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Regional thermal environment changes: Integration
of satellite data and land use/land cover

Jiayi Ren,1 Jun Yang,1,2,3,8,* Feng Wu,4,* Wei Sun,5,* Xiangming Xiao,6 and Jianhong (Cecilia) Xia7

SUMMARY

Land surface temperature (LST) is subject to location and environmental influ-
ences, which makes quantification difficult in terms of timeliness. Based on 10-d
geostationary satellite LST TCI products, we quantitatively evaluated the thermal
environment differentiation of various ground objects in North, South, and
Northwest China from 2017 to 2021. We found that the thermal condition index
(TCI) in Northwest China decreased, whereas it increased in North and South
China. In contrast, Moran’s I index increased in Northwest and South China,
with strong spatial agglomeration. The TCI for artificial surfaces decreased
from North (0.633) to Northwest (0.554) and South China (0.384). The bare
land TCI was always the lowest among the land use/land cover (LULC) types in
each region. Our results reflect the LULC thermal environment of China against
the background of new urbanization and provide theoretical support for scientific
planning to improve the ecological environment.

INTRODUCTION

Sharing responsibility for reducing carbon dioxide emissions to limit global warming to 1.5�C became a

point of contention among countries at the Working Group III meeting of the Sixth Assessment Report

of the IPCC.1,2 Carbon emissions from agriculture, forestry, and land use are highly uncertain,1 mainly

because of changes in land use/land cover (LULC) caused by human activities, such as deforestation, urban-

ization, and fragmentation of arable land.3,4 The statistical analysis of greenhouse gas emissions and

human activities in global natural systems by Yue et al.5 indicates that human emissions exert additional

pressure on regional climates and the urban thermal environment, resulting in urban heat islands (UHI)

and other problems. Luo et al.6 showed that summer heat stress in major urban agglomerations in China

has been significantly aggravated. At present, the development of China’s urbanization has changed from

the traditional pursuit of rapid growth to a focus on quality improvement.7,8 Improvements in the urban

thermal environment attract much attention, but regional differences in related achievements persist.9,10

Land surface temperature (LST) can reflect the degree of surface warming and is typically used as a param-

eter to monitor the thermal environment.11,12 With the advent of remote sensing technology, global and

long time-series image observation data can be obtained based on satellite platforms. Considerable

achievements have been made in inversion methods, spatiotemporal distribution, simulation, and predic-

tion.13–15 Zhou et al.16 and Xiang et al.17 reported that farmland could reduce LST by 0.6�Cat night.

However, most LST products are provided by polar–orbiting satellites, which perform only one or two

observations per day in the same area, and their flyby times are fixed. The lack of comprehensive surface

temperature records at all times of the day leads to a lack of comparability between products; in addition,

studies are usually limited to day and night or specific times.

This gap can be filled by incorporating LST observations from geostationary satellites.18,19 The Copernicus

Global Land Service provides global 5-km/h LST data based on a series of geostationary satellites (Meteo-

sat, GOES,MTSAT/Himawari), coveringmost of the Earth’s land surface between latitudes of 60� S to 70� N,

including hourly LST, 10–day LST daily cycle, and 10–day LST thermal condition index (TCI) products.20

These products are more advantageous for studying spatiotemporal variations in the large-scale thermal

environment. In addition, vegetation health indices have been derived from the TCI.21 TCI data calculated

based on the 10–day LST daily cycle represents the thermal degree of any given land pixel relative to its

maximum temperature range and can well reflect the environmental information under the state of the sur-

face energy balance, with a range between 0 and 121,22. Therefore, this study selected TCI composite data
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generated from August 1 to 11 of each year from 2017 to 2021. Such timeliness data can comprehensively

reflect the characteristics of the thermal environment.

To date, the UHI effect has widely been studied in many cities worldwide, but its causes differ.22–24 In most

cities, the UHI effect is more obvious in summer than in winter.25–27 Studies on the driving factors have

mainly focused on LULC, landscape patterns, human activities, meteorological conditions, and geograph-

ical location.28–30 In terms of LULC, studies have found that green land and water can alleviate the UHI ef-

fect, whereas bare soil can increase LST.31–33 The degree of fragmentation of ground object patches and

the degree of distribution dispersion have different effects on LST in a region and its surrounding areas.34,35

The urban agglomeration effect should be considered in thermal environment research, as air pollution

and the urban climate have cross–regional mobility.36 It is thus necessary to explore LULC and thermal envi-

ronment response patterns on a large scale.37 The current classification of key landscapes affecting the

thermal environment and considering regional effects is relatively vague, and other land types comprising

vegetation (e.g., cultivated land, forest, or grass) are seldom considered.

Studies have shown that China (73�330–135�050 E, 3�510–53�330 N) is one of the countries experiencing most

extreme heat conditions, and decreasing trends have been found in the frequency of cool days.38 Luo

et al.39 found that large contiguous heatwaves in China showed different characteristics in different

geographical locations. Moreover, the temperature difference was considerably large between North

and South China in winter, whereas it was relatively small in summer. To avoid the excessive influence of

solar radiation, we selected summer as the study period. In addition, with the continuous strengthening

of the social economy, China’s urbanization is shifting from a stage of rapid development to a stage of

deepening development, so that the population will inhabit cities having a good developmental founda-

tion and strong carrying capacities, likely leading to the emersion of new cities.10,40 Considering data

validity, we selected 55 cities in North China, 74 cities in South China, and 24 cities in Northwest China

to measure spatial–temporal changes in the thermal environment in the past five years and quantitatively

analyze differentiation rules for the LULC thermal environment.

RESULTS

Land utilization type

The LULC data were visualized based on the vector boundary of the study area, and the spatial distribution

of each region in China was obtained (Figure 1A). Overall, vegetation (cultivated land, forest, and

Figure 1. Spatial distribution of land use/land cover (LULC) types in North, Northwest and South China

(A) Spatial distribution of land use/land cover (LULC) types in different regions.

(B) Percentage of land use/land cover (LULC) in different regions.

(C) Proportions of land use/land cover (LULC) types in different regions.
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grassland) covered the largest area. Forests in South China accounted for 44%, followed by cultivated land,

which accounted for 40%. In North China, 46% of the land was grassland and 32% was forest, whereas the

LULC types in Northwest China were grassland and bare land, accounting for 43 and 42%, respectively.

Furthermore, on a large scale, the area covered by artificial surfaces was relatively low, accounting for

only 6% in both North and South China, and only 1% in Northwest China (Figure 1B). Industrial cities in

North China have a long history, with 53% of the land comprising artificial surfaces (Figure 1C), with 38%

of the artificial surfaces located in South China in a concentrated spatial distribution. Wetlands and water

bodies were usually located close to the vegetation. Shrublands were mostly found in cities, whereas per-

manent snow and ice were only found in Northwest China (only 1%).

Temporal and spatial characteristics of the thermal environment

Spatial–temporal distribution

Based on the urban boundaries of the study area, the TCI data were statistically divided into different areas,

and the statistical method employed was considering the average (TCImean). As shown in Figure 2, the TCI

showed significant spatial and temporal heterogeneity from 2017 to 2021. Spatially, the TCI was lower in

most cities in North and Northwest China, and relatively higher in South China, whereas this feature

changed over time. Figures 3A–3C shows TCImean threshold and average values. The averages of the na-

tional TCImean in 2017, 2018, 2019, 2020, and 2021 were 0.535, 0.524, 0.593, 0.569, and 0.695, respectively.

In terms of the average (Figure 3C), TCImean in Northwest China showed a decreasing trend from 0.537 in

2017 to 0.396 in 2021. Notably, TCImean in North China increased from 0.576 in 2017 to 0.773 in 2021, espe-

cially in Northeast China and Beijing-Tianjin-Hebei urban agglomeration. By 2021, TCImean was overall

higher in the eastern region. In South China, TCImean decreased to 0.494 in 2020, but increased significantly

to 0.734 by 2021.

Figure 4 shows the percentage stack diagram of TCImean values for cities. For cities in South China (Fig-

ure 4A), the TCImean values mostly remained stable from 2017 to 2020, whereas the urban agglomeration

in the middle and lower reaches of the Yangtze River significantly decreased in 2020. In 2021, TCImean

increased significantly, with most cities (47/74) reaching values above 0.7; the highest values were 0.984

Figure 2. Spatial and temporal distribution of TCImean in different years
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(Suzhou), 0.978 (Shaoxing), and 0.962 (Bozhou). The TCImean values of cities in North China (Figure 4B)

differed greatly and were generally low in 2017 and 2018, then substantially increased in 2019, and

decreased again in 2020. On the contrary, TCImean in cities in Northwest China (Figure 4C) was generally

higher in 2017 and lower in 2021.

Spatial autocorrelation analysis

The global Moran index was calculated using the ArcGIS 10.7 spatial statistical tool. In this study, two def-

initions of spatial relations of specified elements were selected: Inverse–Distance (Figure 5A) and Contigu-

ity–Edges–Corners (Figure 5B). Inverse–Distance indicates that compared with distant factors, adjacent

factors have a greater influence on the target factors. Contiguity–Edges–Corners indicates that the shared

boundary, node, or overlapping surface elements affect the calculation of the target surface elements. The

results showed that in most cases, the p-value was less than 0.01, and the Z score was greater than 2.58,

indicating that TCImean was not randomly distributed, with 99% confidence. The overall performance of

Moran’s I index in Northwest and South China increased, among which Northwest China showed an

obvious spatial agglomeration in 2019, and Moran’s I index was above 0.5 (Inverse–Distance was 0.531

and Contiguity–Edges–Corners was 0.594). In South China, Moran’s I index was relatively high, with a

strong spatial agglomeration, reaching its highest value in 2020 (Inverse-Distance) and 2021 (Contiguity–

Edges–Corners), with values of 0.691 and 0.628, respectively. For North China, Moran’s I calculated in

the Inverse-Distance mode was lower than that in the Contiguity–Edges–Corners mode, but both showed

an increasing trend after decreasing to the lowest value (0.267) in 2019, with values of 0.638 and 0.527 in

2017 and 2021, respectively (Contiguity–Edges–Corners).

Local spatial autocorrelation analysis showed the relationship between the thermal environment in a

certain area and neighboring areas, as shown in Figure 6. There were many spatially independent cities

in Northwest China. The cities in North China were mainly of the High–High aggregation type, and the Bei-

jing–Tianjin–Hebei region was of the High–Low aggregation type between 2018 and 2020 (Figures 6B–6D),

which is consistent with the spatial distribution shown in Figure 4. The overall urban thermal environment in

South China was more concentrated in space. Here, cities in the middle and lower reaches of the Yangtze

River showed Low–Low clustering patterns in 2019 and 2020 (Figures 6C and 6D) and High–High clustering

patterns in 2017 (Figure 6A) and 2021 (Figure 6E). Due to the small number of selected cities and the large

urban spacing, the spatial agglomeration of the TCI in Northwest China was not significant.

Response model of the thermal environment and LULC

Based on the LULC raster, the TCI data were partitioned for statistics, and TCImean values for each ground

object type were obtained, as shown in Table 1. The TCI value represents the thermal degree at the pixel

level relative to its maximum temperature range, which can reflect the health status of the vegetation to a

certain extent.41 Overall, the average TCI of forests in Northwest and North China was the highest, at 0.745

and 0.776, respectively. Other vegetation types also showed spatial differences (for example, the TCI of

grassland was 0.471 in Northwest China but 0.634 in South China, whereas shrubland reached values of

0.740 in South China but 0.546 in North China). The TCI of artificial surfaces decreased from North

Figure 3. TCImean zoning statistics based on the cities

TCImean: Mean values of the thermal condition index obtained by partition statistics.
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(0.633) to Northwest (0.554) and South China (0.384). The TCI of bare land was always the lowest among the

terrain types in each region, and the TCI of water bodies in Northwest China (0.503) and North China (0.560)

was higher than that in South China (0.395). Although the original raster data revealed the TCI differences of

many ground object types, in some cases pixel values were missing or LULC values zero. Therefore, we

created a 535-km grid tomatch the spatial resolution of synchronous satellite data according to the admin-

istrative boundaries of the research area, which was spatially linked to the LULC and TCI data. The majority

method was used to determine the cell value as the most common value among all pixels in the area, and

then, the assigned cell was obtained after removing null values and outliers. Finally, the number of cells in

Northwest China was 75639, that in North China was 67567, and that in South China was 52232. The numer-

ical distribution characteristics of the TCI were studied based on the grid, and the results are shown in

Figure 7.

The median value has the advantage of not being affected by large or small amounts of data and is more

representative of the whole dataset. The average TCI based on the grid was mostly lower than the median,

except for some land features in South China, such as cultivated land (TCIMean = 0.465, TCIMedian = 0.426),

shrubland (TCIMean = 0.211, TCIMedian = 0.191), water bodies (TCIMean = 0.403, TCIMedian = 0.394), and arti-

ficial surfaces (TCIMean = 0.329, TCIMedian = 0.266). The TCI value distribution of LULC in South China (Fig-

ure 7C) significantly differed from that in Northwest and North China (Figures 7A and 7B), with cultivated

land, shrubland, and shrubland being the most significant. The TCI of surface objects of various vegetation

types was generally higher than that of artificial surfaces and bare land. Based on Figures 1 and 2D, vege-

tation health played an important role in the urban thermal environment, whereas water bodies had similar

but weaker effects than vegetation.

DISCUSSION

Chen et al.42 reported that half a degree plays a crucial role in reducing and delaying global land exposure

to hot extremes. The regional thermal environment is complex in space and time and profoundly affects the

Figure 4. Stacked bar chart of TCImean values for every city from 2017 to 2021

(A) Stacked bar chart of TCImean values for cities in South China.

(B) Stacked bar chart of TCImean values for cities in North China.

(C) Stacked bar chart of TCImean values for cities in Northwest China.
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comfort level of human settlements and sustainable development.40,43 Based on 10–day LST TCI compos-

ite products provided by synchronous satellites, we used geographical information system spatial analysis

and quantitative remote sensing technology to explore the spatial–temporal distribution and spatial auto-

correlation of the regional thermal environment during summer in China over a period of five years. More-

over, LULC data were combined to analyze the thermal differentiation of various ground objects in different

regions, reflecting the thermal environment of China’s evolving land use to provide theoretical support for

scientific planning to improve the ecological environment.

Selection of geostationary satellite data

Most studies retrieve LST data from polar-orbiting satellite data, but the study scale can affect the results.

For example, Alavipanah et al.44 compared LST differences between MODIS and INSAT-3D data at high

temperature. Goldblatt et al.45 reported that Landsat-5,- 7, and -8 data are suitable for studying the mi-

cro-scale LST. Yang et al.46 used Landsat 8 data to analyze the correlation between urban wind and LST

at grid scale. The grid in that study was increased from 25 3 25 m to 150 3 150 m with a step size of

25 m, and the authors found that the larger the scale, the weaker the correlation. However, the LST changes

with time, and remote sensing data obtained by polar-orbiting satellites have a low temporal resolution,

which is not conducive to reflect the urban thermal environment under normal circumstances.

In addition, existing thermal environment assessment procedures are limited to simple (mainly two–param-

eter) index construction in areas such as public meteorological services, preventive planning, urban design,

and climate change.47,48 Some studies reflect the urban thermal environment quality by simulating outdoor

thermal comfort.49,50 ISB Commission 6 has built the universal thermal climate index (UTCI) based on the

most advanced multi–node temperature regulation model, which is an important step forward in incorpo-

rating air temperature, wind, and humidity while considering of the urban thermal environment and living

comfort.48

We performed comprehensive investigations to understand differences in the thermal environment of

various LULC types from a large–scale perspective. We thus selected TCI data calculated via 10-day LST

daily cycle products provided by geostationary satellites. The product is suitable for applications that

do not require attention to daily changes in LST over a short period, or where LST daily cycles do not require

gaps arising because of cloud cover and have outliers removed.51,52 Because data averages are sensitive to

outliers, this product provides the median LST rather than the average LST, providing a better representa-

tion of the state of the thermal environment during the study period.

Spatial autocorrelation of the urban thermal environment

Guo et al.53 studied the thermal environment based on community level and reported that the global auto-

correlation Moran’s I value of LST exceeded 0.7, with a strong positive spatial correlation. In this study, the

spatial and temporal distribution of the TCI was obtained using the zoning statistical method. Figure 4

shows the distribution of TCImean for all cities classified by region. Overall, TCImean values in Northwest

Figure 5. Distribution of Moran’s I values

(A) Moran’s I calculated based on Inverse–Distance.

(B) Moran’s I calculated based on Contiguity–Edges–Corners.
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China were lower than those in Eastern China, but they changed dynamically. The TCImean values of some

cities in Northwest China were higher in 2017 (e.g., Jiayuguan, Jiuquan, Wuzhong) and lower in 2021 (e.g.,

Jiayuguan, Yulin, Yan’an and Xifeng). Figures 5 and 6 show that the TCI had a certain spatial correlation,

with Z = 1.155, p = 0.248 (Inverse–Distance), and p = 0.559 (Contiguity–Edges–Corners) in 2017 and Z =

2.240 and p = 0.025 (Contiguity–Edges–Corners) in 2018 for Northwest China. The spatial correlation of

these data could not be explained.

Figure 6. Results of local autocorrelation analysis of TCImean from 2017 to 2021

(A) Local autocorrelation in 2017.

(B) Local autocorrelation in 2018.

(C) Local autocorrelation in 2019.

(D) Local autocorrelation in 2020.

(E) Local autocorrelation in 2021.

Table 1. Partition statistics for TCI based on LULC

Northwest North South

Mean STD Mean STD Mean STD

Cultivated Land 0.676 0.281 0.699 0.267 0.501 0.336

Forest 0.745 0.214 0.776 0.227 0.668 0.312

Grass Land 0.471 0.314 0.585 0.266 0.634 0.327

Shrubland 0.553 0.326 0.546 0.243 0.740 0.294

Wetland 0.390 0.304 0.656 0.243 0.437 0.290

Water Body 0.503 0.315 0.560 0.265 0.395 0.286

Artificial Surfaces 0.554 0.290 0.633 0.293 0.384 0.334

Bare land 0.273 0.212 0.345 0.209 0.347 0.205

Permanent Snow and Ice 0.540 0.338 – – – –
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Differentiation of the LULC thermal environment

The rapid transformation of urban land significantly affects the characteristics of the ecosystem and ther-

mal environment, and previous studies showed that the most important factors leading to differences in

UHI were the transformation of man–made land cover and natural land cover, landscape configuration,

and anthropogenic heat release.54,55 Urban high-temperature areas are related to impervious water sur-

faces, whereas minimum temperatures are related to vegetation cover and water bodies.56–58 Feng

et al.59 discussed the influence of landscape composition, morphology, and space layout and the internal

LST on environmental temperature and cooling rate. They found that the more complex the patch shape

(vegetation and water bodies) and the more scattered the layout, the lower the internal temperature, the

greater the impact on the surrounding area, and the greater the cooling rate. Based on these previous

results, we first discussed the spatial distribution pattern of LULC, and then conducted zoning statistics

on this distribution and the TCI on the city and grid levels. We found that the LULC TCI differed at

different scales. At the regional scale, the TCI difference between forest (highest value) and bare land

(lowest value) was 0.472 in Northwest China, whereas that difference was 0.431 in North China. The

TCI difference between the shrubland (highest value) and bare land (lowest value) in South China

was 0.393.

Figure 7. Grid-based land use land cover (LULC) and TCI numerical distribution boxline plot

(Boxes represent 25–75% values, whisker lines represent interquartile range as IQR, horizontal lines represent median values, and rectangles represent mean

values).

(A) Numerical distribution of LULC and TCI in Northwest China.

(B) Numerical distribution of LULC and TCI in North China.

(C) Numerical distribution of LULC and TCI in South China.

Figure 8. Difference between TCILULC and TCIArtificial Surfaces values
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With the expansion of central urban areas and the agglomeration of towns, impervious surface areas have

replaced natural surfaces. Tran et al.60 demonstrated the warming effect of urban sprawl, and showed that

a 1% increase in urban areas will increase the LST by 0.075�C–0.108�C. In addition, more than 81% of imper-

vious surfaces have been labeled as heat sources, whereas vegetation and water function as heat sinks.61

Figure 8 shows the TCI differences between various ground objects and artificial surfaces. The values for

cultivated land and forest were generally higher. Grassland and shrubland in Southern China showed

the highest values for artificial surfaces. The cooling effect of water bodies is related to their spatial

form, connectivity, and area.62,63 Our results indicated that there was little difference between the TCI of

water bodies and artificial surfaces, which was related to the low aggregation degree and small area of ur-

ban water bodies at a large scale.

In recent years, China has made remarkable achievements in afforestation programs, such as the ‘‘Three-

North Shelterbel,’’ ‘‘Return of farmland to forest,’’ and ‘‘Control of sand sources in Beijing and Tianjin’’ pro-

jects. Surveys have shown that artificial afforestation has long been the largest in the world. From 2000 to

2018, China’s forest area increased by 45 million km,2 an increase of 26.90%.64 China’s new urbanization

focus has not only effectively reduced pollution emissions and improved energy efficiency but has also en-

tailed great ecological effects.65,66 The results of this study showed that the TCI of vegetation was usually

higher than that of impervious water surfaces and bare land, and the spatiotemporal heterogeneity of the

TCI was closely related to LULC. From a macro point of view, TCImean has been increasing in most Chinese

cities in the last five years, especially in Northeast China, implying that the urban thermal environment has

improved. Simultaneously, urbanization is necessary to promote social progress, and the Chinese govern-

ment regards sustainable urbanization as an engine of modernization and economic growth.67,68 There-

fore, a new urbanization mode should actively be explored for LULC based on the comfort of living, namely

intensive, efficient, urban–rural integration, harmonious, and sustainable urbanization.

Limitations of the study

We could not calculate the TCI value based on the selected synchronous satellite data when the effective

LST value was extremely small; therefore, some pixel values weremissing. In the future, thesemissing pixels

can be filled using polar-orbiting satellite data (e.g., Landsat 8 andMODIS) from similar periods, as they are

suitable for small-scale studies.44,45 The median 10–day maximum LST values used in the TCI calculations

corresponded to the time range between local noon and 1 h and local noon +2 h during synthesis, because

the maximum LST values tend to occur after noon, and the local noon is determined by the time the zenith

angle of the Sun reaches its minimum for a particular day. The presence of an unavailable LST data during

such a time frame implies a missing TCI value, and the LULC data of this study were from 2020. Based on

these data, the differentiation for LULC and TCI was studied. The seasonal or interannual characteristics of

this differentiation should be studied further in the future.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Jun Yang (yangjun8@mail.neu.edu.cn).

Materials availability

This study did not generate new unique materials.

Data and code availability

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

METHOD DETAILS

Data

The diurnal cycle characteristics of LST can help in understanding the comprehensive change in the thermal

environment and its potential mechanism, which is of great value for urban planning and assessment of

urban thermal risk and vulnerability. The TCI data used in this study are calculated from the LST of the

geostationary satellite, as shown in key resources table. LULC data contains 10 first–level class types

(10–cultivated land, 20–forest, 30–grass land, 40–shrubland, 50–wetland, 60–water body, 70–tundra,

80–artificial surfaces, 90–bare land, and 100–permanent snow and ice). The LULC in the study area was ex-

tracted using the vector boundary. Simultaneously, the land use patterns of the second class were com-

bined into the first class, and the land use types in Northwest, North, and South China were summarized

and analyzed.

Moran’s I calculation

The urban climate has cross–regional mobility, and the thermal environment of a certain area affects

the surrounding area. In this study, spatial autocorrelation statistics were used to explore the

correlation between the thermal environment and different spatial locations. The global Moran’s I index

can reflect the autocorrelation mode of the thermal environment in the entire research area, and the local

Moran’s I index can be used to obtain the correlation degree of each spatial unit and its neighboring

units.69,70

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

GEO 10–day LST TCI https://land.copernicus.eu/

global/products/lst

The 10–day TCI is calculated based on the 10–day LST product:

TCI =
½LSTMax �Max � LST10DayMax

½LSTMax �Max � ½LSTMax �Min

LST10DayMax is the median LST at noon sun height over a 10–day

period,½LSTMax �Max and½LSTMax �Min are the extreme value

of the maximum LST per pixel at local noon.

N/A

Globe Land 30

Ministry of Natural Resources of the

People’s Republic of China

Coordinate system: WGS–84

Resolution: 30 m

Accuracy: 85.72%

A total of 53 Chinese regional images are

selected and used after image fusion and sampling.

N/A

Meteorological data Source: rp5.ru N/A

Boundary datasets Source: https://www.resdc.cn/ N/A
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The global Moran’s I exponent was calculated as follows:

Moran0s I =

Pn

i = 1

Pn

j = 1

wijðxi � xÞ�xj � x
�

S2 Pn

i = 1

Pn

j = 1

wij

(Equation 1)

Standardized index:

Za =
I � EðIÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðIÞp (Equation 2)

The local Moran’s I exponent was calculated as follows:

Ii =
ðxi � xÞ

S2

X

j

wij

�
xj � x

�
(Equation 3)

S2 =
1

n

Xn

i = 1

ðxi � xÞ2 (Equation 4)

x =
1

n

Xn

i = 1

xi (Equation 5)

The Moran’s I index ranged from �1 to 1. When Moran’s I> 0, it indicates that the data presents a spatial

positive correlation, and the larger the value, the more obvious the spatial correlation. When Moran’s I< 0,

it means that the data present a negative spatial correlation, and the smaller the value, the greater the

spatial difference. When the Moran’s I was 0, the space was randomly distributed.

Simultaneously, the P-value and Z scores should be combined to determine the degree of spatial correla-

tion. The P-value represents the probability. When P is very small, the spatial pattern of the factor is unlikely

to be generated by a random process. The Z-score represents the standard deviation multiple and can

reflect the degree of dispersion of a dataset. If p < 0.01 and Z > 2.58, it indicates that the data have 99%

confidence in the agglomeration distribution. If p < 0.01 and Z <�2.58, it is 99% certain that the distribution

is discrete.

Statistical analysis

In this study, the response modes of LULC and TCI were explored in two ways: city and grid modes. First,

the spatial and temporal distribution of TCI and LULC raster data at the urban scale was obtained using the

urban vector boundary. Second, the Create Fishnet tool of ArcGIS 10.7 was used to create a 53 5 kmgrid as

a spatial range, and the TCI value distribution of LULC under the faceted grid were explored through

statistical analysis to ensure the reliability of the study.
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