb2O5, Cr2O3, and Bi2O3

in Corning C and PbO, BaO, and Bi2O3 in Corning D are
also reported. All other oxides contents in the various Corn-
ing glasses were quantified by LA-ICP-MS with good
agreement to the data reported in the literature [2, 31, 32].
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