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In many organisms, antimicrobial peptides (AMPs) display wide activities in

innate host defense against microbial pathogens. Mammalian AMPs include the

cathelicidin and defensin families. LL37 is the only one member of the

cathelicidin family of host defense peptides expressed in humans. Since its

discovery, it has become clear that they have pleiotropic effects. In addition to

its antibacterial properties, many studies have shown that LL37 is also involved in

a wide variety of biological activities, including tissue repair, inflammatory

responses, hemotaxis, and chemokine induction. Moreover, recent studies

suggest that LL37 exhibits the intricate and contradictory effects in

promoting or inhibiting tumor growth. Indeed, an increasing amount of

evidence suggests that human LL37 including its fragments and analogs

shows anticancer effects on many kinds of cancer cell lines, although

LL37 is also involved in cancer progression. Focusing on recent information,

in this review, we explore and summarize how LL37 contributes to anticancer

effect as well as discuss the strategies to enhance delivery of this peptide and

selectivity for cancer cells.
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Introduction

As the key components of the innate host immune system, antimicrobial peptides

(AMPs) have been discovered in almost all life forms, ranging from bacteria to higher

mammals, and act as primary defense against a broad spectrum of pathogens (Jafari et al.,

2022). Mammalian AMPs include the cathelicidin and defensin families. Cathelicidins

possess a highly conserved cathelin-like prosequence and variable carboxyl-terminal

sequences that are consistent with the mature AMPs (Johansson et al., 1998). The only

member of cathelicidin identified in humans is hCAP18, which is a positively charged

antibacterial protein, with a molecular weight of 18 kDa. LL-37 is released as an active

domain of hCAP18 through extracellular cleavage mediated by proteinase-3 enzyme

(Kuroda et al., 2015a).

A number of studies have reported that LL-37 exerts a diverse range of pleiotropic

attributes including antimicrobial activities, immunity, angiogenesis, wound repair, and

bone tissue engineering (Tjabringa et al., 2003; Elssner et al., 2004; Bucki et al., 2010;
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Pfosser et al., 2010; Ramos et al., 2011; Liu et al., 2018; Mitchell

et al., 2022). However, different from its traditional roles,

emerging evidence from cancer biology studies suggests that

LL-37 might promote or inhibit tumor progression (Ren et al.,

2012; Piktel et al., 2016; Chen et al., 2018; Jiang et al., 2020; Chen

et al., 2021; Vitale et al., 2021; Kiatsurayanon et al., 2022; Zhang

et al., 2022). LL-37 plays an important and complex role in the

regulation of different human cancers. These data are beginning

to reveal the complex and contradictory functions of LL-37.

In this review, we first introduce the characteristic features of

LL-37, focusing on its anticancer effects on various human

cancers and the underlying mechanisms involved. Based on

the recent studies, we also discuss the therapeutic implications

of LL-37 as a potential anticancer drug. We believe that this

important peptide will eventually be developed into a new

anticancer drug suitable for clinical use in the future.

Characteristics and structure of LL-37

Characteristics of LL-37

Human AMPs include the cathelicidin and defensin families.

Different from other animals, there is only one cathelicidin gene

in humans (Frohm et al., 1997; Zanetti, 2005). As shown in

Figure 1, the single cathelicidin gene called CAMP located on the

human chromosome 3p21.3 encodes the human cationic

antimicrobial peptide-18 (hCAP18) which is composed of

170 amino acids (Zanetti, 2004; Dürr et al., 2006). Like most

antimicrobial peptides, hCAP18 is also produced as inactive

preproproteins. It is a major component of the azurophilic

granules of the neutrophils (Cowland et al., 1995; Sørensen

et al., 2001) and is primarily produced by bone marrow,

keratinocytes of inflamed sites, and cells of the mucosal

epithelium (Agerberth et al., 1995; Chen and Fang, 2004;

Tjabringa et al., 2005; Wolk et al., 2006). Once cell injury or

infection occurs, it can provide a trigger to activate the cell

degranulation by stimulating toll-like receptors (TLRs) and/or

altering the cytokine (Vandamme et al., 2012). Thereafter, the

inactive hCAP18 precursor protein is released from the

intracellular environment and then processed by the

proteolytic cleavage into the active LL-37 peptide (Zaiou et al.,

2003; Fahy and Wewers, 2005; Pazgier et al., 2013).

LL-37 (4.5 kDa) is an active 37-amino acid peptide. The

precursor protein pre-hCAP18 (18 kDa) is converted into

propeptide hCAP18 (16 kDa) via processing of the signaling

peptide, and then the active LL-37 peptide is produced from

the C-terminus of hCAP18 via specific serine proteases, for

instance, proteinase 3 (PR3) (Vandamme et al., 2012;

Gudmundsson et al., 1996). Its primary sequence

is LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES

(Gudmundsson et al., 1996). LL-37 is commonly found in

mucosal secretion, sweat, semen, urine, breast milk, and plasma

(Malm et al., 2000; Murakami et al., 2002; Armogida et al., 2004;

Rieg et al., 2005; Berkestedt et al., 2010; Fábián et al., 2012; Babikir

et al., 2018).

FIGURE 1
Single cathelicidin gene called CAMP located on human chromosome 3p21.3 encodes hCAP18 (A), a schematic drawing of cDNA for the
complete prepro-LL-37 (B), structure and cleavage sites of hCAP18 (C), and the amino acid sequence of the antibacterial peptide LL-37 (D). The
human cathelicidin hCAP18 consists of a signal peptide (30 amino acids), N-terminal domain (103 amino acids), and C-terminal domain (37 amino
acids). The C-terminal domain shows various activities as an active domain and is called LL-37.
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Structure of LL-37

According to previous circular dichroism (CD), Fourier

transform infrared (FT-IR) (Tossi et al., 1994; Oren et al.,

1999) spectroscopy, and NMR spectroscopy studies (Porcelli

et al., 2008; Wang, 2008; Wang et al., 2014), LL-37 possesses

a linear cationic α-helical structure which might aid to exert its

function. As shown in Figures 2A,B, the α-helical structure

spanning residues 2 to 31 with unstructured C-terminal

residues 32 to 37 consists of three parts, namely, an

N-terminal α-helix with a pair of leucine residues (LL), a

C-terminal α-helix, and a disordered C-terminal tail (residues

32–37) (Porcelli et al., 2008; Wang, 2008; Wang et al., 2019). The

C-terminal tail is mobile, while the helical region is rigid. LL-37 is

bent with a series of hydrophobic side chains, whereas its

hydrophobic surface bordered by the positively charged

residues is composed of four distinct aromatic phenylalanine

side chains that all point in the same direction (Wang, 2008;

Vandamme et al., 2012). The amphiphilic peptide with a positive

charge and net charge of +6 can facilitate an interaction with the

negatively charged molecules or structures, such as bacterial cell

walls (Wang, 2008). Similarly, LL-37 also targets and binds to the

cancer cells as the anionic phosphoryl serine is exposed on their

surface (Wu et al., 2010a). Interestingly, not only antimicrobial

but also the anticancer effect is primarily exerted by the

C-terminal helix (Li et al., 2006; Falcao et al., 2015).

Moreover, the N-terminal helix has been related to hemolytic

activity, proteolytic resistance, and chemotaxis, whereas the

disordered C-terminal tail is essential for tetramerization

(Wang, 2014). The two helices are separated by a bend or

break. Furthermore, it has been found that the

discontinuation is found on the hydrophobic surface at S9,

rather than the helix (Figures 2B,C) (Wang, 2008; Zhang

et al., 2021).

How LL-37 can eradicate/affect
cancer?

The cytotoxic effects of numerous AMPs on different tumor

cell lines have been reported previously (Cheng et al., 2020; Lee

et al., 2021; Athira et al., 2022; Jafari et al., 2022; Patil and Kunda,

2022). These AMPs contain several cationic and hydrophobic

amino acids and were found to be involved in various anticancer

activities. They were thus termed as anticancer peptides (ACPs)

(Hoskin and Ramamoorthy, 2008). ACPs can bind and kill the

cancer cells through direct or indirect mechanisms (Dennison

et al., 2006; Huang et al., 2015).

ACPs exert their biological functions in a diverse manner.

These ACPs generally contain positively charged amino acids like

lysine and arginine and possess a net positive charge ranging

from +1 to +9 at neutral pH (Habes et al., 2019; Chiangjong et al.,

2020). Moreover, as AMPs bind with bacterial membranes, ACPs

can bind directly with the cancer cell walls due to their cationic

and amphipathic nature (Ma et al., 2019). It has been established

that different from normal eukaryotic cell membranes which are

made of uncharged neutral phospholipids, sphingomyelins, and

cholesterol and are neutral in charge (Zachowski, 1993;

Doktorova et al., 2020), the surface of the cancer cells is net

negatively charged because of increased proportions of anionic

phosphatidylserine, heparan, and chondroitin sulfate

proteoglycans, O-glycosylated mucins, and sialylated

glycoproteins (Warren, 1974; Warren et al., 1979; Utsugi

et al., 1991; Zwaal et al., 2005; Calianese and Birge, 2020;

Brockhausen and Melamed, 2021; Hassan et al., 2021;

Hugonnet et al., 2021). ACPs can selectively recognize cancer

cells by electrostatic interactions with the negatively charged

phospholipids on the surface. Some ACPs tend to kill cancer cells

by causing membrane perturbation; however, some ACPs can

penetrate the target cell and disrupt the mitochondrial

membrane, thereby resulting in apoptosis (Deslouches and Di,

2017). ACPs bind to the membranes in different models,

including carpet model, surface binding non-inserted, and

perpendicular to the surface (Quemé-Peña et al., 2021). ACPs

can enter the cells through two distinct mechanisms: direct or

indirect. The former causes irreparable membrane damage,

FIGURE 2
Three-dimensional structure of human cathelicidin reveals a
helix followed by a C-terminal tail. Note the four phenylalanine
side chains lying on the concave surface of the peptide (F6, F5, F17,
and F27) (A). Sequence of LL-37. S9 is marked (B). Stick view
of the structure of LL-37 with hydrophobic and hydrophilic
residues selectively labeled. In both views, hydrophobic amino
acids are in purplish red (C). Therefore, it is evident that there is a
discontinuation of the hydrophobic surface at S9 rather than the
helices (Wang, 2008).
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followed by the cell lysis, which is non-energy dependent, and the

latter can modulate the integrity of the cancer cell membrane by

altering some intracellular pathways, thereby resulting in cell

death by apoptosis, which is energy dependent (Kumar et al.,

2018; Hilchie et al., 2019; Jafari et al., 2022).

One of the best-studied ACPs is LL-37. However,

contradictory results have been shown for LL-37 linked to

cancers in different models. The existing data indicate that

LL-37 can exert a tumorigenic effect in some cancers,

including lung cancer, breast cancer, ovarian cancer,

melanoma, prostate cancer, liver cancer, and skin squamous

cell carcinoma (Coffelt et al., 2009; Cha et al., 2016; Muñoz

et al., 2016; Wang et al., 2017; Habes et al., 2019; Jiang et al., 2020;

Ding et al., 2021; Zhang et al., 2022). Mechanistically, LL-37

activated Wnt/β-catenin signaling by inducing the

phosphorylation of protein kinase B and subsequent

phosphorylation of glycogen synthase kinase 3β mediated by

the toll-like receptor-4 expressed in lung tumor cells (Ji et al.,

2019). Furthermore, LL-37 cooperated with IL-33 to increase the

phosphorylation of p38 MAPK and NF-κB p65 pathways and

augmented IL-6 and IL-1β secretion, which resulted in the

proliferation of lung cancer cells. Sulfated glycoaminoglycans

and proteoglycan syndecan-4 increase the binding of LL-37 to

the cell surface, which promotes the migration of breast cancer

cells. In addition, via activating TRPV2 and PI3/Akt signaling,

and then inducing recruitment of TRPV2 from intracellular

vesicles to the plasma membrane of pseudopodia, LL-37

promotes proliferation and growth of breast cancer cells

(Farabaugh et al., 2016). On the contrary, it has also been

shown that LL-37 can exert anticancer effects on other

cancers, including colon cancer, glioblastoma, hematologic

malignancy, gastric cancer, and oral squamous cell carcinoma

(Aarbiou et al., 2006; Wu et al., 2010b; Bruns et al., 2015; Prevete

et al., 2015; Chen et al., 2020; Porter et al., 2021; Chernov et al.,

2022). There is no smoking gun to explain the reported opposite

effects on different cancer types. Whether and how LL-37 can

affect cancer and metastasis deserves further studies. In the next

section, our principal discussion focusses on the potential

anticancer mechanisms of LL-37.

The membranolytic mechanisms

LL-37 could directly bind and perturb efficiently zwitterionic

PC (phosphatidylcholine) and negatively charged PC/PS

(phosphatidylcholine/phosphatidylserine) phospholipid

membranes (Juba et al., 2015). The initial interaction with the

membrane is primarily brought about by various electrostatic

forces, and the correlation between the cationic charge and

biological activity is strengthened with the increasing charge

until the optimum charge for activity has been reached (Fillion

et al., 2015; Juba et al., 2015). The presence of the negatively

charged lipids such as anionic phosphatidylserine (PS) in

membranes of the cancer cells can also mediate an

electrostatic interaction with the cationic peptides (Alvares

et al., 2017; Vasquez-Montes et al., 2019). In addition to its

high net positive charge (+6) (Figure 3) that can markedly reduce

the repulsive forces via neutralization by the negative charges, the

high affinity of LL-37 for the negatively charged membranes in

light of its hydrophobic interactions between the peptide and the

membranes has been reported (Oren et al., 1999; Shai, 2002).

A number of studies (Pouny and Shai, 1992; Oren et al., 1999;

Ding et al., 2013; Wang, 2015; Lee et al., 2016; Zhao et al., 2018)

have shown that, different from other ACPs, the model of action

of LL-37 with negatively charged membranes such as the

membranes of the cancer cells is a detergent-like effect exhibited

through a “carpet-like” mechanism rather than a channel-forming

model. In contrast to the channel formation mechanism, when

bound to either zwitterionic PC or negatively charged PC/PS, LL-37

can effectively dissociate into monomers, and the hydrophobic

N-terminus of LL-37 is buried only slightly in the membrane.

Specifically (Oren et al., 1999; Shai, 2002; Lee et al., 2016;

Quemé-Peña et al., 2021), as shown in Figure 4, LL-37 reaches

and remains on the negatively charged membranes such as the

membranes of cancer cells as oligomers of different sizes;

thereafter, a change in the membrane energetics and fluidity

causes several local perturbations followed by dissociation into

the monomers. Afterward, it is bound to the surface of the

membrane, with the hydrophobic surface facing the

membrane and the hydrophilic surface facing the solvent.

FIGURE 3
Helical wheel representation of LL-37, illustrating the
amphipathic and cationic nature of LL-37. The residues are color
coded: potentially negatively charged as red, potentially positively
charged as dark blue, the hydrophobic residue is in yellow,
the polar residues are coded as light blue, and the structurally
special residues are coded as green. The helix diagram of the
polypeptide was drawnwith a ProteinORIGAMI (Reißer et al., 2018)
software package. The arrow indicates the hydrophobic surface of
the peptide.
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When the threshold concentration is reached, the peptide

monomers can easily diffuse into the membrane, cover, and

disintegrate it in a detergent-like manner through a “carpet-like”

mechanism. The overall outcome can lead to cancer cell death,

such as that reported in acute myeloid leukemia cells (Xhindoli

et al., 2014), bronchial epithelial cancer cells (Tzitzilis et al.,

2020), and human osteosarcoma cells (Bankell et al., 2021a).

The non-membranolytic mechanisms

It was originally thought that membranolytic mechanisms

were the only mechanism of action, but there is increasing

evidence now to suggest that there may be also additional or

complementary non-membranolytic mechanisms (Figure 5),

such as a receptor-mediated mechanism.

FIGURE 4
Membrane-associated mechanism for the peptide. Picture illustrating the carpet model recommended for membrane permeation. The initial
binding to the membrane interface is mediated by the electrostatic interaction. The peptide reaches the membrane in the form of a monomer or
oligomer and then binds to the membrane surface (A). When the threshold concentration of peptide monomer is reached, the membrane is
penetrated and forms instantaneous pores (B), which also leads to membrane disintegration (C).

FIGURE 5
Proposed non-membranolytic anticancer mechanism of human cathelicidin LL-37. Inhibition of proteasome activity induces the upregulation
of BMP4, which subsequently activates BMP signaling. GPCR, G protein-coupled receptor; CXCR4, CXC chemokine receptor type 4; EndoG,
endonuclease G; AIF, apoptosis-inducing factor; FPR1, formyl peptide receptor 1. BMP4, bone morphogenetic protein 4; BMPR, bone
morphogenetic protein receptor.
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G protein-coupled receptors
G protein-coupled receptors (GPCRs) are membrane-

embedded receptors that can regulate several important

biological functions. In some cancer cells (Mader et al., 2009;

Ren et al., 2012; Piktel et al., 2016), LL-37 induces characteristic

apoptotic cell death in a caspase-independent manner, such as

phosphatidylserine externalization and DNA fragmentation,

without activation of caspases. One requirement for caspase-

independent apoptosis of cancer cells is the altered activity of Bcl-

2 and p53. LL-37 has been reported to reduce the level of

antiapoptotic Bcl-2 and increase the level of pro-apoptotic

Bax/Bak (Mader et al., 2009; Ren et al., 2012; Ren et al., 2013;

Chen et al., 2020; Yang et al., 2021). LL-37 can also increase the

expression of p53 and p53-upregulated modulator of apoptosis

(PUMA) (Ren et al., 2012; Piktel et al., 2016; Chen et al., 2020).

PUMA, a direct transcriptional target of p53, is a highly efficient

pro-apoptotic protein and acts as a modulator of apoptosis in

several cancer cell lines (Han et al., 2001; Yu et al., 2001; Jeffers

et al., 2003; Yu et al., 2003; Yu and Zhang, 2003; Roufayel et al.,

2022). Another requirement for the caspase-independent

apoptosis of cancer cells is the upregulated expression and

translocation of apoptosis-inducing factor (AIF) and

endonuclease G (EndoG). After treatment with LL-37, the

nuclear levels of both AIF and EndoG are prominently

increased and translocated from the mitochondria into the

nucleus, resulting in cancer cell apoptosis that is caspase-

independent but calpain- and AIF-dependent apoptosis and

mediated via BAX activation (Mader et al., 2009; Ren et al.,

2012; Açil et al., 2018; Bankell et al., 2021b).

Nevertheless, interestingly, recent studies have suggested that

except in a caspase-independent manner, the cell apoptosis

induced by LL-37 can also occur through a caspase-dependent

manner (Açil et al., 2018; Chen et al., 2020) via the p53-Bcl-2/

BAX signaling pathway.

So, a mechanism was inferred that LL-37 can potentially

exert its apoptogenic action in a caspase-independent or

caspase-dependent manner via activating a GPCR-p53-Bax/

Bak/Bcl-2 signaling cascade to trigger AIF/EndoG-mediated

apoptosis.

Regulation of the proteasome activation via
bone morphogenetic protein signaling

The bone morphogenetic protein (BMP) signal is an

important tumor suppressive pathway involved in the process

of tumorigenesis. It is initiated via the binding of BMP ligands to

BMP receptors, which can then recruit and phosphorylate the

downstream Smad1/5/8. Thereafter, the heterodimers are formed

by phosphorylated Smads with Smad4, which can translocate

into the nucleus as transcription factors to induce the

transcription of various genes mediating the biological effects

of BMPs (Varga and Wrana, 2005). The proteasome is a

multimeric protein complex with proteolytic activity, which

can effectively upregulate the level of BMP ligands and

stimulate the phosphorylation of Smad1/5/8 (Wu et al., 2008a;

Wu et al., 2008b; Zhang et al., 2014).

The anticancer effect of LL-37 has been reported to involve

regulation of the proteasome activation via modulation of BMP

signaling (Rajkumar et al., 2005; Wu et al., 2010b; Wu et al.,

2010c). The chymotrypsin-like and caspase-like activities of 20S

proteasome have been reported to be significantly inhibited by

LL-37. The expression of BMP4 and the phosphorylation of

Smad1/5 are upregulated, and then the expression of p21Waf1 is

subsequently induced at both the protein and mRNA levels

(Rajkumar et al., 2005; Wu et al., 2010b). Furthermore, RNA

interference which can target BMP receptor II was found to

partially block the activation of the BMP signal and the inhibition

of cell proliferation induced by LL-37. Moreover, LL-37 can also

downregulate the expression level of cyclin E2 (Wu et al., 2010b).

Both p21WAF1 and cyclin E2 can regulate the cell cycle

progression by affecting the late G1 phase (Bartek and Lukas,

2001). As shown in Figure 5, the alteration of p21 and cyclin

E2 expression levels can trigger G0/G1 phase cell cycle arrest and

contribute to the antitumor effects of LL-37 (Wu et al., 2010a;

Wu et al., 2010b). Furthermore, MG-132, the proteasome

inhibitor, can produce similar effects to those of LL-37. It can

induce the BMP/p21 cascade to inhibit cell proliferation in the

gastric cancer cells. However, the inhibition of cancer cell

proliferation could not be blocked by pertussis toxin. These

findings clearly suggested that LL-37 could exert its anticancer

effects through the activation of BMP signaling via a proteasome-

dependent mechanism (Wu et al., 2010b).

LL-37 can act as an antitumor
immunostimulatory agent on the host
immune system

Immune modulation and anticancer activity are the two

different faces of the same coin. A recent study has conclusively

demonstrated that LL-37 can significantly influence immune

responses as an essential component of innate immunity (Yang

et al., 2020). Aside from the anticancer activity of LL-37, the

immunostimulatory or adjuvant effect has also been used.

CpG-oligodeoxynucleotides (CpG-ODNs), a toll-like

receptor TLR9 ligand, are employed to enhance the tumor

suppressive activity of the host immune cells in

immunotherapy (Wu et al., 2010a). It has been shown that

LL-37 can markedly enhance the perception of CpG-ODN and

then induce the proliferation and activation of the host immune

cells, such as natural killer (NK) cells, plasmacytoid dendritic

cells, and B lymphocytes. These cells can thereafter induct and

maintain antitumor immune responses and mediate tumor

destruction (Chuang et al., 2009; Büchau et al., 2010;

Hurtado and Peh, 2010).
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Furthermore, it has been shown that LL-37 can act and

expand OVA-antigen-specific CD8+ T cells in draining the

lymph nodes and the tumor microenvironment (Mader et al.,

2011a; Singh et al., 2012), which could potentially delay tumor

growth. LL-37 can also promote an anticancer immune response

via inhibiting CD25+CD4+FOXP3+T regulatory cells (Mader

et al., 2011b). Moreover, some studies have demonstrated that

intra-tumoral injections of LL-37 stimulate the innate immune

system by acting plasmacytoid dendritic cells, which can in turn

mediate tumor destruction (Dolkar et al., 2018). In fact, LL-37

has been utilized in a phase 1 clinical trial for melanoma patients

with cutaneous metastases via intra-tumoral injections. These

findings suggested that LL-37 could be employed as an antitumor

immunostimulatory agent and could provide a promising

strategy for antitumor immunotherapy.

Strategies to enhance LL-37 delivery
and selectivity for cancer cells

Since both anticancer and cytotoxic activities of LL-37 are

inhibited in human plasma, the delivery platform and

modification strategies might be needed to ensure that LL-37

can reach the tumor microenvironment and promote tumor cell

targeting, such as the use of nanoparticles and fusogenic

liposomes and the design of peptides (Wang et al., 1998;

Hilchie et al., 2019; Wang et al., 2019).

Use of nano-sized drug delivery systems

Application of nano-sized drug delivery systems can serve as

a potential strategy to improve the delivery of peptides into host

cells (Radaic et al., 2020). Nanoparticles with different structures

and materials have been examined previously to facilitate the

optimal delivery of anticancer peptides (Marverti et al., 2020;

Akkın et al., 2021; Zielińska et al., 2021). In addition to being

stable and non-toxic, the nanoparticles must be targetable in

order to facilitate directed delivery of drugs to the exact tissues or

cells (Hilchie et al., 2019). For instance, it has been reported that

LL-37 loaded onto zinc oxide nanoparticles (ZnO NP)

significantly suppressed the growth of the human lung cancer

model cell line (BEAS-2B) (DeLong et al., 2019). Moreover, LL-

37-loaded thermosensitive hydrogel nanoparticles displayed

improved antiangiogenesis and antitumor activity (Fan et al.,

2015). Moreover, it has been shown that CaP nanoparticles also

can protect LL-37 from proteolysis (Tsikourkitoudi et al., 2020).

Moreover, as reported in the literature, the anticancer activity of

LL-37 improved when loaded onto the magnetic nanoparticles

(Niemirowicz et al., 2015; Niemirowicz et al., 2017; Wnorowska

et al., 2020).

Liposomes are lipid-based nanoparticles. Hydrophobic or

hydrophilic drugs can be directly delivered into the target cancer

cells via using fusogenic liposomes without the risk of

degradation by the endocytic pathway (Malam et al., 2009;

Kube et al., 2017). The drawbacks associated with use of

liposomes include spontaneous fusion of the liposome

membranes, which can cause decreased drug payload

concentration and increase off-target toxicity (Monteiro et al.,

2018; Akbarian et al., 2020). In order to solve these problems,

nanoassemblies have been designed as an effective drug delivery

vehicle. The lipid-coated targeted nanoassembly composed of

Col@MSN@LL-(LL-37) has proved to be a successful delivery

platform (Rathnayake et al., 2020).

These findings suggested that the formulation of LL-37 with

nanoparticles could be successfully used as a potential

therapeutic strategy to enhance the delivery of LL-37 against

cancers.

Modification and alteration of the peptide

Another potential problem associated with LL-37 peptide is

that it can be easily degraded by proteolytic enzymes present in

the digestive system and blood plasma (Vlieghe et al., 2010).

Susceptibility to degradation is primarily dependent on the

peptide sequence. However, modification of the peptide and

alteration of the sequence, such as the use of D-amino acid,

sequence truncation, and modifications of C- and N-terminal,

can render it unrecognizable by the various proteolytic enzymes

and even influence the selectivity of the cancer cells as a basis for

developing alternative cancer treatment approaches (Wang et al.,

2019; Tornesello et al., 2020; Trinidad-Calderón et al., 2021). For

instance, part of the LL-37 C-terminal domain, peptide sequence:

FRKSKEKIGKEFKRIVQRIKDFLRNLV was found to display

antiproliferative effects on human squamous cell carcinoma

(Okumura et al., 2004). Moreover, a part of LL-37, KR12C:

N-KRIVKLIKKWLR-C, could promote apoptosis in human

breast cancer cells (Sengupta et al., 2018). The LL-37

fragments and analog peptides, such as FF/CAP18:

FRKSKEKIGKFFKRIVQRIFDFLRNLV, with replacements of a

glutamic acid residue and a phenylalanine at position 20,

exhibited the functions of both inhibiting proliferation and

promoting apoptosis in colon cancer (Kuroda et al., 2012;

Kuroda et al., 2015b; Kuroda et al., 2017; Hayashi et al.,

2018). Interestingly, the residues 17–32 of LL-37, abbreviated

as FK-16 (FKRIVQRIKDFLRNLV) were found to induce

apoptotic cell death and autophagy in the cancer cells, and

these effects were even superior to that of LL-37 (Li et al.,

2006; Ren et al., 2013; Zhang et al., 2019). It was observed

that these peptides containing amino acid substitutions induce

apoptosis in some specific types of cancer cells that have more

negatively charged cell membranes than those in the normal cells,

largely as compared to the original peptide. Furthermore, the

variant of LL-37, obtained by cutting out both the C-terminus

coil part and the N-terminus heparan sulfate binding region and
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replacing some positively charged amino acids with histidines,

was found to display higher affinity and generic tumor selectivity

than the original peptide (Capozzi et al., 2018). Specific positional

Q and Kmutants of LL-37 were observed to have lower hemolytic

toxicities and preserved the cell-penetrating ability of human

breast cancer cells (Kim et al., 2016).

Combinatorial applications of LL-37

Interestingly, some evidence suggests that combined treatment

using LL-37 and chemotherapy drugs can yield better results. For

example, combinatorial application of LL-37 and etoposide

exhibited significantly better antitumor effects on C6 glioma cells

(Chernov et al., 2022). Compared with CpG ODN or LL-37 alone,

the combination of LL-37 and CpG-ODN in the treatment of

ovarian cancer can produce better antitumor effects and improve

survival rates (Chuang et al., 2009). The mechanism can be

expressed as the combinational use of LL-37, and CpG-ODN

enhances the ability of human B lymphocytes and plasma-like

dendritic cells to recognize and bind to CpG oligonucleotide and

then leading to the activation of TLR-9 (Hurtado and Peh, 2010).

Furthermore, the anticancer efficacy of the LL-37 fragment peptide

analog was enhanced via linking PLGA conjugate (Mori et al.,

2021). Compared with the peptide alone, the conjugate micelles

were shown to effectively inhibit tumor cells and increase cell

permeability in colon cancer, gastric cancer, hematologic

malignancy, and oral squamous cell carcinoma. In addition,

when LL37 was genetically fused with M-CSFRJ6-1 in the

murine model, the antitumor immune response of the

M-CSFRJ6-1 DNA vaccine was also enhanced (An et al., 2005).

It suggests a possible use of LL-37 as an immune adjuvant in the

gene therapy of some types of diseases, such as leukemia, Hodgkin’s

disease, and many solid tumors. This practical approach not only

enhances the effect of traditional anticancer drugs but alsomarkedly

reduces the dosage of peptide and potential cytotoxicity.

Conclusion and future perspectives

Human cathelicidin LL-37 is an interesting peptide, which

can display multiple functional roles and has been implicated in

numerous diseases. The extensive functions of the peptide provide a

scientific basis for analyzing its potential applications. The high

interest in the therapeutic potential of this peptide originates from its

potency against targeting bacteria. However, there is an increasing

amount of evidence about the anticancer effects of LL-37. To date,

the poor bioavailability, high production cost, and potential

cytotoxicity have effectively limited the therapeutic use of LL-37.

Although a large number of studies have shown that the

anticancer effects of LL-37 have potential applications in novel

cancer treatment strategies, there remain some major challenges

that need to be overcome. Particularly, as described in this

review, the sensitivity of LL-37 varies among different cancer

types. For instance, in colon cancer, glioblastoma, hematologic

malignancy, gastric cancer, and oral squamous cell carcinoma,

LL-37 can suppress proliferation and induce autophagy as well as

apoptotic cell death via both non-membrane-based and

membrane-based mechanisms. However, in other types of

cancer, such as lung cancer, breast cancer, ovarian cancer,

melanoma, prostate cancer, liver cancer, and skin squamous

cell carcinoma, it can promote proliferation, migration, and

tumorigenesis. To date, there is still no conclusive proof to

explain the opposite effects of LL-37 on various cancer types.

Furthermore, its selectivity and toxicity are complex. It will be

very important to consider the different strategies to enhance

both delivery and selectivity of LL-37 for cancer cells.

As a milestone, a phase 1 clinical trial (NCT02225366) with

intra-tumoral injections of LL-37 for melanoma patients with

cutaneous metastases has been completed and shown significant

potency against cancer.We anticipate that research interest in the

therapeutic potential of LL-37 will continue to expand, and there

will be new discoveries in the near future. These achievements

will reignite the hope to develop this important peptide into a

novel anticancer drug suitable for clinical use.
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