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Abstract

Background: Cell-surface receptors play essential roles in anthrax toxin action by providing the toxin with a high-affinity
anchor and self-assembly site on the plasma membrane, mediating the toxin entry into cells through endocytosis, and
shifting the pH threshold for prepore-to-pore conversion of anthrax toxin protective antigen (PA) to a more acidic pH,
thereby inhibiting premature pore formation. Each of the two known anthrax toxin receptors, ANTXR1 and ANTXR2, has an
ectodomain comprised of an N-terminal von Willebrand factor A domain (VWA), which binds PA, and an uncharacterized
immunoglobulin-like domain (Ig) that connects VWA to the membrane-spanning domain. Potential roles of the receptor Ig
domain in anthrax toxin action have not been investigated heretofore.

Methodology/Principal Findings: We expressed and purified the ANTXR2 ectodomain (R2-VWA-Ig) in E. coli and showed
that it contains three disulfide bonds: one in R2-VWA and two in R2-Ig. Reduction of the ectodomain inhibited functioning
of the pore, as measured by K+ release from liposomes or Chinese hamster ovary cells or by PA-mediated translocation of a
model substrate across the plasma membrane. However, reduction did not affect binding of the ectodomain to PA or the
transition of ectodomain-bound PA prepore to the pore conformation. The inhibitory effect depended specifically on
reduction of the disulfides within R2-Ig.

Conclusions/Significance: We conclude that disulfide integrity within R2-Ig is essential for proper functioning of receptor-
bound PA pore. This finding provides a novel venue to investigate the mechanism of anthrax toxin action and suggests new
strategies for inhibiting toxin action.
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Introduction

A common way for pathogenic bacteria to defend themselves

against the host’s immune system is to deliver a toxin into the

cytoplasm of host cells and disrupt key steps of metabolism. Most

intracellularly acting toxins are bipartite entities, in which one

part, the B (binding) moiety, binds to a cell surface receptor,

hijacks the receptor-mediated endocytosis pathway, and facilitates

delivery of the other part, the A (catalytic) moiety, to the cytosol

[1]. Study of the roles of receptors in toxin action is of interest in

understanding bacterial pathogenesis and in developing novel

therapeutics against infection.

Anthrax toxin is a tripartite system, composed of two catalytic

moieties, edema factor (EF) and lethal factor (LF), and a receptor-

binding/pore-forming moiety, protective antigen (PA). PA

(83 kDa) binds to cell-surface receptors and is cleaved by furin

or a furin-like protease to generate an active, 63-kDa form (PA63)

[2]. PA63 oligomerizes into a heptameric or octameric [3],

receptor- bound prepore, which contains high-affinity binding

sites for EF and LF[4]. The toxin-receptor complexes are

internalized by receptor-mediated endocytosis, and the prepore

moiety undergoes an acidic pH-dependent conformational

rearrangement within the endosome to form a cation-selective,

transmembrane pore [5]. The PA pore mediates translocation of

EF and LF across the endosomal membrane into the cytosol,

where, EF, an 89-kDa calmodulin-dependent adenylate cyclase,

elevates levels of cAMP [6], and LF, a 90-kDa zinc protease,

inactivates mitogen-activated proteins kinase kinases [7].

Two cellular receptors for PA have been identified: ANTXR1

[8] and ANTXR2 [9]. Recently, it has been shown that the

lethality of anthrax toxin for mice is primarily mediated by

ANTXR2 and that ANTXR1 plays only a minor role [10]. Both

receptors are widely expressed type-I transmembrane proteins,

which exhibit a high degree of similarity; each comprises an

extracellular domain (ectodomain), a single-pass transmembrane

domain, and a cytoplasmic domain (Figure 1A). PA binds to a
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von Willebrand Factor type A (VWA) domain located at the N

terminus of the ectodomain. While the physiological functions of

the receptors have not been fully elucidated, they bind to

extracellular matrix components and are associated with angio-

genesis [11–13]. Mutations in the ANTXR2 gene are linked to

two human autosomal recessive diseases, juvenile hyaline fibro-

matosis and infantile systemic hyalinosis [14–17].

A conserved metal ion-dependent adhesion site (MIDAS) within

R2-VWA, the VWA domain (residues 38–218) of ANTXR2,

binds PA with high affinity (Kd,170 pM when liganded by Mg2+)

(Figure 1B) [18–20]. Binding to R2-VWA involves not only

domain 4 (receptor binding domain) of PA, but also domain 2

(pore-forming domain) [18]. The 2b2–2b3 loops (residues 303–

322) of the domains 2 of heptameric PA prepores move to the base

of the structure during the low pH-induced conformational

rearrangement and form a 14-strand transmembrane b-barrel

[21]. Binding of R2-VWA to the PA prepore shifts the pH

threshold of prepore-to-pore conversion to a more acidic pH range

[20,22]. Whole-cell voltage-clamp measurements of PA pore

current have shown that ANTXR2 mediates PA pore formation

Figure 1. ANTXR2 ectodomain is composed of R2-VWA and R2-Ig. A. Schematic of ANTXR2. ANTXR2 is composed of R2-VWA (VWA, 38–218)
and R2-Ig (Ig, 219–318), a single-pass transmembrane domain (TM, 319–343) and a cytoplasmic domain (Cyto, 344–489). B. The crystal structure of R2-
VWA domain (1SHU) as displayed in Swiss-PDB-Viewer. Residues Cys175, the Cys39–Cys218 disulfide bond, and Mn2+ ion of MIDAS are shown and
labeled. C. Sequence alignment of the ectodomains of ANTXR1 (R1) and ANTXR2 (R2). The seven conserved Cys residues are highlighted and
numbered in R2. Identical residues are labeled with asterisk (*).
doi:10.1371/journal.pone.0010553.g001
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on the plasma membrane of cultured cells when they are exposed

to acidic conditions [23].

While R2-VWA has been well characterized, the structure and

function of the domain (residues 219–318) downstream of R2-VWA

within the extracellular portion of ANTXR2 have not yet been

addressed. A reverse position-specific BLAST (RPS-BLAST) search

against the conserved domain database shows that this domain is a

member of the immunoglobulin (Ig) superfamily (pfam05587, here

termed R2-Ig) (Figure 1A). Within the ANTXR2 ectodomain,

there are seven Cys residues, with three on R2-VWA and four on

R2-Ig (Figure 1C). These residues are highly conserved among the

homologues of anthrax toxin receptors. Our current study indicates

that the integrity of the disulfide bonds in R2-Ig is essential for

proper functioning of the receptor-bound pore, and presumably for

receptor-mediated anthrax toxin action.

Materials and Methods

Cell Culture and Media
An anthrax toxin receptor-deficient CHO-R1.1 cell line that

stably expresses ANTXR2-GFP (termed CHO-ANTXR2) was a

gift from John A. T. Young [8,9]. The cells were grown in Ham’s

F-12 medium supplemented with 10% calf serum, 2 mM

glutamine, 500 units/ml penicillin, 500 units/ml streptomycin

sulfate, and 100 units/ml G418, under a humidified atmosphere

with 5% CO2.

Plasmid Construction and Protein Purification
The cDNA encoding residues 38–318 of ANTXR2 was

amplified by PCR and inserted into a pMAL-p2x vector (NEB)

at Xho I and Hind III sites with a His6-tag at the C-terminus

flanked by a thrombin cleavage site. The construct expresses a

fusion protein, MBP-ANTXR2(38–318)-His6. The fusion protein

was co-expressed with a bacterial disulfide isomerase, DsbC (a

kind gift from Jon Beckwith), in the periplasm of bacterial strain

BL21(DE3). Bacterial cells were inoculated in a 10 L-fermentor in

a rich medium at 37uC until OD600 reached ,10. The

temperature was shifted to 16uC and expression of the fusion

protein and DsbC were induced with 0.1 mM IPTG and 0.2%

arabinose, respectively, for overnight. The bacterial cells were

harvested, and the periplasmic fraction was prepared by osmotic

shock as previously described [20]. The fraction was passed

through a Ni-column and eluted with an imidazole gradient. The

eluted protein was concentrated, and the soluble monomeric form

of the fusion protein was further purified by gel filtration on a

Superdex-200 column. Subsequently, the MBP- and His6- tags

were removed by incubating the protein with Factor Xa and

thrombin, respectively. The recombinant PA and R2-VWA were

expressed and purified as described [20].

Estimation of free–SH group on R2-VWA-Ig with Ellman’s
reagent

Ellman’s reagent (5,59dithiobis(2-nitrobenzoic acid); DTNB;

500 mM) was incubated with 10 mM of R2-VWA-Ig (WT) or R2-

VWA-Ig (C175A) in 6 M guanidinium chloride and 0.1 M

TrisHCl (pH 8.0). The absorbance at 412 nm was recorded in a

spectrophotometer. Similarly, L-Cysteine at various concentra-

tions (0, 2.5, 5, 10, 20, 40, 80, 160 mM) was incubated with

500 mM of Ellman’s reagent in 6 M guanidinium chloride and

0.1 M TrisHCl (pH 8.0), and the absorbance at 412 nm was

recorded. These data were used to plot a standard curve. The

concentration of free–SH group ([-SH]) in the protein samples was

calculated based on the standard curve, and the number of–SH

group per molecule was calculated as [-SH]/[protein].

Gel Shift Assay for PA-Receptor Binding
PA83, R2-VWA, and R2-VWA-Ig were mixed (receptor/PA

ratio 2:1), as indicated, in 20 mM Tris-HCl (pH 8.5), 150 mM

NaCl, 1 mM MgCl2, with or without 10 mM TCEP, at room

temperature for 30 min. The samples were loaded onto 4–20%

acrylamide, Tris-glycine gels (Invitrogen). The running buffer was

25 mM Tris-base, 192 mM glycine. The gels were stained with

Coomassie blue. Note: treating with either DTT or TCEP before

or after receptor binding to PA gave the same results. Thus,

neither the choice of the reducing agent nor the timing of addition

of the reducing agent had any effect on the results.

SDS-Resistant PA63 Oligomer
To assay PA prepore to pore transition in solution, PA63

heptameric prepore, R2-VWA, and R2-VWA-Ig were mixed

(receptor/PA ratio 2:1), as indicated, in 20 mM Tris-HCl

(pH 8.5), 150 mM NaCl and 1 mM MgCl2, with or without

10 mM TCEP, at room temperature for 30 min. The solution was

acidified by the addition of 1/10 volume of 1 M sodium acetate

(pH 5.0) and incubated for 10 min. Samples were exposed to

1.25% SDS for 20 min and electrophoresed on SDS-PAGE, and

the bands were visualized after Coomassie staining. To assay PA

prepore to pore transition on the plasma membrane, CHO-

ANTXR2 cells were incubated with PA63 prepore (10 mg/ml),

with or without 10 mM DTT or TCEP, for 1 h at 4uC. The cells

were washed with cold PBS and incubated in 150 mM NaCl,

20 mM Mes, 5 mM gluconic acid (pH 5.0) for 10 min at 4uC. The

cells were then harvested and exposed to 1.25% SDS at 100uC for

10 min. The samples were subjected to SDS-PAGE followed by

Western blotting with a goat anti-PA antibody (List Biolab), mouse

anti-goat horseradish peroxidase (Santa Cruz), and SuperSignal

Western detection reagent (Pierce).

Liposome Preparation
Liposomes were prepared as previously described [24]. Briefly,

DOPC in chloroform (Avanti Polar Lipids) was dried under N2 gas to

form a lipid film, followed by vacuum for 3 h to remove residual

solvent. The dried lipid film was rehydrated with buffer to form

multilamellar vesicles and subjected to six freeze-thaw cycles and

extrusion through a 200-nm pore size polycarbonate filter (Nucleo-

pore) in a mini extruder (Avanti Polar Lipids). The protocol yielded

large unilamellar vesicles with an average diameter of 150–200 nm.

K+ Release From Liposomes and Cells
Liposome containing 150 mM KCl, 10 mM Hepes (pH 7.4)

were transferred into 150 mM NaCl, 20 mM Tris-HCl (pH 8.5)

by buffer exchange. The liposome was added to K+ release buffer

(50 mM sodium acetate, 150 mM NaCl, pH 5.0) and after 1 min,

PA prepore (3 nM) complexed with either R2-VWA or R2-VWA-

Ig (40 nM) was added. The receptor proteins were treated with

10 mM DTT or TCEP before or after incubating with PA

prepore. The solution was stirred continuously with a magnetic

stirrer, and K+ release was monitored with a K+-selective electrode

(Orion Research).

PA-Mediated LFN Translocation Across the Plasma
Membrane

As described [25,26], CHO-ANTXR2 cells were incubated with

PA (10 mg/ml) for 2 h at 4uC, with or without the reducing agents.

Cells were then washed with cold PBS to remove unbound protein,

and 35S-LFN, produced from TNT coupled reticulocyte lysate

system (Promega), was added. The cells were then incubated for 2 h

at 4uC, with or without the reducing agents. The unbound 35S-LFN

Anthrax Toxin Receptor
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was removed by washing, and 35S-LFN translocation was triggered

by acidification of the cells with pH 5.0 buffer [150 mM NaCl,

20 mM Mes, 5 mM gluconic acid (pH 5.0)] at 37uC for 2 mins.

Pronase (2 mg/ml) was added to remove LFN remaining on the cell

surface after translocation. The cells were harvested, and the lysates

were applied to SDS-PAGE followed by autoradiography.

Results

Purification of recombinant ANTXR2 ectodomain, R2-
VWA-Ig, from E. coli

To express soluble, functional ectodomain of ANTXR2 in E.

coli and facilitate its purification, we engineered a construct that

expressed a MBP-ANTXR2(38–318)-His6 fusion protein in the

bacterial periplasm, where disulfide bond formation is favored.

Co-expression of this construct with a bacterial disulfide isomerase,

DsbC, at low temperature increased the yield of soluble protein.

After affinity purification through a Ni-column, the MBP- and

His6- tags were removed with Factor Xa and thrombin,

respectively. The purified protein ran at ,30 kDa on a size

exclusion column (Figure 2A) and on SDS-PAGE (Figure 2B),

consistent with the calculated molecular weight of a monomer.

The amino acid sequence of the purified protein was confirmed by

MALDI-TOF analysis, with .93% peptide recovery (data not

shown). When DTT (final concentration, 10 mM) was added to

the sample, the protein migrated more slowly in SDS-PAGE,

consistent with the reduction of intra-molecular disulfide bonds

(Figure 2B). The ANTXR2 ectodomain has seven Cys residues in

total with three on R2-VWA and four on R2-Ig (Figure 1C). In

the crystal structure of R2-VWA, Cys39 and Cys218 are linked by

a disulfide bond, while Cys175 is unpaired and buried within the

structure (Figure 1B) [18,19]. Subsequently, an assay with

Figure 2. Purified ANTXR2 ectodomain, R2-VWA-Ig, is a soluble monomeric protein containing three disulfide bonds. A. Gel filtration
of the purified R2-VWA-Ig. R2-VWA-Ig was expressed and purified as a fusion protein with an N-terminal MBP tag and a C-terminal His6-tag. After
removal of the MBP- and His6- tags, R2-VWA-Ig ran as a monomer (,30 kDal) in a Superdex-75 column in 20 mM TrisHCl (pH 8.0) and 150 mM NaCl.
B. SDS-PAGE of the purified R2-VWA-Ig. The purified R2-VWA-Ig was treated with or without 10 mM DTT in SDS sample buffer, and run on SDS-PAGE.
C. left panel, cysteine standard curve; at OD412 was plotted after L-cysteine at various concentrations was incubated with 500 mM DTNB in 6 M
guanidium HCl and 0.1 M TrisHCl, pH 8.0; right panel, 10 mM of R2-VWA-Ig (WT) or R2-VWA-Ig (C175A) was incubated with 500 mM DTNB in 6 M
guanidium HCl and 0.1 M TrisHCl, pH 8.0. OD412 was recorded and –SH/molecule was calculated based on the cysteine standard curve and protein
concentration.
doi:10.1371/journal.pone.0010553.g002
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Figure 3. Disulfide reduction of R2-VWA-Ig did not affect receptor-PA binding. PA83, R2-VWA, and R2-VWA-Ig were mixed, as indicated in
20 mM Tris-HCl (pH 8.5), 150 mM NaCl, 1 mM MgCl2, in the presence or absence of 10 mM TCEP. The samples were subjected to native gel
electrophoresis followed by Coomassie blue staining.
doi:10.1371/journal.pone.0010553.g003

Figure 4. Disulfide reduction did not affect formation of SDS-resistant PA63 oligomers at low pH. A. PA prepore, R2-VWA, and R2-VWA-
Ig were mixed as indicated (receptor/PA ratio is 2/1) in 20 mM Tris-HCl (pH 8.5), 150 mM NaCl, 1 mM MgCl2, in the presence or absence of 10 mM
TCEP. Acidification was initiated by addition of 1/10 volume 1 M sodium acetate (pH 5.0). The samples were subjected to SDS-PAGE and stained with
Coomassie blue. B. PA prepore was incubated at 4uC with CHO-ANTXR2 cells in the presence or absence of reducing agents (10 mM DTT or TCEP as
indicated). The cells were washed to remove unbound PA, and acidification was initiated by addition of a pH 5.0 buffer into the cell cultures. After
10 min at 4uC the cells were harvested, and lysates were applied to SDS-PAGE, followed by western blotting with anti-PA antibody.
doi:10.1371/journal.pone.0010553.g004
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Ellman’s reagent (DTNB) was performed to measure the free–SH

content of R2-VWA-Ig against a series of Cys amino acid

standards (Figure 2C). The results suggested that wild type R2-

VWA-Ig contains one reactive–SH group per molecule, while the

mutant R2-VWA-Ig (C175A) has none. Therefore, the four Cys

residues within the R2-Ig domain (C230, C255, C279, and C315)

presumably form two disulfide bonds. Replacing the Cys residues

in R2-Ig with Ala residues resulted in expression of the

ectodomain in the form of inclusion bodies in E. coli (data not

shown).

Reduction of the ectodomain does not affect its ability to
bind PA

R2-VWA and R2-VWA-Ig were tested in a gel shift assay to

assess their ability to bind to PA under oxidizing and reducing

conditions. Without reducing agent, both R2-VWA and R2-

VWA-Ig bound PA, as evidenced by a shift in PA migration in

native gel electrophoresis (Figure 3). Treatment with reducing

agent did not affect binding of R2-VWA or R2-VWA-Ig to PA,

even when the treatment was initiated before incubation with PA.

TCEP-treated R2-VWA-Ig ran as a smear, suggesting formation

of heterogeneous oligomers of R2-VWA-Ig during electrophoresis,

and the complexes with PA showed a similar, smeared pattern.

The disulfide bond Cys39-Cys218 in R2-VWA had been shown

earlier not to be required for PA binding, given that a truncated

variant of R2-VWA (residues 40–217, without the disulfide bond)

had nearly identical crystal structure and affinity for PA, as wild

type R2-VWA (residues 38–218, with the disulfide bond) [18,20].

We conclude that the integrity of disulfide bonds in the R2-VWA-

Ig is not required for receptor-PA binding.

Without reducing agents the recombinant R2-VWA-Ig protein

ran as a single monodisperse peak in gel filtration and migrated as

a single band in SDS-PAGE (Figure 2A and B). However, the

protein appeared as a doublet in native gel electrophoresis

(Figure 3). The basis of this molecular heterogeneity in native

gel electrophoresis is not clear and may be related to disulfide

isomerization in R2-Ig.

Reduction does not affect formation of SDS-resistant
PA63 oligomers

Coincident with the conformational transition of heptameric

prepore to pore, triggered by acidic pH, the soluble oligomeric

PA63 prepore is transformed into an SDS-resistant form

[22,27,28], and this transformation may be used to monitor the

transition. While no SDS-resistant PA63 oligomer was observed at

pH 8.5, prepore alone, prepore complexed with R2-VWA, and

prepore complexed with R2-VWA-Ig were converted to SDS-

resistant PA63 oligomers at pH 5.0 in the presence or absence of

reducing agent (TCEP), as determined by SDS-PAGE

(Figure 4A). In addition, we tested whether reduction of disulfides

of ANTXR2 affected the conformational transition of prepore to

pore on the plasma membrane. We used an anthrax toxin

receptor-deficient CHO cell line that stably expressed ANTXR2-

EGFP (CHO-ANTXR2) [9]. PA prepore was incubated with the

cells at 4uC to minimize receptor-mediated endocytosis and

maintain PA prepore at the cell surface. Addition of acidic buffer

(pH 5.0) to the medium triggered the prepore to pore transition, as

evidenced by formation of SDS-resistant PA63 oligomers

(Figure 4B), and this transition was unaffected by DTT or

TCEP. Data in Figure 5 imply that disulfides in ANTXR2-EGFP

were in fact reduced under the conditions employed. Note that the

reducing agents had no effect on PA binding to the ANTXR2 on

the cell surface (Figure 4B).

Disulfide reduction of R2-VWA-Ig inhibits the release of
K+ through the PA pore

As a test of pore function we measured release of K+ through

PA pores formed in liposomal membranes with PA prepore bound

to R2-VWA-Ig (Figure 5A). In an earlier communication we

showed that binding of R2-VWA to the prepore inhibited

aggregation of the pore complexes in solution at low pH, and

thereby promoted partitioning of PA into liposomal membranes

and formation of ion-permeable pores [24]. Consistent with the

previous result, prepore complexed with R2-VWA (PA/R2-VWA)

induced greater release of K+ than prepore alone. In the absence

of reducing agent, prepore complexed with R2-VWA-Ig (PA/R2-

Figure 5. Disulfide reduction of R2-VWA-Ig inhibited release of
K+. A. PA prepore, R2-VWA, and R2-VWA-Ig were incubated as indicated
(receptor/PA ratio = 2/1) in 20 mM Tris-HCl (pH 8.5), 150 mM NaCl,
1 mM MgCl2, in the presence or absence of 10 mM TCEP. Release of K+

ions from KCl-charged liposomes was monitored with a K+-selective
probe in the solution. B. PA prepore (10 mg/ml) was incubated at 4uC
with CHO-ANTXR2 cells, with various concentrations of TCEP as
indicated. The cells were washed with 20 mM Tris-HCl (pH 8.0) and
150 mM NaCl to remove unbound PA, and acidification was initiated by
addition of a pH 5.0 buffer into the cell cultures at 4uC for various times.
The supernatants were collected and the content of K+ ion was
measured by the K+-selective probe and read with a pH meter as mV.
DNI, a PA dominant negative mutant that is defective in pore formation,
served as negative control.
doi:10.1371/journal.pone.0010553.g005
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VWA-Ig) released K+ to a similar level as prepore complexed with

R2-VWA. However, reducing agent significantly inhibited K+

release by PA/R2-VWA-Ig, but not by PA/R2-VWA. Note that

in the presence of TCEP, K+ release by PA/R2-VWA-Ig was even

lower than that by prepore alone. This finding indicates that

reduction of disulfide bonds in the R2-Ig domain, but not that in

R2-VWA, inhibits release of K+ through PA pore.

We also tested the effect of the reducing agents on K+ release

through PA pores formed on the plasma membrane of CHO-

ANTXR2 cells (Figure 5B). After prepore was bound to

ANTXR2 on the cell surface, acidification induced K+ release

from the cells in a time-dependent manner. DNI, a double PA

mutant (K397D, D425K) known to be strongly defective in pore

formation [29,30], failed to induce K+ release under the same

conditions. K+ release by cell-bound wild-type prepore was

inhibited by TCEP in a dose- and concentration-dependent

manner, even if the cells were treated with the reducing agent after

PA binding. Thus, disulfide reduction of the R2-Ig domain

inhibited the release of K+ through PA pore both in liposomes and

in a cellular system.

Disulfide reduction inhibits PA-mediated LFN

translocation across the plasma membrane
The effects of DTT and TCEP on K+ release through PA pore

prompted us to test effects of receptor disulfide reduction on

anthrax toxin-mediated cytotoxicity. In a previously developed

assay, PA mediates translocation of LFN-DTA, a fusion protein

composed of LF PA-binding domain and diphtheria toxin A

domain, across the endosomal membranes to the cytosol, where

LFN-DTA inhibits protein synthesis ([3H]-leucine incorporation)

[31,32]. However, this assay was hampered by the fact that the

reducing agents alone (TCEP and DTT) significantly inhibited

protein synthesis under the assay conditions used. Thus, as an

alternative we tested whether the reducing agents inhibited PA

pore-mediated LFN translocation across the plasma membrane.

We used a pronase protection assay [25,26]. Briefly, 35S-LFN is

bound to PA prepore on the cell surface, and upon exposure of the

cells to low pH, the labeled protein translocates across the plasma

membrane and becomes inaccessible to added pronase. As shown

in Figure 6, both reducing agents strongly inhibited PA-mediated

LFN translocation. Note that, without pronase, equivalent

amounts of LFN were detected in the cell lysate with or without

the reducing agents, indicating that LFN binding to PA-receptor

complexes on the cell surface was not compromised by reduction

of the receptor disulfides.

Discussion

PA binds to cell surface receptors, hijacks receptor-mediated

endocytosis pathways, and forms a protein conductive pore on the

endosomal membrane. ANTXR2 provides the toxin with a high-

affinity anchor and self-assembly site on the plasma membrane

and guides its entry into cells; and further the receptor functions as

a molecular clamp that shifts the pH threshold of prepore-to-pore

conversion to a more acidic pH, thereby preventing premature

pore formation before the toxin reaches a suitable compartment.

In the present study we have shown that reduction of the

ectodomain of the receptor blocks proper functioning of the PA

pore. This finding suggests that anthrax toxin action is sensitive to

redox conditions and raises the possibility that toxin action may be

modulated by reductants to which it is exposed during endocytosis

and intracellular trafficking.

A conserved domain search showed that the ectodomain of

ANTXR2 contains two distinct domains, R2-VWA and R2-Ig.

Based on the crystal structure of R2-VWA and measurements with

Ellman’s reagent, we predict that R2-VWA-Ig contains three

disulfide bonds—one in R2-VWA and two in R2-Ig—plus a

buried free Cys, Cys175, in R2-VWA. We found in the absence of

reducing agents that R2-VWA-Ig, like isolated R2-VWA, bound

PA (Figure 3) and enhanced the release of K+ from liposomes

(Figure 5A). R2-VWA-Ig retained the ability to bind to PA in the

presence of reducing agents (Figure 3), consistent with the fact

that the disulfide bond C39-C218 in R2-VWA is not required for

PA binding [19,20]. These data support our predicted distribution

of disulfides in the two domains and suggest that the VWA domain

behaves the same within the context of R2-VWA-Ig as it does as

an isolated domain.

We found a strong inhibitory effect of reduction of R2-VWA-Ig

on PA-mediated release of K+ from liposomes, whereas PA

binding and conversion of bound prepore to the SDS-resistant

state were insensitive to this modification. Furthermore, treatment

of CHO-ANTXR2 cells with reducing agents blocked PA-

dependent K+ release and PA-dependent translocation of LFN

across the plasma membrane. Reduction did not compromise LFN

binding to PA-receptor complexes on the cell surface, suggesting

that the inhibition of PA-dependent K+ release and translocation

Figure 6. Reducing agents inhibited PA-mediated LFN translocation across the plasma membrane. PA prepore was incubated with CHO-
ANTXR2 cells at 4uC followed by the addition of 35S-LFN to the cells. The cells were treated with 10 mM DTT or TCEP, as indicated. Translocation was
triggered by addition of a pH 5.0 buffer to the cells. The cells were either directly lysed (pronase2) or treated with pronase (pronase+) followed by
lysis. 35S-LFN was detected by autoradiography.
doi:10.1371/journal.pone.0010553.g006
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resulted directly from reduction of disulfides in cellular ANTXR2

ectodomain.

How might reduction of disulfides in R2-VWA-Ig, and

specifically in the R2-Ig domain, block pore function? Presumably

reduction relieves conformational constraints on R2-Ig that

prevent unfolding. Concurrent unfolding of the multiple copies

of R2-VWA-Ig receptor bound to prepore might allow any of

several possible inhibitory interactions. Because PA contains no

Cys residues, there is no possibility of anomalous disulfides being

formed between PA and reduced R2-VWA-Ig. However,

noncovalent interactions between reduced receptor and PA, either

during or following the conformational transition from the prepore

to the pore, could interfere with formation of functional pore or its

insertion into a membrane. Alternatively, interactions among the

several reduced receptors bound to the pore, including intermo-

lecular disulfide formation and/or noncovalent interactions, could

generate a physical barrier to insertion of the pore into the

membrane. It seems unlikely that the pore would form abortively

due to an increase in the distance between the prepore and the

membrane allowed by receptor unfolding, in view of the inhibitory

effect on K+ release from liposomes, where the assay involves

conformational transition of the R2-VWA-Ig:prepore complexes

in solution.

Current concepts of the redox potentials within intracellular

compartments support the notion that the endosomal lumen could

be either oxidizing or reducing, depending on various endocytic

pathways [33,34]. It is believed that anthrax toxin-ANTXR2

complex traffics to late endosomes, where low-pH induces

conformational transition of PA prepore-to-pore and translocation

of LF/EF to the cytosol [35,36], but which endocytic pathway

ANTXR2 mediates the trafficking and the roles of cellular redox

regulators in toxin action are not clear. The present study provides

a novel venue to investigate the mechanism of anthrax toxin action

and suggests novel strategies for anthrax toxin inhibition.
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