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Abstract: The self-assembly of discrete cyanometallates has attracted significant interest due to the
potential of these materials to undergo soft metallophilic interactions as well as their optical proper-
ties. Diblock copolypeptide amphiphiles have also been investigated concerning their capacity for
self-assembly into morphologies such as nanostructures. The present work combined these two con-
cepts by examining supramolecular hybrids comprising cyanometallates with diblock copolypeptide
amphiphiles in aqueous solutions. Discrete cyanometallates such as [Au(CN)2]−, [Ag(CN)2]−, and
[Pt(CN)4]2− dispersed at the molecular level in water cannot interact with each other at low concen-
trations. However, the results of this work demonstrate that the addition of diblock copolypeptide
amphiphiles such as poly-(L-lysine)-block-(L-cysteine) (Lysm-b-Cysn) to solutions of these complexes
induces the supramolecular assembly of the discrete cyanometallates, resulting in photoluminescence
originating from multinuclear complexes with metal-metal interactions. Electron microscopy images
confirmed the formation of nanostructures of several hundred nanometers in size that grew to form
advanced nanoarchitectures, including those resembling the original nanostructures. This concept of
combining diblock copolypeptide amphiphiles with discrete cyanometallates allows the design of
flexible and functional supramolecular hybrid systems in water.

Keywords: self-assembly; metal complex; cyanometallate; nanostructure; photoluminescence;
metal-metal interaction; nanorod; diblock copolypeptide; amphiphile

1. Introduction

The structure and function of naturally occurring supramolecular materials such as
metalloproteins are determined by the arrangement of the primary, secondary, tertiary,
and quaternary structures of polypeptide chains with various metal complexes [1–11]. In
order to elucidate the complicated combinations of peptides with metal complexes, as
well as the functions of these structures, biological polypeptides (that is, apoproteins),
having complicated primary sequences, and their derivatives are typically used as models.
However, the analysis of the conformations and configurations of synthetic amphiphilic
peptides containing various hydrophilic and hydrophobic parts is also of interest [12–21].
Artificial diblock copolypeptide amphiphiles consisting of simple sequences of amino
acids with hydrophilic and hydrophobic side chains have been reported to form diverse
nanostructures based on variation in composition, despite their simple sequences. Such
peptides have been found to exhibit micelle [22], fiber [23–25], tube [26–31], sheet [32,33],
and capsule morphologies [34–38] based on the self-assembly of their hydrophilic and hy-
drophobic blocks. In a previous study of diblock copolypeptide amphiphiles, Deming et al.
showed for the first time that these materials can be precisely synthesized from amino acid
N-carboxyanhydrides (NCAs) by ring-opening living polymerization using organometallic
initiators [39–45]. These synthetic peptides have many features that make them of interest
to those working in the field of protein engineering, in applications such as drug delivery
systems and tissue engineering.
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Nanostructures of amphiphilic polypeptides in combination with metal complexes are
able to be controlled for applications in biotechnology (as biosensors, artificial tissues, or
implants) and biomineralization (as resilient, lightweight, and ordered inorganic compos-
ites) [46–51]. The combination of various transition metals with peptides can also affect the
three-dimensional accumulation of metal ions. For example, the formation of polyhedral
peptides using oligopeptide chains and metal ions and the use of these materials as artificial
enzymes due to them having large internal cavities was recently reported [52–54]. These
previous studies suggest that amphiphilic polypeptides can provide a suitable “bottom-up”
approach to nanofabrication because the nanostructures of these polymers can be controlled
by changing the ratio of hydrophobic to hydrophilic groups.

In our previous work, diblock copolypeptide amphiphiles were found to form flex-
ible hybrid structures with metal complexes via a self-assembly process in water. These
supramolecular hybrids possess specific nanostructures such as wires, ellipses, squares,
and rectangles, hierarchically formed from lamellar and/or cylindrical structures in hybrids
with copolypeptides [55–58]. The hybrid of polypeptides with metal complexes likely has
some hierarchical formation, contributing at least partially to the enhanced incorporation of
the self-assembling process. These nanostructures also showed reverse spin transitions [55],
lower critical solution temperature (LCST)-type phase behavior with spin crossover phe-
nomena [56], catalytic redox reaction based on the formation of two-dimensional metal-
organic frameworks (2D-MOFs) [57], and photoluminescence [58], none of which had
been previously observed in studies of these materials either in amorphous or crystalline
forms. This prior research demonstrated that combining amphiphilic copolypeptides with
metal complexes resulted in intermolecular interactions leading to weak self-assembly,
dynamic transformations, and stimuli responsiveness in water. The inherent self-assembly
abilities of these copolypeptide amphiphiles could potentially lead to their application
as structural templates for inorganic compounds and to the intelligent transformation of
inorganic materials involving dynamic tuning of electronic states.

The present study employs cyanometallate complexes as simple tools to produce
supramolecular hybrids. It is known that d10 gold(I) or silver(I) and d8 platinum(II) com-
plexes, in particular, will aggregate through d8-d8 or d10–d10 closed-shell metallophilic
bonding interactions, and this process determines both the supramolecular structures
and luminescent properties of these materials [59–62]. As a result of their dynamic lumi-
nescence properties, [Au(CN)2]−, [Ag(CN)2]−, and [Pt(CN)4]2− all have applications as
functional materials within intelligent molecular systems. Both the wavelength and inten-
sity of the luminescent emissions of these complexes can be tuned based on aggregation
through metal-metal bonding interactions, although high concentrations (>10 mM) are
required for luminescence at ambient temperatures [59–62]. At present, the relationships
between molecular structure, metal-metal interactions, and morphology at the nanoscale
level are not thoroughly understood with regard to their influence on supramolecular
structure. It is known that simple polypeptides and polymers can generate polyelectrolytes
with [Au(CN)2]− and promote the self-assembly of oligomeric and polymeric [Au(CN)2]−

structure [58,63]. However, it is unclear how synthetic polymers such as copolypeptide
structures can be used to tune not only intermolecular interaction but also mesoscopic
self-assembly. The ability to tune the nanoscale morphology of these materials via changes
in molecular structure could potentially lead to dramatic advances in functionalization,
not only as a structural template for inorganic compounds but also as the appearance of
photoluminescence in systems incorporating metal complexes undergoing metallophilic
interactions. Such functionalization could enable the dynamic structural transformations
that lie at the very heart of bottom-up nanotechnology [58,63–70].

The work reported herein focused on the dynamic structural transformation of [Au(CN)2]−,
[Ag(CN)2]−, and [Pt(CN)4]2− through the use of diblock copolypeptide amphiphiles having
the general structural formula poly-(L-lysine)-block-(L-cysteine) (Lysm-b-Cysn) (Figure 1).
This study investigated the morphological evolutions associated with the metallophilic and
polymeric interactions of [Au(CN)2]−, [Ag(CN)2]−, and [Pt(CN)4]2− together with the hier-
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archical assembly of hybrid materials composed of combinations of the copolypeptides with
the cyanometallates. The nature of the systematic assembly of these materials in solution
was evaluated based on the results of spectroscopic and microscopic measurements.
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Figure 1. Molecular structures of the diblock copolypeptide amphiphiles Lys390-b-Cys4 (1), Lys218-b-
Cys4 (2), and Lys206-b-Cys4 (3), and of the cyanometallate complexes [Au(CN)2]−, [Ag(CN)2]−, and
[Pt(CN)4]2−.

2. Results and Discussion

The diblock copolypeptide amphiphiles Lys390-b-Cys4 (1), Lys218-b-Cys4 (2), and
Lys206-b-Cys4 (3) were synthesized from amino acid N-carboxyanhydrides (NCAs) of
Nε-benzyloxycarbonyl-L-lysine (Nε-Cbz-L-Lys) and S-carbobenzoxy-L-cysteine (S-Cbz-L-
Cys), by ring-opening living polymerization using organometallic initiators as described in
the Experimental section. The chain lengths for the Lys segments were determined using
GPC, and the polydispersities (Mw/Mn) for the samples were found to range from 1.10
to 1.41, when polymerization of poly-(Cbz-Lys)m was characterized. After determining
the length of poly-(Cbz-Lys)m, the degree of copolymerization of the Cys portion in each
specimen was calculated from the sulfur atom concentration, which was determined using
inductively coupled plasma—optical emission spectroscopy. 1H NMR analyses in deu-
terium oxide indicated over 99.9% removal of the benzyloxycarbonyl groups from the
Lys residues. Each of these diblock copolypeptide amphiphiles was subsequently used
to prepare an aqueous solution. Similarly, aqueous solutions of K[Au(CN)2], K[Ag(CN)2l,
and K2[Pt(CN)4] were prepared. These copolymer and metal complex solutions were
then combined at a 1:1 mass ratio, resulting in [Au(CN)2]−, [Ag(CN)2l−, and [Pt(CN)4]2−

concentrations of 3.5, 5.0, and 2.7 mM, respectively. The calculated molar ratio between
these potassium cyanometallate complexes and the Lys units in the diblock copolypeptide
amphiphiles ranged from 0.56:1.0 to 1.0:1.0 (Table 1).

Table 1. Calculated concentrations of potassium cyanometallate complexes and of repeating units in
diblock copolypeptide amphiphiles in aqueous solutions prepared at a 1:1 mass ratio (that is: 1 mg to
1 mg in 1 mL of water).

Cyanometallic Complexes Lys Cys

/mM /mM /mM

1/[Au(CN)2]− 3.5 4.8 0.049
2/[Au(CN)2]− 3.5 4.8 0.088
3/[Au(CN)2]− 3.5 4.8 0.093
1/[Ag(CN)2]− 5.0 4.8 0.049
2/[Ag(CN)2]− 5.0 4.8 0.088
3/[Ag(CN)2]− 5.0 4.8 0.093
1/[Pt(CN)4]2− 2.7 4.8 0.049
2/[Pt(CN)4]2− 2.7 4.8 0.088
3/[Pt(CN)4]2− 2.7 4.8 0.093

Scanning electron microscopy (SEM) was used to evaluate the morphological changes
of these specimens on the mesoscopic scale to confirm the formation of nanohybrid as-
semblies. SEM observations of hybrids obtained by combining diblock copolypeptide
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amphiphiles 1–3 with [Au(CN)2]− showed many particle-like structures approximately
500 nm in size (Figure 2) along with a number of rod-like structures with lengths of ap-
proximately 1 µm (Figure 2a). The structures of the hybrids obtained by combining the
polypeptides with [Au(CN)2]− were controlled by the assembly of each copolymer with the
metal complex. In contrast, the 1,2/[Ag(CN)2]− hybrid was composed of multiple particu-
late morphologies arranged in clusters along with some dendritic structures (Figure 3a,b).
Interestingly, the SEM images indicated that the 1/[Ag(CN)2]− hybrid had amorphous
and indefinite structures attached to the surfaces of much more massive structures several
tens of micrometers in size (Figure 3a). In the case of the 3/[Ag(CN)2]− hybrid, particle-
like structures were attached to the surfaces of larger structures several micrometers in
size (Figure 3c). The results of the difference between 1–3/[Ag(CN)2]− suggest that the
[Ag(CN)2]− with a smaller cyanometallate with Ag rather than cyanometallates with Au
or Pt has a stronger electrostatic interaction with the Lys unit and a larger aggregation to
microstructure. SEM observations of specimens made by combining copolymers 1 to 3 with
[Pt(CN)4]2− demonstrated the presence of numerous particle-like structures approximately
500 µm in size (Figure 4). Thus, the structural changes were dependent on cyanometallates
with various metal species.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 16 
 

 

Scanning electron microscopy (SEM) was used to evaluate the morphological 

changes of these specimens on the mesoscopic scale to confirm the formation of nanohy-

brid assemblies. SEM observations of hybrids obtained by combining diblock copolypep-

tide amphiphiles 1–3 with [Au(CN)2]− showed many particle-like structures approxi-

mately 500 nm in size (Figure 2) along with a number of rod-like structures with lengths 

of approximately 1 µm (Figure 2a). The structures of the hybrids obtained by combining 

the polypeptides with [Au(CN)2]− were controlled by the assembly of each copolymer 

with the metal complex. In contrast, the 1,2/[Ag(CN)2]− hybrid was composed of multiple 

particulate morphologies arranged in clusters along with some dendritic structures (Fig-

ure 3a,b). Interestingly, the SEM images indicated that the 1/[Ag(CN)2]− hybrid had amor-

phous and indefinite structures attached to the surfaces of much more massive structures 

several tens of micrometers in size (Figure 3a). In the case of the 3/[Ag(CN)2]− hybrid, par-

ticle-like structures were attached to the surfaces of larger structures several micrometers 

in size (Figure 3c). The results of the difference between 1–3/[Ag(CN)2]− suggest that the 

[Ag(CN)2]− with a smaller cyanometallate with Ag rather than cyanometallates with Au 

or Pt has a stronger electrostatic interaction with the Lys unit and a larger aggregation to 

microstructure. SEM observations of specimens made by combining copolymers 1 to 3 

with [Pt(CN)4]2− demonstrated the presence of numerous particle-like structures approxi-

mately 500 µm in size (Figure 4). Thus, the structural changes were dependent on cyano-

metallates with various metal species. 

  
 

(a) (b) (c) 

Figure 2. SEM images of (a) 1/[Au(CN)2]−, (b) 2/[Au(CN)2]−, and (c) 3/[Au(CN)2]−, where [Au(CN)2]− 

= 3.5 mM. 

   

(a) (b) (c) 

Figure 3. SEM images of (a) 1/[Ag(CN)2]−, (b) 2/[Ag(CN)2]−, and (c) 3/[Ag(CN)2]−, where [Ag(CN)2]− 

= 5.0 mM. 

Figure 2. SEM images of (a) 1/[Au(CN)2]−, (b) 2/[Au(CN)2]−, and (c) 3/[Au(CN)2]−, where
[Au(CN)2]− = 3.5 mM.
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Figure 4. SEM images of (a) 1/[Pt(CN)4]2−, (b) 2/[Pt(CN)2]2−, and (c) 3/[Pt(CN)4]2−, where
[Pt(CN)4]2− = 2.7 mM.

The detailed morphologies and diverse structures of the polypeptide/cyanometallate
complex hybrids were also observed using high-angle annular dark-field scanning TEM
(HAADF-STEM) (Figure 5). High-resolution STEM coupled with energy-dispersive X-ray
spectroscopy (HR-STEM EDX) also confirmed that the hybrids consisted of both cyanomet-
allate complexes and polypeptides. Figure 5 presents STEM-EDX maps of hybrids contain-
ing 1 with [Au(CN)2]− (Figure 5a), [Pt(CN)4]2− (Figure 5b), and [Ag(CN)2]− (Figure 5c).
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Figure 5. HAADF-STEM images and STEM-EDX maps (showing metals (Au, Ag, Pt), C, and N)
for hybrids of (a) [Au(CN)2]−, (b) [Ag(CN)2]−, and (c) [Pt(CN)4]2− with diblock copolypeptide
amphiphile 1, where [Au(CN)2]− = 3.5 mM, [Ag(CN)2]− = 5.0 mM, and [Pt(CN)4]2− = 2.7 mM.

The size distributions of the nanostructures in water were also analyzed using dynamic
light scattering at 25 ◦C (Figure 6 and Table 2) The data show multidisperse scattering
with at least one or two peaks for each sample in the volume-based size distributions over
the range of 50 to 1000 nm, in agreement with the SEM and TEM images (Figures 2–5).
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In addition, the peaks had similar sizes although the copolymer lengths and Lys/Cys
ratios were different between the samples. All the hybrids made with the Au complex
showed peaks at 30–1200 nm, whereas they were at 100–400 nm for all hybrids with the Ag
complex, and specimens incorporating the Pt complexes had peaks close to 200–350 nm.
The presence of nanostructures several hundred nanometers in size was observed for all
the hybrids, suggesting that particulate and aggregated structures, such as those seen in
the SEM and TEM images, were also present in water.
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Figure 6. Dynamic light scattering results for hybrids of (a) [Au(CN)2]−, (b) [Ag(CN)2]−, and
(c) [Pt(CN)4]2− with diblock copolypeptide amphiphiles 1–3, where [Au(CN)2]− = 3.5 mM,
[Ag(CN)2]− = 5.0 mM, and [Pt(CN)4]2− = 2.7 mM.

Table 2. Maximum values in the volume-based size distributions presented in dynamic light scatter-
ing results.

Maximum Values

/nm

1/[Au(CN)2]− 460
2/[Au(CN)2]− 38
3/[Au(CN)2]− 1139
1/[Ag(CN)2]− 332
2/[Ag(CN)2]− 389
3/[Ag(CN)2]− 130
1/[Pt(CN)4]2− 317
2/[Pt(CN)4]2− 216
3/[Pt(CN)4]2− 314

The metallophilic interactions and self-assembly of the cyanometallate complexes with
the polypeptides were also investigated by UV-visible absorption spectroscopy
(Figure 7). The mixing of aqueous solutions of the various cyanometallate complexes with
the polypeptides resulted in the appearance of shoulder peaks at approximately 250–320 nm.
In the case of the Au complex hybrids, a shoulder appeared at 250–280 nm that was not
produced by the pure complex in solution. This absorption (5dσ*→6pσ, Figure 8a) origi-
nated from Au-Au interactions [61,62]. The Ag complex hybrid also generated a shoulder
at 230–250 nm that was also not seen in the spectrum of the pure complex and was also
ascribed to an Ag-Ag interaction (4dσ*→5pσ, Figure 8b) [60], as in the case of the Au hy-
brid. The absorption peaks for the [Pt(CN)4]2− hybrids at 200–270 nm were attributed to
charge-transfer absorption for the Pt complex (5d→6p) or to interaction with the π-orbitals
of the cyanide ligands [60]. Thus, these results confirm that metallophilic interactions took
place, although these interactions did not greatly change the spectra because the associated
electronic transitions are forbidden. In addition, it is noteworthy that the structural changes
in the hybrids were dependent on the metal complex that was used, especially in the case
of the Au complex.
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and [Pt(CN)4]2− = 2.7 mM. (d–f) Spectra enlarged to show region from 230 to 350 nm to focus on
metal-metal interactions.
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Figure 8. Molecular orbital diagrams for (a) Au(I), Pt(II) and (b) Ag(I) in cyanometallate complexes
showing effective metal-metal electronic interactions based on z-axis stacking.

The emission spectra of the mixtures of the cyanometallate complexes with the
polypeptides were also investigated to assess the aggregation resulting from metallophilic
interactions. The emission spectra of each hybrid are presented in Figure 9. A 1 mM
cyanometallate concentration in the absence of a polypeptide did not exhibit luminescence.
Luminescence was observed following the addition of the polypeptides, with an emission
maximum at approximately 460 nm due to Au-Au interactions between the polynuclear
[Au(CN)2]−n excimer and exciplexes resulting from oligomers [61,62]. Luminescence with
a shoulder at 350–420 nm was also observed, which indicated the formation of trimers or
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tetramers of [Au(CN)2]−. The red-shifted emission band at 460 nm suggests the formation
of longer polynuclear Au complexes than those that were present in the initial solution
of the Au complex. In the case of hybrids with the Ag complex, the emission peak was
observed at approximately 410 nm and was attributed to interactions between [Ag(CN)2]−

dimers. The Pt complexes also showed an emission peak at approximately 420 nm, which
was ascribed to interactions of Pt tetramers or disordered polynuclear complexes [60]. Thus,
the emission wavelength differed depending on the degree of interaction between the
metal complexes and the ability of the polypeptide to accumulate the metal complexes.
Although no clear dependence in luminescence behavior or self-assembly behavior was
observed depending on the length of the Lys segment, we were able to show that an
appropriate length of polypeptide, around 200–400 mers, results in longer polynuclear Au
complexes, which is consistent with the results in previous reports. [58] In addition, the
supramolecular chemistry of Lysm-b-Cys4 in our own studies appears to have been affected
by linear polynuclear Au-Au interactions rather than by the Ag-Ag or Pt-Pt interaction.
In our manuscript, we also describe the effect of the polypeptide’s structure on Au-Au
interactions and the luminescence in solution.
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Figure 9. Emission spectra of hybrids of (a) [Au(CN)2]−, (b) [Ag(CN)2]−, and (c) [Pt(CN)4]2− with
diblock copolypeptide amphiphiles 1–3, where [Au(CN)2]− = 3.5 mM, [Ag(CN)2]− = 5.0 mM, and
[Pt(CN)4]2− = 2.7 mM. Excitation wavelength = 335 nm.

The hybrids made with the cyanometallate complexes showed UV absorption around
250–320 nm and emission around 400–500 nm, which was related to interactions between
the metal complexes, specifically M-M-M-M multinuclear interactions. These results demon-
strate that nanostructures were produced in all the hybrids, and the luminescence behavior
was dependent on the integration state of the metal complexes. Since the g ratio for the
hybrids was 1:1, the amount of each metal complex was small compared with the number
of cationic Lys sites. The interactions between the metal complexes were evidently modified
by generating the various hybrids based on electrostatic interactions between the cationic
Lys moieties and the anionic complexes. This effect produced luminescence with higher
quantum efficiency.

Circular dichroism (CD) spectra were obtained to determine the conformations of
the polypeptides when combined with the metal complexes in water (Figure 10). In the
case of the hybrids with Au and Ag complexes, a negative Cotton effect resulted from the
formation of β-sheet and/or random coil structures (Figure 10a,b) [12–18]. In contrast, the
Pt complex hybrids showed positive and negative Cotton effects with positive peaks at
195 nm and negative peaks at 205 and 222 nm, and a θ222/θ205 ratio of 0.47 (Figure 10c).
These results are attributed to the formation of 310-helix structures [71], including β-turn
conformations [19]. It appears that [Pt(CN)4]2−

n units were assembled around segments
of the amphiphile helical polypeptide backbone with the concurrent adoption of specific
polypeptide conformations.



Molecules 2022, 27, 3262 9 of 16

Molecules 2022, 27, x FOR PEER REVIEW 9 of 16 
 

 

amphiphile helical polypeptide backbone with the concurrent adoption of specific poly-

peptide conformations. 

   

(a) (b) (c) 

Figure 10. Circular dichroism spectra obtained from hybrids of (a) [Au(CN)2]−, (b) [Ag(CN)2]−, and 

(c) [Pt(CN)4]2− with diblock copolypeptide amphiphiles 1–3, where [Au(CN)2]− = 3.5 mM, 

[Ag(CN)2]− = 5.0 mM, and [Pt(CN)4]2− = 2.7 mM. 

Fourier transform infrared (FTIR) spectra of these hybrids (Figure 11) were consistent 

with helical, sheet, and random coil structures, including the PII (polyproline II-type) con-

formations observed in the CD spectra. A quantitative analysis of the amide bond I region 

(1600–1700 cm−1) provided information regarding changes in the secondary structures of 

the hybrids [72–76] (Figure 10 and Table 3). Interestingly, in the presence of [Au(CN)2]− 

and [Ag(CN)2]−, contributions from the random coil and β-sheet conformations were ob-

served. As an example, a β-sheet contribution of 32.0%, a random coil contribution of 

57.4%, and a 310-Helix or β-turn [75,76] contribution of 10.6% were found in the case of the 

1/[Au(CN)2]− specimen. In contrast, in the presence of [Pt(CN)4]2−, the contribution from 

random coil conformations decreased. This resulted in a β-sheet contribution of 36.6 %, a 

random coil contribution of 46.7%, and a 310-Helix or β-turn contribution of 10.6% for 

1/[Pt(CN)4]2−. The FTIR spectra of these hybrids showed various secondary structural com-

ponents, such as β-sheet, 310-Helix, or β-turn conformations, along with transitions from 

random coil to sheet or helix morphologies depending on the charge on the metal complex. 

Polypeptide amphiphiles in an aqueous solution can adopt α-helix or β-sheet confor-

mations in the Lys segments. Therefore, the present results provide evidence for electro-

static interactions between the polypeptide segments and cyanometallate complexes, 

leading to sheet and helical backbone structures with random coil conformations. 

   

(a) (b) (c) 

Figure 10. Circular dichroism spectra obtained from hybrids of (a) [Au(CN)2]−, (b) [Ag(CN)2]−,
and (c) [Pt(CN)4]2− with diblock copolypeptide amphiphiles 1–3, where [Au(CN)2]− = 3.5 mM,
[Ag(CN)2]− = 5.0 mM, and [Pt(CN)4]2− = 2.7 mM.

Fourier transform infrared (FTIR) spectra of these hybrids (Figure 11) were consistent
with helical, sheet, and random coil structures, including the PII (polyproline II-type) con-
formations observed in the CD spectra. A quantitative analysis of the amide bond I region
(1600–1700 cm−1) provided information regarding changes in the secondary structures of
the hybrids [72–76] (Figure 10 and Table 3). Interestingly, in the presence of [Au(CN)2]−

and [Ag(CN)2]−, contributions from the random coil and β-sheet conformations were
observed. As an example, a β-sheet contribution of 32.0%, a random coil contribution of
57.4%, and a 310-Helix or β-turn [75,76] contribution of 10.6% were found in the case of the
1/[Au(CN)2]− specimen. In contrast, in the presence of [Pt(CN)4]2−, the contribution from
random coil conformations decreased. This resulted in a β-sheet contribution of 36.6 %,
a random coil contribution of 46.7%, and a 310-Helix or β-turn contribution of 10.6% for
1/[Pt(CN)4]2−. The FTIR spectra of these hybrids showed various secondary structural
components, such as β-sheet, 310-Helix, or β-turn conformations, along with transitions
from random coil to sheet or helix morphologies depending on the charge on the metal
complex. Polypeptide amphiphiles in an aqueous solution can adopt α-helix or β-sheet
conformations in the Lys segments. Therefore, the present results provide evidence for
electrostatic interactions between the polypeptide segments and cyanometallate complexes,
leading to sheet and helical backbone structures with random coil conformations.

The results of these morphological and spectroscopic investigations provide detailed
information regarding the nature of the hybrids self-assembled from diblock copolypeptide
amphiphiles and cyanometallate complexes. The observations of metallophilic interactions
indicate that complex anions were assembled when combined with the polypeptides. SEM
images confirmed the generation of nanoparticles, depending on the length and ratio of
the hydrophilic/hydrophobic parts of the polypeptides. The UV-visible and emission
spectra demonstrated that the hybrids included polynuclear species that underwent M-M
bonding interactions. Electrostatic interactions between the amine segments and anionic
metal complexes, as well as the resulting nanostructures, played an important role in
enabling the metallophilic interactions. It is therefore evident that the polypeptides were
capable of inducing detailed nanostructures based on helical and sheet conformations in
aqueous solutions of metal complexes. In this manner, novel luminescent nanomaterials
with tunable structures and luminescence behavior could be obtained.
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Figure 11. FTIR spectra (purple curves) in the amide I region obtained from the (a–c) 1–3/[Au(CN)2]−,
(d–f) 1–3/[Ag(CN)2]−, and (g–i) 1–3/[Pt(CN)4]2− hybrids, where [Au(CN)2]− = 3.5 mM,
[Ag(CN)2]− = 5.0 mM, and [Pt(CN)4]2− = 2.7 mM. Multiple Gaussian fitting was used to deter-
mine the secondary structural components. Blue, green, red, and orange curves denote the amide I
features related to β-sheet (1610–1640 cm−1), random coil (1640–1660 cm−1, including PII structures),
310-helix or β-turn-like (1660–1685 cm−1), and antiparallel β-sheet structures (1675–1690 cm−1),
respectively [72–76]. The overall curve fittings are indicated by the red lines.
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Table 3. Data obtained from amide peaks in FTIR spectra indicating the percentage contributions
of β-sheet (1610–1640 cm−1), random coil (1640–1660 cm−1, including PII structures), 310-helix or
β-turn-like (1660–1685 cm−1), and antiparallel β-sheet (1675–1690 cm−1) secondary structures [72–76]
for hybrid 1–3/cyanometallate complexes.

Pattern of Secondary
Structure

β-Sheet Random Coil 310-Helix, β-Turn Antiparallel β-Sheet

Peak
(cm−1) Percent Peak

(cm−1) Percent Peak
(cm−1) Percent Peak

(cm−1) Percent

1/[Au(CN)2]− 1612, 1630 32.0 1650 57.4 1672 10.6
2/[Au(CN)2]− 1613, 1631 29.8 1651 58.7 1673 11.5
3/[Au(CN)2]− 1613, 1630 23.0 1651 58.9 1673 10.7
1/[Ag(CN)2]− 1613, 1631 25.2 1651 62.5 1672 12.3
2/[Ag(CN)2]− 1630 20.1 1651 66.7 1672 13.2
3/[Ag(CN)2]− 1630 18.9 1651 67.2 1672 13.9
1/[Pt(CN)4]2− 1616, 1633 36.6 1650 46.7 1667 10.6 1679 6.0
2/[Pt(CN)4]2− 1615, 1632 35.2 1650 47.2 1666 10.2 1679 6.8
3/[Pt(CN)4]2− 1618, 1637 38.5 1652 47.1 1672 12.1 1686 2.3

3. Materials and Methods
3.1. Materials and Instrumentation

Tetrahydrofuran (THF) and hexane were dried by purging with nitrogen using a
solvent purification apparatus (GlassContour, Nico-Hansen, Osaka, Japan). Co(PMe3)4
was prepared according to procedures previously published in the literature [57]. All
chemicals were purchased from commercial suppliers (Tokyo Chemical Industry Co., Ltd.,
Tokyo, Japan; Fujifilm Wako Pure Chemical Co., Tokyo, Japan; Kanto Chemical Co., Inc.,
Tokyo, Japan; Sigma-Aldrich Chemical Co., St. Louis, MO, USA; Merck KGaA, Darm-
stadt, Germany) and used without further purification unless otherwise noted. Fourier
transform infrared spectroscopy (FTIR) was carried out using a Spectrum 65 spectrometer
(PerkinElmer, Inc., Waltham, MA, USA). Based on previously reported procedures [72–74],
the secondary structures of the various samples and the number of residues therein were
estimated. The FTIR spectra that were acquired suggested that the peptides included
several structures, such as β-sheet, β-turn, 310-helix, antiparallel β-sheet, and random coil
conformations. [72–76] The peaks in the amide I region of each spectrum (1600–1700 cm−1)
were assessed using a multiple Gaussian fitting procedure [75,76], and the proportion of
each secondary structural constituent in the material was calculated using the Igor 9.0 soft-
ware package. 1H nuclear magnetic resonance (NMR) spectra were acquired using an ESC
400 instrument (JEOL Ltd., Tokyo, Japan). Gel permeation chromatography/light scattering
(GPC) was performed at 60 ◦C using a Shimadzu LC solution GPC system incorporating an
RID-10A differential refractive index detector and a CBA-20A pump/controller (Shimadzu
Co., Ltd., Kyoto, Japan). Separations were achieved using 105, 103, and 500 Å Phenomenex
Phenogel 5 µm columns with 0.1 M LiBr in dimethylformamide as the eluent and sample
concentrations of 1 mg/mL. Pyrogen-free deionized water was obtained from Direct-Q3-
UV (Merck KGaA, Darmstadt, Germany) purification units. UV-visible and fluorescence
spectra were obtained using RF-2500PC and RF-5300PC spectrophotometers, respectively
(Shimadzu Co., Ltd., Kyoto, Japan). Circular dichroism spectra were acquired using a J-820
spectrophotometer (JASCO Corp., Tokyo, Japan). Scanning electron microscopy (SEM)
was carried out with an ERA-600 microscopy (Elionix Inc., Tokyo, Japan) operating at
20 kV. SEM samples were prepared by transferring the surface layers of dispersions to Cu
plates (Okenshoji Co., Ltd., Tokyo, Japan). Transmission electron microscopy (TEM) was
performed using a Titan Themis 200 (Thermo Fisher Scientific Co. Ltd., Waltham, MA,
USA) operating at 200 kV. TEM samples were prepared by transferring the surface layers
of gels or solutions to carbon-coated grids (Okenshoji Co., Ltd., Tokyo, Japan). Inductively
coupled plasma optical emission spectroscopy (ICP-OES) data were obtained with an iCAP
7400 instrument (Thermo Fisher Scientific Co. Ltd., Waltham, MA, USA).
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3.2. General Polypeptide Synthesis

All diblock copolypeptide amphiphiles were synthesized using Co(PMe3)4 as the
initiator and following a literature procedure (Figure 12) [57]. In each case, a 50 mL glass
vial was charged with 0.5 g of the NCA of Nε-benzyloxycarbonyl-L-lysine (Nε-Cbz-L-Lys)
and 5 mL of THF, after which this mixture was stirred in a glove box. The necessary amount
of Co(PMe3)4 was then transferred to a 20 mL glass vial. 2.0 mL of the Co(PMe3)4/THF
solution was transferred to the NCA/THF solution (50 mL vial) by syringe and stirred
for 2 h. The amount of Co(PMe3)4 was based on a ratio of total moles of NCA monomer
(L-Lys + L-Cys) to moles of Co(PMe3)4 equal to a quarter of polymerization degree. [39,40]
Following this, the product was characterized by FTIR spectroscopy and GPC (Table 4).
The contents of the 50 mL glass vial were injected into the 20 mL glass vial, which was then
charged with the NCA of S-carbobenzoxy-L-cysteine (S-Cbz-L-Cys) and 5 mL of dry THF
and stirred overnight. The resulting product was Nε-Cbz-L-Lys-block-S-Cbz-L-Cys. This
material was also analyzed using FTIR spectroscopy. The Nε-Cbz-L-Lys-block-S-Cbz-L-Cys
was subsequently transferred to a 100 mL flask and evaporated under vacuum. Following
this, 40 mL of trifluoroacetic acid (TFA) was added, together with 4.4 mL of 33 wt% HBr in
acetic acid, and the mixture was stirred for 1 h. The solid phase was removed and washed
with diethyl ether and then dispersed in 30 mL of 0.1 M LiBr aqueous solution, and the
sediment was transferred to a dialysis tube, after which a dialysis procedure was carried
out for one week. During the first two days of this process, the tube was placed in 2.0 L
of a 0.10 M aqueous EDTA solution that was replaced daily. Over the next three days, the
tube was placed in 2.0 L of a 0.10 M aqueous LiBr solution, with daily replacement of the
solution. Finally, during the last two days, the tube was placed in 2.0 L of deionized water,
with daily replacement of the deionized water, and the sediment in the tube changed to a
transparent solution. The dialyzed solution was then transferred to a centrifuge tube and
freeze-dried to yield 50 mg of a colorless powder. The proportions of Lys and Cys units in
this material were determined using 1H NMR spectroscopy with a 400 MHz instrument
(Figures S1–S3) and FT-IR spectroscopy (Figures S4–S6). The degree of polymerization of
the Cys portion was calculated from the sulfur atom content determined using ICP-OES
(Table 4).
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Table 4. Properties of the diblock copolypeptide amphiphiles synthesized in this work.

Predicted Composition Mn
a Mw/Mn

a,b Lysm Length c Found Composition d

(Lys)390-block-(Cys)4 9.52X104 1.41 (Lys)390 (Lys)390-block-(Cys)4
(Lys)218-block-(Cys)4 5.38X104 1.14 (Lys)218 (Lys)218-block-(Cys)4
(Lys)206-block-(Cys)4 5.04X104 1.10 (Lys)206 (Lys)206-block-(Cys)4

a Determined using gel permeation chromatography based on Nε-Cbz-Lys units. b Mw/Mn = Polydispersity
index. c Determined from Mn measurements. d Determined from Mn measurements and 1H NMR and ICP
analysis of deprotected samples.

3.3. General Preparation of Polypeptide/Cyanometallate Complex Hybrids

Deionized water purged with nitrogen was used in these trials because of easy ox-
idative decomposition of cyanometallates. In each case, a quantity of the copolypeptide
amphiphile (4 mg) was dissolved in deionized water (2 mL) and a portion of a potassium
cyanometallate complex (4 mg) was dissolved in deionized water (2 mL). Hybrids were pre-
pared by mixing both solutions to give combined polypeptide and complex with a nominal
1/1 ratio (g/g) in 4 mL water. The actual ratios were determined by ICP-OES analysis. The
observed stabilization induced by adding the amphiphiles indicates that aggregation of
the hybrids subsequent to the copolypeptides addition prevents cyanometallate complexes
from reacting with oxygen at least for a month.

4. Conclusions

This work demonstrated the formation of hybrids composed of diblock copolypeptide
amphiphiles with cyanometallates that had significant variations in nanostructure depend-
ing on the structure of the copolypeptide. The present results confirm that it is possible to
control the metal-metal interactions of the complexes and to produce nanostructures based
on aggregates. These supramolecular hybrids allow the design of flexible, reversible, and
signal-responsive systems, and this general concept could be expanded to include other
useful compounds. This research provides valuable information that is expected to lead to
further advances in the fields of metalloproteins and biopolymer nanochemistry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27103262/s1, Figure S1: 1H NMR spectrum of Lys390-b-
Cys4 (1) (400 MHz, D2O, r.t.).; Figure S2: 1H NMR spectrum of Lys218-b-Cys4 (2) (400 MHz, D2O, r.t.).;
Figure S3: 1H NMR spectrum of Lys206-b-Cys4 (3) (400 MHz, D2O, r.t.).; Figure S4: IR spectrum of
Lys390-b-Cys4 (1) (ATR).; Figure S5: IR spectrum of Lys218-b-Cys4 (2) (ATR).; Figure S6: IR spectrum
of Lys206-b-Cys4 (3) (ATR).
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