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Background. Minichromosome maintenance (MCM) genes are crucial for genomic DNA replication and are important
biomarkers in tumor biology. In this study, we aimed to identify the diagnostic, therapeutic, and prognostic value of the
MCM2–10 genes in patients with lung cancer. Methods. We examined the expression levels, gene networks, and protein
networks of lung cancer using data from the ONCOMINE, GeneMANIA, and STRING databases. We conducted a functional
enrichment analysis of MCM2–10 using the clusterProfiler package using TCGA data. The correlation between the MCM2–10
expression and lung cancer prognosis was evaluated using Cox regression analysis. The influence of clinical variables on overall
survival (OS) was evaluated using univariate and multivariate analyses. The TIMER database was used to evaluate the
correlation between tumor infiltrating levels and lung cancer. Kaplan–Meier Plotter pan-cancer RNA sequencing was used to
estimate the correlation between the MCM5 expression and OS in different immune cell subgroups in patients with lung
adenocarcinoma (LUAD). Finally, the 1-, 3-, and 5-year predictions of LUAD were performed using nomogram and
calibration analysis. Results. The expression of MCM2, 3, 4, 5, 6, 7, 8, and 10 in lung cancer was higher than that for normal
samples. The MCM5 expression was associated with poor OS in patients with LUAD, and prognosis was related to TNM stage,
smoking status, and pathological stage. The MCM5 expression is correlated with immune invasion in LUAD and may affect
prognosis due to immune infiltration. Conclusion. MCM5 may serve as a molecular biomarker for LUAD prognosis.

1. Introduction

Lung cancer is the leading cause of cancer-related morbidity
and mortality worldwide [1]. Numerous studies have
evaluated therapeutic approaches for reducing mortality
rates in patients with lung adenocarcinoma (LUAD) [2];
however, the 5-year survival rate of patients with lung cancer
from 2009 to 2015 was only 19% [3]. Further studies are
required to identify accurate and promising prognostic
biomarkers and efficient therapeutic targets to enhance
survival rates in patients with lung cancer and to guide
customized treatments [4].

The minichromosome maintenance (MCM) gene family
plays key roles in DNA replication and cell cycle progression
[5]. DNA replication errors can lead to tumorigenesis [6].
MCM family proteins are involved in the occurrence and
development of cancer [7]. Indeed, several studies have
shown that MCM proteins are highly expressed in various
cancers, including pancreatic ductal adenocarcinoma [8],
hepatocellular carcinoma [9], and colorectal cancer [10]
and can be used as molecular markers for diagnosis and
prognosis. Teresita et al. suggested that the progression of
precancerous lung disease to carcinoma in situ is enhanced
in MCM2-overexpressing cells [11]. MCM3 is involved in
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the carcinogenesis of multiple cancers [12] and is associated
with the development of LUAD [13]. Yi et al. identified
MCM4 as a potential lung cancer driver gene and demon-
strated that MCM4 upregulation is associated with poorer
survival in patients with lung cancer [14]. MCM6 levels are
higher in primary lung tumors with both FHIT and p53
inactivation [15]. MCM7 is involved in tumor formation,
progression, malignant transformation, and prognosis [16]
and can be used as a potential biomarker for the poor prog-
nosis of non-small-cell lung cancer [17]. MCM9 is an outlier
within the MCM family, containing a long C-terminal
extension comprising 42% of the total length, but with no
known functional components and high predicted disorder
[18]. MCM10 acts as an oncogene that promotes the
progression of hepatocellular carcinoma [19]. However, a
correlation between the MCM2–10 gene expression and
immune infiltration in lung cancer has rarely been reported.

Accordingly, in this study, bioinformatic methods were
used to analyze online public databases to assess the
expression of MCM2–10 genes in patients with lung can-
cer and the relationship between this expression and
tumor prognosis. Our findings may contribute to the

screening, diagnosis, treatment, and prognosis of patients
with lung cancer.

2. Materials and Methods

2.1. ONCOMINE and the Cancer Genome Atlas (TCGA).
ONCOMINE (http://www.oncomine.org/) is a tumor
microarray database with functions for differential gene
expression analysis, correlation analysis between gene
expression and clinical features, prognostic analysis, and
multigene coexpression analysis [20, 21]. The differential
expression of MCM2–10 in lung cancer was measured using
Student’s t-test (p < 0:01, fold change: 1.5, gene rank: 10%,
data type: mRNA). We used paired sample t-test analysis
TCGA (https://portal.gdc.cancer.gov/) LUADLUSC (lung
cancer) [22] in the project level 3 HTSeq-RNAseq FPKM
format data to assess target genes in lung cancer and normal
tissues (ns, p ≥ 0:05; ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001).

2.2. Networks of MCM2–10 Interacting Genes and Proteins.
GeneMANIA (http://www.genemania.org) is useful for pre-
dicting the function of MCM2–10. The STRING database
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Figure 1: The mRNA expression of MCM2-10 in 20 kinds of cancer (ONCOMINE). MCM2-8 and MCM10 were highly expressed in lung
cancer. The difference was compared by Students’ t-test, p value: 0.01, fold change: 1.5, gene rank: 10%, data type: mRNA. Red represents
high expression, and blue represents low expression.
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(version 11.5; https://string-db.org/) was used to determine
the protein-protein interactions of MCM2–10 [23].

2.3. Functional Enrichment and KEGG Pathway Analysis of
MCM2–10. Gene Ontology (GO) functional annotation
was performed using biological processes (BP), cellular com-
ponents (CC), and molecular functions (MF). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) (https://
www.kegg.jp/kegg/) pathway is useful for understanding
molecular interactions, reactions, genetic information
processing, environmental information processing, cellular
processes, and human diseases. The following R packages
were used: clusterProfiler package (version 3.14.3) for GO
and KEGG enrichment analyses and ggplot2 package (ver-
sion 3.3.3) for visualization [24].

2.4. cBioPortal for Cancer Genomics. The cBio Cancer Geno-
mics Portal (cBioPortal; http://cbioportal.org) utilizes data
from more than 5,000 tumor samples from 20 cancer studies
to provide a web resource for exploring, visualizing, and
analyzing multidimensional cancer genomics data [25]. We
investigated Pan Lung Cancer (TCGA, Nat Genet 2016)
[26] data to explore genetic alterations in MCM2–10.

2.5. The Prognostic Value of MCMs in Patients with Lung
Cancer. The correlation between the MCM2–10 expression
and lung cancer prognosis was evaluated by Cox regression
analysis of TCGA data [27], the survminer package (version
0.4.9) for visualization, and the survival package (version
3.2-10) for statistical analysis of survival data. The influence
of the clinical variables on overall survival (OS) was
evaluated using univariate and multivariate analyses.
Kaplan–Meier Plotter pan-cancer RNA-sequencing (RNA-
seq) [28] was used to estimate the correlation between the
MCM5 expression and OS in different immune cell sub-
groups of patients with LUAD. Clinical variables (smoking
status, pathological stage, primary therapy outcome, and
MCM5 expression) were analyzed using the rms package
(version 6.2-0) and survival package (version 3.2-10) to
predict the 1-, 3-, and 5-year OS of patients with LUAD.

2.6. Intergroup Comparison of the MCM5 Gene Expression
and Tumor Clinical Variables. The Wilcoxon rank-sum test
was used to compare the tumor and normal lung tissue
groups. The Kruskal–Wallis test was used for intergroup
comparison of TNM stage, pathological stage, sex, age,
smoking status, primary therapy outcome, and overall

Table 1: The mRNA expression of MCM2-10 was significantly expressed in lung cancer (ONCOMINE).

Type of lung cancer vs. normal Fold change p value t-test Ref

MCM2

Lung adenocarcinoma
Lung adenocarcinoma

Squamous cell lung carcinoma
Squamous cell lung carcinoma

1.993
3.251
6.171
2.204

7.61E-17
3.46E-13
1.99E-05
1.13E-11

10.52
9.295
12.132
8.803

Landi et al. [37]
Hou et al. [33]
Wachi et al. [39]
Talbot et al. [51]

MCM3

Lung adenocarcinoma
Lung adenocarcinoma

Squamous cell lung carcinoma
Squamous cell lung carcinoma

1.617
1.047
1.653
2.387

4.13E-16
3.39E-07
1.33E-10
8.85E-05

9.920
5.093
7.742
4.773

Selamat et al. [34]
TCGA

Talbot et al. [51]
Garber et al. [36]

MCM4

Lung adenocarcinoma
Lung adenocarcinoma
Lung adenocarcinoma
Lung adenocarcinoma

Squamous cell lung carcinoma
Squamous cell lung carcinoma

2.403
2.649
1.668
1.100
3.108
1.101

8.50E-19
7.09E-10
6.17E-12
3.68E-16
4.84E-07
1.12E-22

11.190
8.123
8.670
8.605
8.298
10.441

Landi et al. [37]
Su et al. [35]

Okayama et al. [38]
TCGA

Garber et al. [36]
TCGA

MCM5

Lung adenocarcinoma
Lung adenocarcinoma

Squamous cell lung carcinoma
Squamous cell lung carcinoma

1.810
1.367
4.682
1.072

4.58E-06
4.16E-06
7.91E-07
7.43E-15

5.433
5.442
5.941
8.033

Garber et al. [36]
Beer et al. [52]

Bhattacharjee et al. [40]
TCGA

MCM6
Lung adenocarcinoma

Squamous cell lung carcinoma
Squamous cell lung carcinoma

1.797
2.650
1.023

2.63E-12
6.05E-17
5.34E-05

8.130
12.633
3.920

Selamat et al. [34]
Hou et al. [33]

TCGA

MCM7
Lung adenocarcinoma

Squamous cell lung carcinoma
1.628
2.691

2.08E-10
5.94E-15

7.057
13.573

Landi et al. [37]
Hou et al. [33]

MCM8
Lung adenocarcinoma
Lung adenocarcinoma

Squamous cell lung carcinoma

1.322
1.431
3.587

6.39E-12
3.51E-08
6.27E-12

8.202
6.860
10.719

Selamat et al. [34]
Okayama et al. [38]

Hou et al. [33]

MCM9 NA

MCM10
Lung adenocarcinoma

Squamous cell lung carcinoma
1.733
4.099

5.36E-14
4.06E-16

9.601
14.598

Selamat et al. [34]
Hou et al. [33]
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Figure 2: Continued.
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survival (OS), progression free interval (PFI), and disease
free survival (DSS) events (ns, p ≥ 0:05; ∗p < 0:05; ∗∗p <
0:01; ∗∗∗p < 0:001).

2.7. Tumor Immune Estimation Resource (TIMER). TIMER
(https://cistrome.shinyapps.io/timer/) was used to evaluate
the correlation between tumor-infiltrating levels in lung
cancer and alterations of different somatic copy numbers
in MCM5 [29, 30]. The correlation between the MCM5
expression and six immune infiltrates (B cells, CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, and dendritic cells
[DCs]) was estimated using the TIMER algorithm. The
sGSVA package (version 1.34.0) [31] and Spearman correla-
tion analysis were applied to correlate MCM5 and B cells,
CD8+ T cells, cytotoxic cells, DC, eosinophils, immature
DCs, macrophages, mast cells, neutrophils, natural killer
(NK) CD56 bright cells, NK CD56 dim cells, NK cells,
plasmacytoid DCs, T cells, T helper cells, T central memory,
T effector memory, T follicular helper, T gamma delta (Tgd),
Th1 cells, Th17 cells, Th2 cells, and regulatory T (Treg)
cells [32].

3. Results

3.1. The Overexpression of Different MCM2–10 Genes in
Lung Cancer. The transcriptional expression of MCM2–10
genes in lung cancer and normal samples was investigated
using the ONCOMINE database (http://www.oncomine
.org/); Figure 1, Table 1). In the data investigated, MCM
genes showed overall overexpression in lung cancer. The
fold change varied, with the highest fold change of 3.251
for MCM2 [33], 1.617 for MCM3 [34], 2.649 for MCM4
[35], 1.810 for MCM5 [36], 1.797 for MCM6 [34], 1.628
for MCM7 [37], 1.431 for MCM8 [38], 1,733 for MCM10
[34] in LUAD, and 6.171 for MCM2 [39], 2.387 for
MCM3 [36], 3.108 for MCM4 [36], 4.682 for MCM5 [40],
2.650 for MCM6 [33], 2.691 for MCM7 [33], 3.587 for
MCM8 [33], and 4.099 for MCM10 [33] in lung squamous

cell carcinoma (LUSC). A t-test of paired samples showed
that the expression of MCM2, 3, 4, 5, 6, 7, 8, and 10 in lung
cancer was higher than the average level of normal, and the
difference was statistically significant (p < 0:001; Figure 2).

3.2. Functional Enrichment of MCM2–10 in Patients with
Lung Cancer. Gene-gene interaction (Figure 3(a)) and
protein-protein networks (Figure 3(b)) of MCM2–10 were
constructed. The functional enrichment of 30 molecules
obtained from the protein-protein network was predicted
using the clusterProfiler package. GO terms were analyzed
according to BP, MF, and CC (Figure 3(c) and Supplemental
Table 1). The BP associated with MCM2–10 included DNA-
dependent DNA replication, DNA replication, and DNA
replication initiation. The MF were associated with DNA
replication origin binding, DNA helicase activity, 3′-5′-
DNA helicase activity, catalytic activity, acting on DNA,
and helicase activity. The CC were associated with MCM
complex, nuclear chromosome, telomeric region,
chromosome, telomeric region, chromosomal region, and
nuclear replication fork. In the KEGG analysis, five
pathways were associated with MCM2–10, and the cell
cycle pathway accounted for the highest proportion. The
cBioPortal online tool was then used to evaluate the
frequency of MCM2–10 alteration in lung cancer. In total,
1144 samples from TCGA were analyzed, and the
percentage of genetic alterations in MCM2–10 for lung
cancer varied from 1.1% to 5% (Figure 3(d)).

3.3. Clinical Value of MCM5 in Lung Cancer. We explored
the prognostic value of MCM genes in the OS of patients
with lung cancer. The mRNA expression of MCM5
(p = 0:008) was closely linked to worse OS in patients with
lung cancer (Figure 4(d), Table 2). MCM5 was highly
expressed in patients with lung cancer and was closely
related to TNM stage, pathological stage, sex, age, smoking
status, primary therapy outcomes, and OS, PFI, and DSS
events (Figure 5 and Supplemental Table 2). Furthermore,
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Figure 2: The expression of MCM2-10 in paired lung cancer and normal lung tissues. The high expression of MCM2-8 and MCM10 was
observed in lung cancer samples analyzed by paired sample t-test analysis, ns, p ≥ 0:05; ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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Figure 4: Correlation analysis of the abnormal MCM2-10 expression and overall survival in patients with lung cancer. (d) The mRNA
expression of MCM5 was significantly associated with worse OS in patients with lung cancer, HR = 1:31 (1.07-1.59), p = 0:008. Red
represents high expression, and blue represents low expression.
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we explored the correlation between MCM5 expression and
clinicopathological parameters on OS in patients with lung
cancer, and poor OS was associated with LUAD, TNM
stage, smoking status, and pathological stage (Figures 6(a)
and 6(c)–6(g)).

3.4. Correlation between the MCM5 Expression and Immune
Infiltration Level. The TIMER online tool was used to inves-
tigate the correlation between the MCM5 expression and
immune cell infiltration in lung cancer. The somatic copy
number alteration module showed that the arm-level gain
of MCM5 was significantly associated with immune cell
infiltration levels in LUAD and LUSC (Figure 7(a)).
MCM5 was positively correlated with the infiltration levels
of Th2, NK CD56dim, Tgd, and Treg cells in lung cancer
(Figure 7(b)). The MCM5 expression was positively corre-
lated with the infiltration levels of B cells, CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, and DCs in LUAD
(Figure 7(c)). MCM5 was positively correlated with infiltra-
tion levels of CD4+ T cells and DCs in LUSC (Figure 7(c)).

3.5. Prognostic Analysis of the MCM5 Expression Based on
Immune Cells in LUAD Patients and Prognostic Predictive
Model. The high MCM5 expression was closely related to
LUAD prognosis and immune cell infiltration. We further
explored whether the high MCM5 expression affected the
prognosis because of immune infiltration. The Kaplan–

Meier Plotter pan-cancer RNA-seq LUAD (n = 513) data
were analyzed for the prognosis of enriched and decreased
immune cells. Poor OS was seen in LUAD patients with
the high MCM5 expression and enriched infiltration of
basophils, B cells, CD4+ memory T cells, CD8+ T cells,
eosinophils, macrophages, mesenchymal stem cells, natural
killer T cells, Treg cells, and type 2T-helper cells, and in
LUAD patients with the high MCM5 expression and
decreased infiltration of basophils, B cells, CD4+ memory
T cells, eosinophils, mesenchymal stem cells, natural killer
T cells, Treg cells, and type 1T-helper cells. Enriched type
1T-helper cells, decreased macrophages, and type 2T-
helper cells showed no significant correlation between the
MCM5 expression and OS in patients with LUAD
(Figure 8(a)). These findings reveal that MCM5 may affect
the prognosis of patients with LUAD, in part due to immune
infiltration. Finally, we used nomogram and calibration
analysis to predict the 1-, 3-, and 5-year OS of patients with
LUAD using clinically related factors such as age, smoking
status, pathological stage, and primary therapy outcome
(Figures 8(b) and 8(c)).

4. Discussion

Recent studies have suggested that dysregulation of MCMs
leads to tumor initiation, progression, and chemoresistance
via modulation of the cell cycle and DNA replication stress

Table 2: Univariate and multivariate analysis of the correlation of MCM5 expression with OS in lung cancer patients.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

T stage 996

T1 282 Reference

T2 557 1.375 (1.073-1.764) 0.012 1.216 (0.900-1.642) 0.203

T3 and T4 157 2.360 (1.742-3.197) <0.001 1.831 (1.149-2.919) 0.011

N stage 981

N0 641 Reference

N1 222 1.527 (1.212-1.922) <0.001 1.144 (0.761-1.722) 0.518

N2 and N3 118 2.018 (1.522-2.675) <0.001 2.025 (1.119-3.666) 0.020

M stage 774

M0 742 Reference

M1 32 2.250 (1.427-3.548) <0.001 2.063 (1.128-3.771) 0.019

Age 983

<=65 427 Reference

>65 556 1.259 (1.027-1.544) 0.027 1.368 (1.083-1.730) 0.009

Pathologic stage 987

Stage I 512 Reference

Stage II 278 1.605 (1.264-2.038) <0.001 1.187 (0.769-1.833) 0.439

Stage III 164 2.239 (1.730-2.898) <0.001 0.989 (0.513-1.908) 0.975

Stage IV 33 3.076 (1.947-4.859) <0.001
MCM5 999

Low 501 Reference

High 498 1.274 (1.045-1.554) 0.017 1.216 (0.968-1.526) 0.093
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Figure 5: Continued.
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Figure 5: The expression of MCM5 in different clinical features of lung cancer. MCM5 was highly expressed in lung cancer and closely
related to TNM stage, pathologic stage, sex, age, smoker, OS event, PFI event, DSS event, and primary therapy outcome, ns, p ≥ 0:05; ∗p
< 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001. OS: overall survival; PFI: progression-free interval; DSS: disease-specific survival; PD: progressive
disease; SD: stable disease; PR: partial response; CR: complete response.
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Figure 6: Continued.
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[41]. The MCM protein plays a key role in the proliferation
and prognosis of lung cancer [16]. Bioinformatic analysis
was used to detect mRNA expression, prognostic value,
genetic mutations, functional enrichment, protein-protein
network, and immune infiltration of MCMs in patients with
lung cancer.

MCM2 plays a role in the proliferation, circulation,
and migration of lung cancer cells [42]. MCM3 regulates
cell proliferation by binding to cyclin D1 [43]. Mutations
in MCM4 disrupt the functions of MCM2–7, resulting in
genomic instability and cancer progression [44]. MCM5
is an important DNA replication initiation factor and is
strongly downregulated following the overexpression of
the long noncoding RNA CARMN [45]. MCM6, MCM7,
and MCM8 collaborate with other MCM family members
to promote cancer cell proliferation through cell cycle and
DNA replication [46, 47]. The MCM9 protein is involved
in the unwinding activity [48]. MCM10 mediates DNA
replication by collaborating with other cell-dividing cyclins
[49]. The BP and associated pathways of MCM2-10 were
elucidated by GO and KEGG enrichment analyses, which
are useful for investigating the pathological mechanisms
of lung cancer. The BP associated with MCM2–10
includes DNA-dependent DNA replication, DNA replica-
tion, DNA replication initiation, G1/S transition of mitotic
cell cycle, and cell cycle G1/S phase transition. The cell
cycle and DNA replication pathways are associated with
MCM2–10. MCM2-8 and MCM10 were highly expressed
in paired lung cancer samples and may be involved in
the development of lung cancer through the cell cycle
and DNA replication.

Correlation analysis between the MCM2-10 expression
and OS revealed that only MCM5 was closely related to poor
OS in patients with lung cancer. The MCM5 gene affects the
prognosis of LUAD by regulating BP and pathways, such as

cell cycle and DNA replication [50]. In this study, MCM5
was highly expressed in tumors, which is related to TNM
stage, pathological stage, sex, age, smoking status, prognostic
events, and primary therapy outcomes. MCM5 was positively
correlated with poor OS in patients with LUAD and was influ-
enced by TNM stage, smoking status, age, and pathological
stage. These results suggest that MCM5 is involved in the
development of lung cancer, may be used as a molecular target
for diagnosis and treatment, and is an independent prognostic
marker of lung cancer. Furthermore, we revealed that the arm-
level gain of MCM5 was significantly associated with immune
cell infiltration levels in lung cancer. MCM5 positively corre-
lated with B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and DCs in LUAD. Enriched type 1T-helper
cells, decreased macrophages, and type 2T-helper cells
showed no significant correlation between the MCM5 expres-
sion and OS in patients with LUAD, whereas decreased type
1T-helper cells, enriched macrophages, and type 2T helper
cells were related to the OS of patients with LUAD. MCM5
may partially influence the OS of patients with LUAD by
immune cell infiltration. However, the exact role of MCM5
in the tumor immune microenvironment requires further
investigation. Furthermore, we revealed that the arm-level
gain of MCM5 was significantly associated with immune
cell infiltration levels in lung cancer. MCM5 positively cor-
related with the infiltration levels of B cells, CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, DCs, and partially
influenced the OS of patients with LUAD by immune cell
infiltration. Thus, MCM5 may serve as a molecular bio-
marker for immunotherapy. However, the exact role of
MCM5 in the tumor immune microenvironment requires
further exploration.

Our study had certain limitations. The data were col-
lected online from open databases. In future studies, large
clinical datasets are required to verify our findings, and the
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Figure 6: Cox regression survival analysis of overall survival (OS) probabilities concerning the MCM5 expression in lung cancer
patients of different subgroups. The prognosis of lung cancer patients with high expression of MCM5 was related to lung
adenocarcinoma (LUAD) (p < 0:001), smoker (p = 0:002), pathologic stage (p = 0:01), T stage (p = 0:008), N stage (p = 0:018), and M
stage (p = 0:029).
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role of MCM2–10 in the pathogenesis of lung cancer should
be further explored.

5. Conclusions

Our findings demonstrated that MCM2-8 and 10 were
highly expressed in lung cancer, and only MCM5 affected
the prognosis of patients with lung cancer. The influence

of MCM5 on the prognosis of lung cancer patients was
related to LUAD, smoking, pathologic stage, and TNM
stages. We further confirmed that the abnormal expression
of MCM5 in LUAD was related to immune cell infiltra-
tion, and immune cell infiltration may contribute to the
prognosis of LUAD partly. The above findings suggested
that MCM5 can be used as a molecular marker for the
prognosis of LUAD.
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Figure 8: Relationship between MCM5 and immune infiltration with overall survival (OS). (a) A forest plot shows the prognostic value of
MCM5 expression according to different immune cell subgroups in LUAD patients. (b) Nomogram for predicting the probability of 1-, 3-,
and 5-year OS for patients with LUAD. (c) Calibration plot of the nomogram for predicting the OS likelihood.
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