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Benchmark of quantum‑inspired 
heuristic solvers for quadratic 
unconstrained binary optimization
Hiroki Oshiyama1* & Masayuki Ohzeki1,2,3

Recently, inspired by quantum annealing, many solvers specialized for unconstrained binary quadratic 
programming problems have been developed. For further improvement and application of these 
solvers, it is important to clarify the differences in their performance for various types of problems. 
In this study, the performance of four quadratic unconstrained binary optimization problem solvers, 
namely D-Wave Hybrid Solver Service (HSS), Toshiba Simulated Bifurcation Machine (SBM), Fujitsu 
Digital Annealer (DA), and simulated annealing on a personal computer, was benchmarked. The 
problems used for benchmarking were instances of real problems in MQLib, instances of the SAT-
UNSAT phase transition point of random not-all-equal 3-SAT (NAE 3-SAT), and the Ising spin glass 
Sherrington-Kirkpatrick (SK) model. Concerning MQLib instances, the HSS performance ranked first; 
for NAE 3-SAT, DA performance ranked first; and regarding the SK model, SBM performance ranked 
first. These results may help understand the strengths and weaknesses of these solvers.

Quantum annealing (QA)1,2, which is a quantum heuristic algorithm for solving combinatorial optimization 
problems, has attracted a great deal of attention because it is implemented using real quantum systems by D-Wave 
Systems Inc.3,4, aiming at becoming more powerful than classical algorithms such as simulated annealing (SA)5,6. 
To use the current D-Wave’s QA device, a combinatorial optimization problem must be mapped to a quadratic 
unconstrained binary optimization (QUBO) problem. QUBO is an optimization problem of binary variables 
xi ∈ {0, 1} , where i ∈ {1, 2, . . . , N} , and its cost function to be minimized is defined as

where Qi, j is a real number called QUBO matrix element. In general, QUBO is NP-hard7, and many NP-complete 
problems and combinatorial optimization problems are mapped to QUBO8.

Although current QA devices have limited capability owing to hardware implementation limitations, in 
anticipation of future developments of QA devices, methods using QUBO models for solving real-world problems 
in a variety of fields have been actively studied9–15. Inspired by this trend, several sophisticated heuristic QUBO 
solvers have been developed and commercialized16–19. It is highly non-trivial to determine whether a particular 
algorithm is more powerful than another because the performance of heuristic algorithms varies depending on 
the target problem. For successful application to real-world problems and further development of these QUBO 
solvers, it is necessary to clarify the strengths and weaknesses of each solver for various types of QUBO problems. 
In this study, we benchmarked the performance of three commercialized QUBO solvers including one using 
a real QA device: D-Wave Hybrid Solver Service (HSS), Toshiba Simulated Bifurcation Machine (SBM), and 
Fujitsu Digital Annealer (DA). In order to understand the characteristics of the solvers, we benchmark various 
types of problems, including Ising spin glass problems and real-world problems. This is in contrast to a similar 
benchmark study reported recently20, which used only a single kind of constraint satisfaction problem (specifi-
cally, 3-regular 3-XORSAT). While in Ref.20, the size dependence of the time to obtain an optimal solution with 
a certain probability is analyzed in detail, in this study, the performance of the solvers is evaluated by comparing 
the value of the cost function obtained for a given execution time. Such a performance evaluation will be helpful 
in application cases where approximate solutions are acceptable.

The remainder of this paper is organized as follows. In  “QUBO solvers” section, we briefly explain the solvers 
benchmarked. In “Problem instances for benchmarking” section, the definition of the problem instances used 

(1)E(x) =
∑

i,j

Qi,j xi xj,
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for benchmarking are provided. In “Results” section, we present the results of the benchmarking experiment. 
Concluding remarks are given in “Discussion and conclusion” section.

QUBO solvers
In this section, we briefly explain the four solvers used in this study. Three commercial solvers were benchmarked. 
For comparison, we also experimented with SA on a personal computer.

The first solver is HSS, commercialized by D-Wave Systems Inc.16. This solver is a so-called quantum–classical 
hybrid algorithm that employs QA as an accelerator. Note that the actual implementation of the algorithm is not 
open to the public. Thus, it is unclear how QA is used internally. We used HSS hybrid BQM solver, version 2.0, 
which can manage up to 106 variables and 2 × 108 couplings21. We accessed HSS via Leap cloud.

The second solver is SBM, commercialized by Toshiba18. The QA inspired algorithm of SBM, so-called simu-
lated bifurcation (SB) algorithm, uses the adiabatic time evolution of Kerr-nonlinear parametric oscillators 
(KPOs)22. The dynamics in the classical limit of KPOs can be quickly computed in classical computers by solving 
the independent equations of motion in parallel18. To overcome accuracy degradation caused by analog errors 
due to the use of the dynamics of continuous variables, a variant of the SB algorithm called ballistic SB (bSB) 
algorithm was developed, which mitigate the analog error by modifying the potential term of the equation of 
motion. As a further improvement of the bSB algorithm, the discrete SB (dSB) algorithm was also developed, 
which reduces the analog error by discretizing the potential term of the bSB algorithm23. We use SBM evalua-
tion version 1.5.1 (which is not publicly available), that uses dSB algorithm and can manage all-to-all coupling 
of up to 106 variables and 108 nonzero couplings. Parallelization is 80 or 160 per GPU. In this study, we used 
the autoising solver; hyperparameters are automatically searched by the solver. We accessed SBM via evaluation 
version directly from Toshiba.

The third solver is DA, commercialized by Fujitsu19. DA uses an SA-specific hardware architecture to accel-
erate the parallel tempering Markov chain Monte Carlo (MCMC) calculation24,25. Although DA does not use 
quantum algorithms, it is inspired by D-Wave devices in the sense that the hardware is specialized for QUBO 
solving. We used fujitsuDA2PT solver, which can manage all-to-all coupling of up to 8192 variables. We accessed 
DA via DA Center Japan.

For comparison with these commercial solvers, we ran SA using the open-source software D-Wave neal, 
version 0.5.726, on a personal computer with Ubuntu 20.04.3 LTS and Python 3.8.2. D-Wave neal implements 
SA with MCMC without parallel tempering method. The CPU used in the experiment was Intel Core i9-9900K, 
and single-threaded runs were performed.

Problem instances for benchmarking
In this section, we explain the three problem sets used in the conducted benchmarking.

MQLib repository instances.  We used the same set of 45 problems used in the benchmarks presented in 
HHS’s white paper16,27. This problem set is extracted from the MQLib repository, and some of the problems have 
their origin in real-world problems, such as image segmentation28. This problem set was reported to be time-
consuming to solve because of all the heuristics contained in the MQLib library. Concerning benchmarking, a 
20-minute run is recommended for each problem16. The 45 problems are uniformly classified into nine classes: 
three classes according to size (small: 1000 ≤ N ≤ 2500, medium: 2500 < N ≤ 5000, and large: 5000 < N ≤ 10000) 
and three classes according to edge density (sparse: d ≤ 0.1, medium: 0.1 < d ≤ 0.5, and dense: 0.5 < d), where d 
is the number of edges divided by the number of edges in a complete graph of the same size16.

Not‑All‑Equal 3‑SAT.  Satisfiability problem (SAT) is one of the most fundamental NP-hard problems and 
therefore it is good benchmark problem for heuristic solvers. Not-all-equal 3-SAT (NAE 3-SAT) is a variant of 
the Boolean SAT problem and is an NP-complete problem29. NAE 3-SAT requires at least one literal to be true 
and at least one literal to be false in each clause with three literals. The cost function of a random NAE 3-SAT 
with N variables and M clauses is expressed in a straightforward manner in the Ising model with σi ∈ {− 1, 1}, 
where 1 ≤ i ≤ N:

where im,l ∈ {1, 2, … ,N} and ζm,l ∈ {− 1, 1} for 1 ≤ m ≤ M and 1 ≤ l ≤ 3 are random variables that follow a discrete 
uniform distribution; ζm,l =  − 1 corresponds to the negation of the l-th Boolean variable in clause m. Each clause 
has three different variables, i.e., im,l ̸ = im,l′ if l ̸ = l′. If the minimum of E(σ) in Eq. (2) is 0 for a given formula, it 
is satisfiable (SAT); otherwise, it is unsatisfiable (UNSAT). The QUBO formulation as in Eq. (1) can be easily 
obtained from this Ising formulation by the variable transformation xi = (σi + 1)/2. Because NAE 3-SAT has such 
a natural QUBO representation, it is a suitable benchmark problem for QUBO solvers amongst SAT variants. 
When the clause-to-variable ratio is M/N = 2.11, the SAT-UNSAT phase transition occurs, and problem instances 
are most difficult to solve30–32. In this study, we used randomly generated instances with this critical clause-to-
variable ratio for benchmarking.

Sherrington–Kirkpatrick model.  The Sherrington–Kirkpatrick (SK) model is an Ising spin glass model 
with infinite spatial dimensions33,34. The cost function of N variables with no external field is expressed as

(2)E(σ) =
1

4

M
∑

m=1

(

ςm,1ςm,2σim,1σim,2 + ςm,2ςm,3σim,2σim,3 + ςm,3ςm,1σim,3σim,1 + 1
)
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where Ji, j is a random Gaussian variable. As previously explained, the QUBO formulation can be easily obtained. 
The mean field analysis shows that the energy landscape of the SK model has a many-valley structure separated 
by asymptotically infinitely large energy barriers, which implies that it is extremely difficult to find the exact 
solution35. In this study, we used randomly generated instances with Ji, j presenting zero mean and unity standard 
deviation for benchmarking.

Results
In this section, we present benchmarking results for each of the three problem sets introduced in the previous 
section. In the results shown below, the network time required to send the instance and receive the result was 
ignored in the measurement of execution time. Regarding HSS, the number of seconds specified in time_limit 
was used as the execution time. For SBM, the time specified in timeout was used as the execution time. Con-
cerning DA, there was no parameter to specify the execution time directly, so total_elapsed_time recorded in 
the response file was used as the execution time. Finally, for SA with D-Wave neal, we measured the time taken 
for the sample function to finish.

MQLib instances.  First, we present the results for a 5-min experiment of the instances from the MQLib 
repository. For HSS and SBM, the execution time was set to 5 min. For DA, number_replicas was set to 128 and 
number_iterations was adjusted for each instance so that the deviation of execution time in 5 min was within 
20 s. Concerning SA, num_sweeps was adjusted for each instance such that the execution time was 5 min.

(3)E(σ) =
1

√
N

∑

1≤i≤j≤N

Ji,jσiσj,
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Figure 1.   Number of wins (left axis) and average score (right axis) for a 5-min experiment of MQLib instances. 
Each panel shows the result for a class categorized by problem size, (a) Small, (b) Mediun, and (c) Large; (d) 
Total number of wins and average score for all instances. The score for each instance is defined by Eq. (4). In 
calculating the average score, instance g000644 was ignored due to absence of data for DA.
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Figure 1 shows the number of wins for each solver; this number was counted when the solver obtained the 
best solution. If there was more than one solver with the best solution, the number of wins was counted for all 
of them. The total result for all classes was that HHS won most of the problems (22), followed by DA (20), SBM 
(16), and SA (7). The results for each class classified by size show that HSS won the most for the small class, while 
DA won the most for the medium and large classes. The results for each class classified by edge density show 
that, for Sparse class, HSS won the most, for Medium class, DA won the most, and HSS and DA won the most. 
The number of wins of SA was only 2 at most, and most of the time, it was 0 or 1 for each of the nine classes.

Furthermore, we evaluate the quality of the obtained solution using a score defined as the ratio of the value 
of cost function

(4)
(Esolver = {EHSS, ESBM, EDA, ESA})to the best value obtained in this experiment

(E0 = min{EHSS, ESBM, EDA, ESA}):
Ssolver = Esolver/E0(solver ∈ {HSS, SBM,DA, SA}).

Table 1.   Values of score, defined by Eq. (4) for small and sparse classes. The first row shows the instance 
name, the second row presents the number of variables, the third row contains the edge density, and the fourth 
and subsequent rows show the results for each solver. The values are computed in single precision from the 
obtained solution of binary variables; they are shown with six decimal places. The best solutions obtained in 
this benchmarking are shown in bold.

Input Size Density HSS SBM DA SA

g000989 2319 0.00086 1.0 1.0 1.0 0.998708

g003215 2206 0.00093 1.0 0.999457 0.998103 0.997985

g001269 2294 0.0017 1.0 1.0 1.0 0.999847

g000421 2034 0.0038 1.0 1.0 0.985010 0.999303

g002440 2242 0.044 1.0 1.0 0.999213 1.0

Table 2.   Results for small and medium classes, same as Table 1.

Input Size Density HSS SBM DA SA

g000432 2153 0.11 1.0 0.999958 0.999045 0.999974

g000524 2218 0.14 1.0 1.0 1.0 1.0

g002586 2079 0.16 1.0 1.0 0.999102 0.999890

g001327 2318 0.3 1.0 1.0 0.999300 0.999928

g001469 2412 0.46 1.0 0.999824 0.998105 0.999911

Table 3.   Results for small and dense classes, same as Table 1.

Input Size Density HSS SBM DA SA

g002600 2432 0.85 1.0 0.999999 0.999505 0.999976

g000969 2453 0.86 1.0 1.0 0.995138 0.999645

g002898 2041 0.86 1.0 1.0 1.0 0.999996

g001581 2383 0.86 0.999999 1.0 0.999640 1.000000

g000788 2342 0.88 1.0 0.999860 0.999492 0.999959

Table 4.   Results for medium and sparse classes, same as Table 1.

Input Size Density HSS SBM DA SA

g000377 3398 0.00069 0.998763 0.999890 1.0 0.998353

g002569 2815 0.0011 1.0 0.999459 0.983877 0.998564

g001086 3706 0.0016 0.998913 0.998673 0.985686 1.0

g001337 2850 0.051 0.999975 0.999923 1.0 0.999931

g000283 3364 0.072 0.999946 0.999905 0.997073 1.0
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Table 5.   Results for medium and medium classes, same as Table 1.

Input Size Density HSS SBM DA SA

g002512 4731 0.12 0.999913 0.999861 1.0 0.999980

g000802 3956 0.13 0.999990 1.0 0.998449 0.999919

g003059 3447 0.14 0.999973 0.999939 1.0 0.999962

g002332 3181 0.22 0.999994 0.999996 0.999156 1.0

g002034 2528 0.35 1.0 0.999997 0.999201 0.999979

Table 6.   Results for medium and dense classes, same as Table 1.

Input Size Density HSS SBM DA SA

g003198 3972 0.74 1.0 0.999956 0.999616 0.999979

g002207 2677 0.74 1.0 1.0 1.0 0.999954

g001913 3865 0.75 1.0 0.999786 0.999333 0.999643

g001393 3938 0.83 0.999967 1.0 1.0 0.999886

g002370 3884 0.84 0.999716 0.999843 0.997744 1.0

Table 7.   Results for large and sparse classes, same as Table 1. For input g001883, HSS and SBM had almost 
the same value of the cost function, while the solution configurations were truly different from each other. The 
result of DA for input g000644 is blank because DA can only manage 8192 variables.

Input Size Density HSS SBM DA SA

imgseg-216041 7724 0.00039 1.0 0.999919 0.996163 0.995890

imgseg-376020 7455 0.00049 1.0 0.999522 0.989190 0.998811

g001883 6831 0.00059 1.000000 1.0 0.999489 0.999998

g000644 10,000 0.0016 0.999307 1.0 0.999752

g000476 8000 0.002 0.999457 0.999766 1.0 0.999860

Table 8.   Results for large and medium classes, same as Table 1.

Input Size Density HSS SBM DA SA

g002312 6395 0.19 0.999957 0.999054 1.0 0.999930

g002563 6279 0.19 0.999842 0.999966 1.0 0.999945

g000495 5438 0.21 0.999941 0.999980 1.0 0.999958

g002204 5368 0.44 1.0 1.0 1.0 0.999903

g000503 5046 0.45 0.999954 0.999966 1.0 0.999983

Table 9.   Results for large and dense classes, same as Table 1.

Input Size Density HSS SBM DA SA

g002527 5378 0.59 0.999949 0.999574 1.0 0.999885

g001345 5066 0.74 0.999252 0.999004 0.475147 1.0

p7000-2 7001 0.8 0.999992 0.999748 1.0 0.999563

g002300 5038 0.94 0.999970 0.999988 1.0 0.999995

g001651 5819 0.97 0.999949 0.999913 1.0 0.999930
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Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9 show the score for each instance, and Fig. 1 shows the average of the scores 
for Small, Medium, and Large classes, and for all instances. The original lowest values of the cost function found 
in this benchmarking are listed in Table 10. The average scores of HSS and SBM are almost identical and higher 
than other solvers. This implies that HSS and SBM have stable performance on a wide range of problems. On 
the other hand, DA has an exceptionally bad solution for the instance g001345, which is why the average score 
drops significantly in the Large class. In addition, in the Small and Medium classes, the average score of DA is 
about 0.01 lower than the other solvers. This implies that DA is slightly less stable, because even for SA, which 
has the fewest wins, the difference in average score from HSS is within 0.001.

Table 10.   The lowest values of cost function found in this benchmarking for MQLib instances.

Input Value of cost function Solvers

g000989  − 2322 HSS, SBM, DA

g003215  − 821,734 HSS

g001269  − 45,661 HSS, SBM, DA

g000421  − 41,680.2 HSS, SBM

g002440  − 2,000,460 HSS, SBM, SA

g000432  − 188,363.1 HSS

g000524  − 4,335,188 HSS, SBM, DA, SA

g002586  − 7,161,694 HSS, SBM

g001327  − 9,267,492 HSS, SBM

g001469  − 1.42273e+07 HSS

g002600  − 41,194.45 HSS

g000969  − 6,647,406 HSS, SBM

g002898  − 1.276648e+07 HSS, SBM, DA

g001581  − 730,413.1 SBM

g000788  − 1,962,898 HSS

g000377  − 445,529 DA

g002569  − 5.084731e+08 HSS

g001086  − 3819.935 SA

g001337  − 4,634,430 DA

g000283  − 337,340.8 SA

g002512  − 327,679.6 DA

g000802  − 2,819,460 SBM

g003059  − 3,782,885 DA

g002332  − 4,586,683 SA

g002034  − 698,788.1 HSS

g003198  − 1.373565e+08 HSS

g002207  − 6,781,175 HSS, SBM, DA

g001913  − 1,177,002 HSS

g001393  − 358,732 SBM, DA

g002370  − 5.622634e+07 SA

imgseg-216041  − 9,572,357 HSS

imgseg-376020  − 1.376284e+07 HSS

g001883  − 403,013.1 SBM

g000644  − 132,820 SBM

g000476  − 106,794 DA

g002312  − 2.867864e+07 DA

g002563  − 5.848182e+07 DA

g000495  − 1.638467e+07 DA

g002204  − 1.229112e+08 HSS, SBM, DA

g000503  − 8.506962e+07 DA

g002527  − 8,261,389 DA

g001345  − 4.011876e+07 SA

p7000-2  − 1.824995e+07 DA

g002300  − 9.409027e+07 DA

g001651  − 130,005.8 DA
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NAE 3‑SAT instances.  Next, we present the results for the random NAE 3-SAT instances with a number 
of variables N = 8192 and a number of clauses M = 17285, i.e., instances with a clause-to-variable ratio N/M ≈ 
2.11. Figure 2a shows the average of ten randomly generated instances of the cost function as a function of the 
execution time. As a reference, Fig. 2b shows the results for ten different instances. Given that each data point 
was obtained from an independent run, a longer run may lead to a worse solution than a shorter run. In the 
range 100–600 s, DA presented the lowest value of the cost function, closely followed by SBM and SA; HSS pre-
sented the highest value. In the region below 100 s, SBM and SA showed lower energy than DA. After a long-time 
calculation of about 1000 s, HSS finally reaches the same performance as SBM and SA, but still not as good as 
the result of 100 s run of DA. Interestingly, the performance of SBM and SA is almost identical for a wide range 
of execution time.

SK model.  Finally, we present the results for the SK model with 8192 variables. As with the NAE 3-SAT 
instances, the experiments were performed by varying the execution time. Figure 3a shows the average of six 
randomly generated instances of the cost function as a function of the execution time. As a reference, Fig. 3b 

(a) HSS DA Average of (b)
SBM SA 10 instances

E/
M 10−3

E/
M 10−3

10 100 1000 10
time [s]

HSS    DA
SBM   SA

100 1000
time [s]

Figure 2.   Value of the cost function per clause as a function of the execution time, obtained for NAE 3-SAT 
with a number of variables N = 8192 and a number of clauses M = 17,285, i.e., M/N ≈ 2.11. Each data point 
was obtained from an independent run. See the main text for the time metric of each solver. (a) Average of ten 
instances. The error bars denote standard deviation. For DA and SA, the execution time was also averaged. (b) 
Results for ten different instances.
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Figure 3.   Value of cost function per variable as a function of the execution time, obtained for the SK model 
with a number of variables N = 8192 and J = 1. Each data point was obtained from an independent run. See 
the main text for the time metric of each solver. (a) Average of ten instances. The error bars denote standard 
deviation. For DA and SA, the execution time was also averaged. (b) Results for six different instances.
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shows the results for six different instances. SBM clearly outperformed the other solvers, achieving the best solu-
tions at the 100-s mark, with little energy change for longer runs. HSS and DA showed almost the same time 
dependence, although HSS provided a slightly better solution. It is interesting that this pair is different from the 
pair, SBM and SA, that exhibits similar performance in NAE 3-SAT instances. In runs longer than 600 s, SA 
obtained as good solutions as HSS and DA, but due to the all-to-all coupling, its pre-processing calculation was 
expensive, requiring at least approximately 500 s for the total calculation time.

Discussion and conclusion
We benchmarked the heuristic QUBO solvers, HSS, SBM, DA, and SA, using the instances from the MQLib 
repository, random NAE 3-SAT, and the SK model. Benchmarking with problems of various origins revealed 
some of the characteristics of the strengths and weaknesses of each solver. For MQLib instances, which are a set 
of various problem instances including real-world problems, HSS showed the best performance on average, and 
SBM also showed stable performance that was not so different from HSS. DA outperformed other solvers on large 
instances, but it gave slightly poor solutions to some instances. It is rather natural result that the performance of 
DA varied depending on the instances because the performance of heuristic algorithms strongly depends on the 
problem instances in general, and it is somewhat surprising that HSS and SBM showed stable performance. In 
this experiment, with a run time of 5 min, we find that the difference in the value of cost function of the obtained 
solutions is often less than 0.01%, which is probably negligible in some application cases. Therefore, a possible 
direction for further study is to investigate how the results change in experiments with shorter run times. For 
random NAE 3-SAT instances at the SAT-UNSAT transition point, which is a typical hard optimization problem, 
DA performed best for most of the execution times. The performance of SBM and SA was almost the same, and 
HSS was the worst. It is believed that local search methods such as the parallel tempering method used in DA do 
not work well for SAT instances at the SAT-UNSAT transition point that have very few solutions31, and there is 
probably no efficient algorithm. Therefore, the result that DA still performed best implies that other solvers are 
also not particularly effective, which is as expected. For SK model, which is a typical hard problem originated 
from the spin glass, SBM exhibited a clear advantage over other solvers, while HSS and DA showed similar per-
formance. Since the parallel tempering method is considered to work relatively well for the SK model, it is a bit 
surprising that SBM, rather than DA, showed outstanding performance as opposed to the case of NAE 3-SAT. It 
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is an important challenge to understand the characteristics of each solver found in this study from the viewpoint 
of their algorithm and hardware architecture.

Data availability
All other data used in this study are available from the corresponding authors upon reasonable request. The 
problem instaces of MQlib is available from the MQLib repository36. The NAE 3-SAT and SK model instance was 
generated reproduced by the python program shown in Listings 1 and 2 with Python 3.8.2 on Ubuntu20.04.3 LTS.
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