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Abstract

In this paper, we propose a novel method for parcellating the human brain into 193 anatomical structures based on
diffusion tensor images (DTIs). This was accomplished in the setting of multi-contrast diffeomorphic likelihood fusion using
multiple DTI atlases. DTI images are modeled as high dimensional fields, with each voxel exhibiting a vector valued feature
comprising of mean diffusivity (MD), fractional anisotropy (FA), and fiber angle. For each structure, the probability
distribution of each element in the feature vector is modeled as a mixture of Gaussians, the parameters of which are
estimated from the labeled atlases. The structure-specific feature vector is then used to parcellate the test image. For each
atlas, a likelihood is iteratively computed based on the structure-specific vector feature. The likelihoods from multiple
atlases are then fused. The updating and fusing of the likelihoods is achieved based on the expectation-maximization (EM)
algorithm for maximum a posteriori (MAP) estimation problems. We first demonstrate the performance of the algorithm by
examining the parcellation accuracy of 18 structures from 25 subjects with a varying degree of structural abnormality. Dice
values ranging 0.8–0.9 were obtained. In addition, strong correlation was found between the volume size of the automated
and the manual parcellation. Then, we present scan-rescan reproducibility based on another dataset of 16 DTI images – an
average of 3.73%, 1.91%, and 1.79% for volume, mean FA, and mean MD respectively. Finally, the range of anatomical
variability in the normal population was quantified for each structure.

Citation: Tang X, Yoshida S, Hsu J, Huisman TAGM, Faria AV, et al. (2014) Multi-Contrast Multi-Atlas Parcellation of Diffusion Tensor Imaging of the Human
Brain. PLoS ONE 9(5): e96985. doi:10.1371/journal.pone.0096985

Editor: Gaolang Gong, Beijing Normal University, China

Received November 25, 2013; Accepted April 14, 2014; Published May 8, 2014

Copyright: � 2014 Tang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by National Institutes of Health (NIH) P41EB015909, RO1 AG020012, R01 EB000975, P41 EB015909, R01 MH084803, and S10
RR025053. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: susumu@mri.jhu.edu

Introduction

For quantitative analysis of the human brain anatomy, defining

structures or regions of interest (ROIs) is one of the first essential

steps. There are many types of automated or manual approaches

that have been proposed to define ROIs in the brain, based on

locations and contrasts of the structures. These methods often

require a priori knowledge as a form of atlas. For manual ROI

drawing, an atlas could be a simple pictorial representation of a

structure of interest, which guides operators to define the

boundary. The manual delineation, while often used as a gold

standard, is a time-consuming approach. Various types of

automated parcellation tools have been proposed, which try to

define the boundary of anatomical structures based upon image

contrasts [1–17]. Some of the advanced tools incorporate a priori

knowledge about the location of the target structures as a form of

probabilistic atlas [18–26]. This location constraint prevents the

contrast-based boundary definition from leaking into unlikely

regions.

To use the probabilistic location information in the atlas, the

atlas has to be registered, or warped, to each subject image, in

which voxel-to-voxel correspondence is established between the

two coordinate systems where the atlas image and the subject

image are defined. The concept of brain mapping also leads to an

alternative approach for automated structural parcellation, which

is called atlas-based parcellation [3,7,11,27–35]. Namely, if the

voxel-to-voxel mapping is perfectly accurate, any arbitrary

structures can be defined only once in the atlas and such

anatomical definitions can be transferred to the images being

mapped to. There are no constraints in the number of structures

or the way the structures are defined in the atlas. In this sense, we

can assume that the whole-brain voxel mapping inherently

contains parcellation tools for potentially all definable structures

inside the brain.

The atlas-based parcellation, however, is accurate only if the

voxel-to-voxel brain mapping correctly defines corresponding

voxels between the two images, which is not always guaranteed.

The accuracy level is influenced by various sources of differences

between the atlas and the subject brains; these could be

morphological (atrophy, hypertrophy, malformation, etc.) or

contrast (biological such as signal hyperintensity or hypointensity

or procedural such as imaging parameters).

To reduce the impact of erroneous mapping of voxels, and

consequent mis-parcellation of target structures, multi-atlas

approaches have been postulated. Suppose that the hippocampus
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is defined in Ndifferent atlases and each atlas is warped to a to-be-

parcellated subject image, then the Ndefinitions (labels) of the

hippocampus are casted to the subject space, which can be fused

(a.k.a ‘‘label fusion’’) based upon pre-defined algorithms such as

those proposed by [7,36–42]. If the mis-registration of each atlas

causes random errors, the errors should be reduced by integrating

Ndefinitions. It has been shown that simple label fusion techniques

based on majority voting yield robust parcellations [7,41,43].

More recently, weighted majority voting strategies, by incorpo-

rating intensity information, demonstrated significant improve-

ment in the parcellation accuracy. A variety of weighting

approaches, based on intensity similarity metrics, have been

proposed – global [36], local [44,45], semi-local [45,46], and non-

local [47]. In addition to voting, a statistical fusion technique (i.e.

Simultaneous Truth and Performance Level Estimation, STAPLE

[42]) and a collection of its variants [48–50] have been proposed,

in which a stochastic model of rater behavior has been

incorporated in the estimation process. Compared with voting

techniques, the main limitation of statistical fusion strategies is that

the decision rule is independent of the image intensity while the

major advantage is its underlying elegant mathematical theory.

Initial attempts to incorporate the intensity information into the

STAPLE framework rely on a priori similarity measures [51,52] or

estimating the voxelwise correspondence between the registered

rater and the subject using intensity information [49].

We have recently introduced the diffeomorphic likelihood

fusion algorithm (DLFA) as an approach to integrate anatomical

information from multiple T1-weighted atlases and fuse their

anatomical features [53,54]. Unlike previous label fusion algo-

rithms, DLFA does not fuse a set of binary label maps obtained

from the atlas-to-subject propagations. DLFA poses the parcella-

tion problem in the framework of maximum a posteriori (MAP)

estimation, estimating the maximizing parcellation labels given the

observable image intensity, similar to the idea proposed in [6].

The MAP estimation is handled within the class of generative

models by representing the observable imagery as a conditionally

Gaussian mixture random field, conditioned on the random atlas-

label pair and the diffeomorphic change of coordinates for each

label. The atlas-label pair and their diffeomorphic correspondenc-

es are unknown and viewed as latent variables. Locality is

introduced into the global representations of the deformable

templates by allowing different atlas-label pairs to be used to

interpret different voxels or different structures, under the

assumption that the local optimal diffeomorphism varies from

label to label for a given atlas. The MAP estimation is solved by

iterating between fixing the local optimal diffeomorphisms and

obtaining the maximizing parcellation labels, and then locally

optimizing the local diffeomorphisms for the fixed parcellation, in

an EM fashion [55]. The atlas-dependent structure-specific local

diffeomorphisms are estimated in the E-step in the EM algorithm.

The purpose of this paper is to extend the DLFA to diffusion

tensor imaging by incorporating multiple-contrast information. It

arises naturally to extend a single contrast image such as T1-

weighted images to multi-contrast images (e.g. eigenvalues and

eigenvectors of DTI) by assuming conditional independence in

computing p(IjW ,a), where Idenotes the measurable image, W
denotes a given parcellation label, and a the randomly selected

atlas-label pair. Previously, vector-to-vector or tensor-to-tensor

registration algorithms have also been introduced [56–59], which

was further extended to multi-channel image registration, in which

multiple-contrast information, such as FA, diffusivity, and fiber

orientation, is used simultaneously to drive the registration

algorithm [60]. These ideas could improve the registration

accuracy between each atlas and the testing subject, but the

incorporation of the multiple-contrast information in the multi-

atlas likelihood fusion process has not been introduced so far.

In this paper, we introduce a framework to incorporate the

multi-contrast intensity information generated in DTI into the

multi-atlas DLFA framework and apply it to whole brain

parcellations into 159 structures. In the T1 case, the distribution

of the intensity in each structure is modeled as a single Gaussian.

In the DTI case, we use five intensity elements ([FA, MD, and

fiber angle (a unit vector)]) with the intensity distribution of each,

in every single label, being modeled as a Gaussian Mixture Model

(GMM), the parameters of which are computed using maximum-

likelihood estimation. In this study, we examine the parcellation

accuracy of the method on 25 patient data with a varying degree

of pathology. We also present the scan-rescan reproducibility of

the method on another dataset of 16 healthy subjects which were

scanned twice. In addition, the ranges of anatomical variability of

all the structures in the 16 subjects were characterized.

Methods and Materials

Patient populations
All subjects used as atlases and the first testing dataset were

obtained from the existing clinical database of pediatric brain

MRI, and were older than 24 months of age. DTIs from sixteen

subjects (Female = 7, Male = 9, age = 7.67+/24.12) were used to

create the multiple atlases (Table 1). Among these sixteen subjects,

ten subjects were diagnosed as normal. In order to cover the wide

range of anatomical phenotypes in the multiple atlases, 6 cases

with different types of anatomical abnormalities were also included

in the atlas set as shown in Table 1.

The accuracy of the parcellation obtained from multi-atlas

DLFA was tested using 25 patients (Female = 10, Male = 15,

age = 7.88+/24.80). As tabulated in Table 2, 10 subjects (Test

#1–#10) presented a normal MR anatomy and the other 15

subjects presented a variety of anatomical abnormalities; seven

(Test #11–#17) were evaluated as mild to moderate anatomical

change and eight (Test #18–#25) as severe abnormality based on

a pediatric neuroradiologist’s (S.Y.) visual evaluation.

For the scan-rescan reproducibility test, sixteen healthy

volunteers with no history of neurological conditions (8 M/8 F,

22–61 years old, mean: 31 years old) participated in this study.

This is the same data used by [61], where details of the protocol

can be found.

Ethics Statement
This study was approved by the Johns Hopkins Medicine

Institutional Review Board (JHM-IRB). All subjects provided

written, informed consent for participation in accordance with the

oversight of the JHM-IRB.

MRI scans
For the first dataset, MR imaging was performed using a 1.5T

scanner (Avanto; Siemens, Erlagen, Germany). All patients

underwent routine clinical multiplanar T1, T2, and FLAIR pulse

sequences, including DTI. The DTI was obtained using a single-

shot EPI with parallel acquisition. Diffusion weighting was

performed along 21 independent axes with b = 1000 s/mm2,

and repeated twice to enhance the SNR (TE = 84 ms,

TR = 7700 ms). DTI was scanned in the axial orientation with

an imaging matrix of 96696 (to 1926192 with zero-filled

interpolation), FOV 2406240, and slice thickness 2.5 mm.

For the second dataset, subjects were scanned twice using a 3T

MR scanner (Achieva, Philips Healthcare, Best, The Netherlands).

The DTI dataset was acquired using a multi-slice, single-shot,
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echo-planar imaging (EPI), spin-echo sequence (TR/TE = 6281/

67 ms, SENSE factor = 2.5). Sixty-five transverse slices were

acquired parallel to the line connecting the anterior commissure

(AC) to the posterior commissure (PC) with no slice gap and

2.2 mm nominal isotropic resolution (FOV = 2126212, data

matrix = 96696, reconstructed to 2566256).

DTI processing
All DTI datasets were processed offline using DTIStudio

software (H. Jiang and S. Mori, Johns Hopkins University,

Kennedy Krieger Institute, lbam.med.jhmi.edu or www.

MriStudio.org) [62]. The raw diffusion-weighted images were first

co-registered to one of the b0 images with a 12-parameter affine

transformation using Automated Image Registration (AIR) [63].

The six elements of the diffusion tensor, the fractional anisotropy

(FA), and the mean diffusivity (MD) were calculated.

Initial creation of multiple atlases
For the sixteen subjects that were selected to be the multiple

atlases, the images were first normalized to MNI coordinates with

a nine-parameter affine transformation. The initial parcellation of

the brain into 159 structures was performed using the atlas-based

automated image parcellation pipeline as described in our

previous publication [60]. We used our single-subject Eve atlas

[64] and the accompanied brain parcellation map with 159

structural definitions as the template, which was warped to the 16

subjects using the three-contrast large deformation diffeomorphic

metric mapping (LDDMM) [64–66]. The three contrasts included

FA, MD, and the manually-delineated lateral ventricles. In a

previous study, we tested the accuracy of this automated structural

parcellation approach in cerebral palsy patients and excellent

accuracy was reported [65]. In this study, we included patients

with more severe abnormalities. If gross parcellation errors

occurred, they were manually corrected to establish the multiple

Table 1. Anatomical changes in the sixteen subjects used as the multiple atlases.

Atlas ID Radiological findings Radiological diagnosis

1 White matter T2 hyperintensity involving the bilateral periventricular and deep white
matter with restricted diffusion spots

Drug-induced leukoencephalopathy

2 T2-hyperintense lesions in periventricular and subcortical white matter Multiple sclerosis

3 Multiple encephalomalacia/gliosis change related to sequela from prior ischemic events Moyamoya-disease

4 Diffuse CSF space dilatation Associated finding with achondroplasia

5 Multiple T2-hyperintense lesions in white matter and gray matter Neurofibromatosis type1

6 Mild ventricular dilatation with irregular shape and volume loss of periventricular white
matter with posterior dominant

Periventricular leukomalacia

7,16 No abnormal finding Diagnosed as normal

doi:10.1371/journal.pone.0096985.t001

Table 2. Anatomical changes in 25 subjects for testing the multiple atlases application.

Test Subject ID Radiological findings Radiological diagnosis

1,10 No abnormal finding Diagnosed as normal

11 Mild deep white matter T2-hyperintense change and ventricle enlargement Adrenoleukodystrophy

12 Right hemiatrophy, ventricle dilatation and mild T2-hyperintense change in deep
gray matter

Chronic ischemic insult

13 Diffuse CSF space and ventricle dilatation Associated finding with achondroplasia

14 Mild ventricle dilatation Associated finding with achondroplasia

15 T2-hyperintense lesions in periventricular and subcortical white matter and mild
ventricle enlargement

Multiple sclerosis

16 Porencephalic left ventricle dilatation and volume loss of left corticospinal tract Prenatal hemorrhagic insult

17 Asymmetrical ventricle dilatation (right.left) Associated finding with achondroplasia

18 Ventricle enlargement with multiple T2-hyperintense lesions in white matter Multiple sclerosis

19 Ventriculomegaly associated periventricular volume loss (right.left) and T2-
hyperintense change

Perinatal hypoischemic injury

20 Lateral ventricular enlargement with periventricular white matter volume loss
and T2-hyperintense change

Periventricular leukomalacia

21 Right ventricle enlargement associated with periventricular white matter volume loss Prenatal intraventricular hemorrhage

22 Diffuse parenchymal volume loss, CSF space dilatation and multiple ischemic lesions Congenital metabolic disease

23 Ventriculomegaly and thinning of corpus callosm Ventriculomegaly

24 Left hemiatrophy Sturge-Weber syndrome

25 Left parenchyamal volume loss, gliosis and lateral ventricle enlargement Perinatal stroke

doi:10.1371/journal.pone.0096985.t002
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atlases with accurate structural definitions. The non-linear image

transformation and the atlas-based parcellation were performed

using DiffeoMap and RoiEditor (http://www.MriStudio.org,

Kennedy Krieger Institute and Johns Hopkins University, X. Li,

H. Jiang, and S. Mori). The atlas data are available at http://

lbam.med.jhu.edu.

Multi-contrast likelihood-fusion
Let (Ia1 ,W a1 ),(Ia2 ,W a2 ),:::,(IaN ,W aN )f gdenote N DTI atlas-

label pairs, where N~16 in this study. Instead of using single-

valued (T1-weighted) images, we use vector-valued images for

both the atlases and the test subjects. For each atlas-label pair a,

Ia~½Ia
FA,Ia

MD,Ia
x ,Ia

y ,Ia
z �,a[ a1,a2,:::,a16f g, where Ia

FAdenotes the

gray-scale FA image of the atlas-label pair, Ia
MDdenotes the gray-

scale MD image of the atlas-label pair, and Ia
x ,Ia

y ,Ia
z denote the

absolute values of the three elements of the primary eigenvector.

In this sense, the image intensity at each voxel is a 5-element

vector Ia(x) : x[V?R5, with V5R3 being a finite grid where the

images are defined. For the label image W a in each atlas-label

pair, we define it as a function from the image domain V to a

subset of the non-negative integersW a(x) : x[V? 0,1,2,3,:::,f
159g, where W a(x)~0 for voxel x belonging to the unlabeled

background, and W a(x)~k,k[ 1,2,3,:::,159f g for voxel x labeled

as the k-th structure such as the left caudate, the right putamen,

and so on. Correspondingly, we denote the to-be-parcellated test

subject as (I,W ), where I~½IFA,IMD,Ix,Iy,Iz� and W is the label

image we aim to obtain.

For multi-contrast, multi-atlas parcellation, the goal is to

estimate the label map W associated with the im-

ageI~½IFA,IMD,Ix,Iy,Iz� of the test subject, for which we solve

via the Maximum a Posteriori (MAP) estimation

ŴW~ arg max p(W jI)
W

~ arg max p(W ,I)
W

: ð1Þ

To achieve this goal, we use the EM algorithm by introducing the

latent variable A[ a1,a2,:::,aNf gthat designates the random atlas-

label pair. The Q-function in the EM algorithm computes the log-

likelihood of the complete data log p(I,W ,A) given the incomplete

data — the to-be-parcellated measured image I and the previous

parcellation label W old ,

Q(W ; W old )~E
p(AjI,Wold )

log p(I,W jA)jI,W old
� �

, ð2Þ

where

p(I,W jA)~P
x[V
P

a
p(I(x),W (x)ja)

dA(x)(a) ð3Þ

with dA(x)(a)~
1,A(x)~a

0,else

�
indicating that A(x)~a is used to

interpret the voxel xin the test image. Denoting the conditional

probability of the atlas-label selector as PA(x)(ajI,W old ), the Q-

function reduces to:

Q(W ; W old )~E
p(AjI,Wold )

log p(I,W jA)jI,W old
� �

~
X
x[V

X
a

PA(x)(ajI(x),W old (x))

log p(I(x),W (x)ja)
:

ð4Þ

The sequence of iteratesW (1),W (2),:::, associated to the alternating

maximization defined by the iteration

W new~ argmax
W

Q(W ; W old ) ð5Þ

is monotonic in the incomplete data likelihood with atlas selector

PA(x)(ajI,W old ), the proof of which can be found in [53].

The algorithm can be summarized as:

Step1: Initialize the diffeomorphism for each voxel x to be

identical everywhere, as: Q̂Qold
a (x)~Q̂Q(0)

a . InitializeW old .

Step2: Compute the approximated atlas-label selector as:

P̂PA(x)(aDI(x),W old (x))

~
p(a,ŵwold

a (x)DI(x),W old (x))P
a

p(a,ŵwold
a (x)DI(x),W old (x))

~
p(I(x),W old (x)Da,ŵwold

a (x))p(ŵwold
a (x)Da)p(a)P

a

p(I(x),W old (x)Da,ŵwold
a (x))p(ŵwold

a (x)Da)p(a)
:

ð6Þ

Step3: Obtain a new parcellation image for the test image via

W new~ arg max
W

Q̂Q(W ; W old ), where Q̂Q(W ; W old )is computed as:

Q̂Q(W ; W old)~
X
x[V

X
a

P̂PA(x)(ajI(x),W old (x))log p(I(x),W (x)ja) :ð7Þ

Step4: Recalculate the diffeomorphisms of the atlases onto the

parcellation labels via:

Q̂Qnew
a ~ arg max

Q
p(I(x),W newja,Q)p(Qja)

~ arg max
Q

p(I(x)jW new,a,Q)p(W newja,Q)p(Qja) :
ð8Þ

Step5: Update the parcellation W old/W new and the optimal

diffeomorhiphisms Q̂Qold
a /Q̂Qnew

a , go to Step 2.

Stop the iteration if either
W new{W old
�� ��2

W oldk k2
v1e{4 or the

number of total iterations is bigger than 30.

Remarks. 1. To initialize the optimal diffeomorphism Q̂Q(0)
a in

Step 1 that is associated to the atlas-label pair a, we used the

optimal diffeomorphism obtained from a two-channel LDDMM

image mapping with one channel being the FA images and the

other the MD images, which has been validated in registering DTI

images [60]. Given the pair of the target Iand an atlasJ , we

compute a diffeomorphic deformation Qbetween the two vector

valued images I~½IFA,IMD�andJ~½JFA,JMD� such that

J~I0Q{1 or ½JFA,JMD�~½IFA0Q{1,IMD0Q{1�. The diffeomorph-

ism is assumed to be generated as the end point, Q~wv
1, of the flow

of the smooth time-dependent vector field, vt[V ,t[½0,1�, via the

ordinary differential equation
Lwv

1

dt
~vt(w

v
t ),t[½0,1�, where w0is the

identity transformation. The optimal diffeomorphic deformation is

generated by integrating the vector field, which is found to

minimize the energy:

v̂vt~ arg min

vt :
LQv

1
dt

~vt(Qv
t )

ð1

0

vtk kV
2
dtz

1

sFA
2

IFA0w{1{JFA

��� ���
L2

2
�

z
1

sMD
2

IMD0w
{1{JMD

��� ���
L2

2
�

,

ð9Þ
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where the parameters sFAand sMD control the weighting of the

two contrast-matching terms of smoothness regularization terms.

In this study, we setsFA~sMD~1. To ensure that the solution of

Eq. (9) lies in the space of diffeomorphisms, the set of time-indexed

vector fields vt must be sufficiently spatially smooth, requiring V to

be a reproducing kernel Hilbert space. For computational

purposes, we use an operator-induced norm on V such that

fk kV
2
~
P3
i~1

Lfik k2
2

and fik k2
2
~
Ð

Dfi D2dx with the differential

operatorL~{a+2pzc, where +2pis the Laplacian operator with

powerp§1:5. In this study, we usep~1,c~1, and ais selected

according to the cascading method described in [60,67]

as0:01{0:005{0:002.

For the initialization of the parcellation label in Step1, there are

multiple choices. In our case, we use the propagation of the labels

of atlas-label pair a1under the optimal global diffeomorphism

Q̂Q(0)
a1

---W a10Q̂Q(0)
a1

{1.

2. To incorporate the local optimized diffeomorphism Q̂Qold
a (x) in

the calculation of Eq. (6), we use mode approximation via

p(I,W ja)~

ð
p(I,W ja,Q)p(Qja)dQ&p(I,W ,Q̂Qja) : ð10Þ

The optimized diffeomorphism in Eq. (10) is obtained as the

mode, as computed in Eq. (8).

3. In calculating the terms in Eq. (6), we assume that the prior

distribution on the atlas-label pairAis uni-

formp A~að Þ~ 1
N

,a~a1,:::,aN . Via Bayes’ rule, we have:

p(I(x),W old (x)Da,ŵwold
a (x))~

p(I(x)DW old (x),a,ŵwold
a (x))p(W old (x)Da,ŵwold

a (x)) :
ð11Þ

To calculatep(I(x)jW old (x),a,Q̂Qold
a (x)), we define a hierarchical

model between the image Iand the underlying diffeomorphic

change in coordinates of the atlas Q̂Qa, so that W splits Iand Q̂Qa.

Conditioned on W , the joint measurement, I and Q̂Qa, is

independent, giving rise to:

p(I(x)jW old (x),a,Q̂Qold
a (x))~p(I(x)jW old (x),a) : ð12Þ

Therefore, we have:

p(I(x),W old (x)Da,ŵwold
a (x))

~p(I(x)DW old (x),a,ŵwold
a (x))p(W old (x)Da,ŵwold

a (x))

~p(I(x)DW old (x),a)p(W old (x)Da,ŵwold
a (x)) ,

ð13Þ

where p(I(x)jW old (x),a)is computed as

p(I(x)jW old (x),a)~p(IFA(x),IMD(x),Ix(x),Iy(x),Iz(x)jW old (x),a)

~ P
m[ FA,MD,x,y,zf g

p(Im(x)jW old (x),a) ,
ð14Þ

with IFA(x) : V?R indicating the FA value at voxel x in the

target. In calculating each single term in Eq. (14) such as

p(IFA(x)jW old (x),a), we model it as the probability density

function of a Gaussian Mixture Model (GMM), the parameters

of which are computed from the atlas-label pair. To be specific, for

atlas-label pair a, we model

p(Ia
FA(x)jW a(x)~k)~

XM
t~1

p(Ia
FA(x)jW a(x)~k,t)aak

t , ð15Þ

where Mdenotes the total number of Gaussians in the mixture

model, p(Ia
FA(x)jW a(x)~k,t) represents the probability density

function of a single Gaussian

p(Ia
FA(x)jW a(x)~k,t)~

1ffiffiffiffiffiffi
2p
p

sak
t

exp {
(Ia

FA(x){mak
t )2

2(sak
t )2

( )
, ð16Þ

and
P

t

aak
t ~1 are the mixing coefficients for different Gaussians.

For the parameters of the mixture of Gaussians associated to a

specific labelk,

hak~(mak
t ,sak

t ,aak
t ),t~1,2,::,M, ð17Þ

we employ the EM algorithm to derive the maximum-likelihood

estimators. The termp(IFA(x)jW old (x),a) in Eq. (14) is computed

according to

p(IFA(x)DW old (x)~k,a)

~
XM
t~1

1ffiffiffiffiffiffi
2p
p

sak
t

exp {

(IFA(x){

mak
t )2

2(sak
t )2

8>>><
>>>:

9>>>=
>>>;

aak
t :

ð18Þ

For any given structure, the total numbers of Gaussians, M, for

the mixtures are pre-defined. We set M~2 for the structures

smaller than 1000 mm3 and M~4 for those larger than 1000

mm3. These parameters in the GMM were empirically deter-

mined. The GMM is used to quantitatively characterize the

characteristic shape of the histogram of the intensity distribution of

each contrast in each structure.

4. To compute the Q-function as described in Eq. (7),

according to Bayes’ rule, we have p(I(x),W (x)ja)~
p(I(x)jW (x),a)p(W (x)ja). The term p(I(x)jW (x),a)is computed

as demonstrated in Eqs. (14) - (18), and p(W (x)ja) is approximated

via W a0Q̂Q{1
a under trilinear interpolation.

5. Given our splitting assumption in Eq. (12), Eq. (8) is

equivalent to Q̂Qnew
a ~ arg max

w

p(W newja,Q)p(Qja). Considering

computational efficiency, we use measures of the distance between

the parcellation of the target and the diffeomorphically deformed

results of the atlas parcellations, analogous to LDDMM for image

matching and surface matching. To be specific, we use the Dice

overlap measurement between W newand W a0Q{1
a to approximate

the termp(W newja,Q). The optimal local diffeomorphism is

assumed to come from a composition of the optimal global

diffeomorphism and an optimal local 12-parameter affine trans-

formation. Namely, Qa(x)~Q̂Q(0)
a 0a(x), where Q̂Q(0)

a is the optimal

global diffeomorphism computed in Step 1 and ais the optimal

local 12-parameter affine transformation that maximizes

p(W newja,Q̂Q(0)
a 0a)p(Q̂Q(0)

a 0aja), where p(W newja,Q̂Q(0)
a 0a)is quantified

as the Dice overlap between W newand W a0(Q̂Q(0)
a 0a){1. Note that

the optimal local affine transformation is obtained on a structure-

by-structure basis. Therefore, for a single atlas-label pair a, the

optimized local diffeomorphisms Q̂Qnew
a (x) should be identical for

voxels in the same structure. Given atlas-label pair a, the prior

Parcellation of Diffusion Tensor Images
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distribution of the transformation p(Qja) is estimated as the

multiplication of two terms p(Qja)~p(Q̂Q(0)
a ja)p(aja,Q̂Q(0)

a ), where

p(Q̂Q(0)
a ja)is estimated by the one over the metric distance [68] in

diffeomorphism space given by the exponential of the geodesic

length, computed from the two-channel LDDMM mapping. The

prior on the 12-parameter affine transformationp(aja,Q̂Q(0)
a ) is

modeled as a multivariate Gaussian, p(aja,Q̂Q(0)
a )~N Ma,Cað Þ,

similar to the strategy adopted in [69]. In our approach, we

use Ma~ 1,0,0,0,1,0,0,0,1,0,0,0½ �T andCa~diag 1e{2,1e{2,:::,
	


1e{2,1e2,1e2,1e2�Þ. We assume that all the parameters are

mutually independent, and thus the covariance matrix is diagonal.

Since the first 9 parameters in arepresent the affine matrix, their

variances should be small, for which we assign 0.01. The last 3

parameters represent the translation in the x,y,zdirections, and

therefore their variances should be big, for which we use 100.

Since the optimization of the local diffeomorphisms is based on

the overlap between the parcellation W old of the target and the

diffeomorphically deformed results of the atlas parcellations and

the optimized diffeomorphisms Q̂Qa(x) are identical for voxels in the

same structure, the term p(W old (x)ja,Q̂Qold
a (x))in Eq. (11) is

approximated as being proportional to the overlap distance

between W old (x) and W a0Q̂Qold
a ({1)(x). Again, for atlas-label pair

a, this quantity is identical for voxels in the same structure.

To sum up, the MAP estimation problem is solved in an EM

approach. We iterate between fixing the local optimal diffeo-

morphism for each label in each atlas-label pair and obtaining the

maximizing parcellation of the target, and then locally optimizing

the diffeomorphisms associated to each label in each atlas-label

pair given the fixed parcellation.

Image quantification
After the brain had been parcellated to the 159 structures, the

peripheral ROIs were further decomposed to the CSF, cortex, and

peripheral white mater using MD (threshold value = 0.0015 to

separate the CSF and the tissue) and FA (threshold value = 0.2 to

separate the cortex and the white matter) (Faria et al., 2010; Oishi

et al., 2009). The CSF regions were excluded from the analysis.

There were 50 peripheral ROIs and thus the final number of

ROIs was 193. The volumes of these ROIs were obtained by

counting the number of voxels. ROI-specific FA and MD values

were measured by averaging the values of all voxels within the

Figure 1. Demonstration of the unique anatomical features revealed by multi-contrast images generated in DTI and GMM.
Histograms of the five contrasts, FA, MD, EV-x, EV-y, and EV-z, of five adjacent structures are shown, including two white matter structures (the ALIC
and the PLIC), two gray matter structures (the caudate and the thalamus), and the ventricle. In each subplot, blue indicates the histogram of the
corresponding contrast within that specific structure, green represents the probability density of each single Gaussian, and red shows the weighted
sum of all Gaussians. Abbreviations are: ALIC: Anterior limb of internal capsule and PLIC: Posterior limb of internal capsule.
doi:10.1371/journal.pone.0096985.g001
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Figure 2. A comparison of parcellating using a single-contrast image and multi-contrast images, in terms of overlap accuracy. The
mean Dice overlaps and the standard deviations of the eighteen ROIs obtained from automated parcellations based on five contrasts (red), the single
FA contrast (green), the single MD contrast (blue), the vector x y z contrasts (yellow), as well as the inter-rate (patterned). The mean values are
calculated across fourteen different subjects. Star marks indicate significant difference among the four sets of Dice results by ANOVA (p,,0.05).
Abbreviations are: GCC – genu of corpus callosum; BCC – body of corpus callosum; Caud – caudate; Put – putamen; ALIC – anterior limb of internal
capsule; PLIC – posterior limb of internal capsule; CG – cingulate gyrus; MCP – middle cerebellar peduncle; SLF – superior longitudinal fasciculus;
CST – corticospinal tract.
doi:10.1371/journal.pone.0096985.g002

Figure 3. A correlation comparison of the automated caudate parcellation from using a single-contrast image and multi-contrast
images. A plot of the correlation between the automated and the manual measurements of the size of the caudate in both hemispheres in square
millimeters. Results from the four automated parcellation methods are compared: 5-contrast (red), FA-only (green), MD-only (blue), and EV-only
(yellow).
doi:10.1371/journal.pone.0096985.g003
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ROIs. The parcellation criteria used in this paper followed our

previous publications [70,71], in which the cortex and the white

matter definitions followed ICBM-LPBA40 [24] and probabilistic

white matter atlas [71], respectively.

Manual delineation for accuracy measurements
Eighteen structures (sixteen white matter structures and two

deep gray matter structures) were manually delineated on the pre-

selected 2D slices of fourteen subjects from three groups – four

from the normal group, five from the mild abnormal group, and

five from the severe abnormal group. The manual delineation was

performed by incorporating information from MD, FA, and color-

coded eigenvector maps. To investigate the intra- and inter-rater

variability of the manual delineations, two raters (X.T. and J.H.)

performed the manual delineations twice with more than 3-week

intervals. To quantitatively evaluate the parcellation accuracy of

our algorithm, we used four measurements:

1. Dice overlap coefficients

We calculated the Dice overlap coefficients between the

manually delineated 2D ROI and the corresponding ROI in the

automated parcellations. The Dice overlap coefficient is calculated

as: D~
2TP

2TPzFPzFN
, where TP is the area of the region that

belongs to both the automated ROI and the manual ROI, FP is

the area of the region that belongs to the automated ROI but not

the manual, and FN is the area of the region that belongs to the

manual ROI but not the automated.

2. The correlation between the size of the manually delineated

ROI and that of the automated ROI.

3. The correlation between the mean FA value of the manual

ROI and the mean FA of the automated ROI.

4. The correlation between the mean MD value of the manual

ROI and the mean MD of the automated ROI.

To evaluate the improvement in parcellation accuracy given by

the multi-contrast approach, we compared the parcellations from

the 5-contrast multi-atlas approach (FA, MD, vector elements x, y,

and z, combined), with those obtained from the same multi-atlas

but with only a single contrast — FA-only, MD-only, and a three-

contrast approach — EV-only (x, y, z combined). These four

methods vary from each other only in the computation of Eq. (14).

To compare the four methods statistically, for each structure, we

performed a one-way ANOVA to examine significant difference

among the Dice results obtained from the four approaches. For

statistical correlation analysis, we used William’s modification of

Hotelling’s test [72].

For the scan-rescan reproducibility test, we investigated

the volume difference between the automated parcellations

of the same structure from the two scans for the

same subject. The volume difference is computed as:

VD~
Dvol(ROI1){vol(ROI2)D

vol(ROI1)zvol(ROI2)ð Þ=2
, where vol(ROI1)denotes the

volume of a specific ROI for scan 1 and vol(ROI2)denotes the

volume of the same ROI for the second scan of the same subject.

In addition, we examined the difference between the mean FA

value of the automated parcellation of each single structure for the

first scan and that of the automated parcellation for the second

scan, as well as the difference between the mean MD values.

Figure 4. A comparison of the CST correlation obtained from using a single-contrast image and multi-contrast images. A correlation
plot between the automated and manual measurements of the sizes of left and right corticospinal tracts (CST). Results from the four automated
parcellation methods are compared: 5-contrast (red), FA-only (green), MD-only (blue), and EV-only (yellow).
doi:10.1371/journal.pone.0096985.g004
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Results

Figure 1 demonstrates the concept of the multi-contrast image

parcellation using five different contrasts obtained from DTI as

well as the concept of characterizing the intensity distribution of

each contrast using a GMM. The five selected structures are

spatially adjacent to each other and need to be accurately

demarcated based on their contrast features. Each of the five

contrast rows cannot uniquely differentiate all the five structures,

but each column (structure) has a unique contrast signature by

combining these five contrasts. For example, the distinction

between the tissue and the ventricle is most clear on the MD

image, while the distinction between the caudate and the anterior

limb of internal capsule (ALIC) is most clear on the FA image.

Likewise, the difference between ALIC and the posterior limb of

internal capsule (PLIC) is largest in the eigenvector image. The

GMM quantitatively characterizes the contrast features delineated

by these multi-channel histograms.

Figure 2 shows results of Dice measurements, reporting spatial

agreement with manual delineation. The 5-contrast approach is

compared with FA-only, MD-only, and EV-only approaches.

Because of the unique contrast signature of each structure, the best

contrast that can accurately define it varies. For example, to define

the contricospinal tract (CST), the EV provides the best accuracy,

but it provides poor results to define the putamen, which is best

defined by FA or MD. The 5-contrast approach performs well for

all structures. According to the results from the one-way ANOVA,

we found statistical differences among the 4 approaches in 11

structures, in which the 5-contrast approach consistently achieved

one of the best results. These structures include: the caudate, the

putamen, the cingulate gyrus, the middle cerebellar peduncle, and

the corticospinal tract in both hemispheres. The absolute Dice

level was 0.8-0.9. Note that some structures are difficult to define

even manually with perfect reproducibility. A good example is the

superior longitudinal fasciculus (SLF), which has a vague structural

boundary and the inter-rater variability is large (Dice = 0.8+/2

0.259). Because the manual definition is used as the gold standard,

the spatial matching cannot be better than the inter-rater spatial

matching (automated methods cannot be more accurate than

manual delineation by definition).

The correlation coefficients between the sizes of the manual and

the automated parcellations obtained from the four approaches for

all the eighteen ROIs are listed in Table 3. For some structures,

the ROI sizes from all the four automated approaches are highly

correlated with the ROI sizes of the manual delineations.

However, structures such as the caudate, the corticospinal tract

(CST), and the cingulate gyrus (CG), the performance varies from

approach to approach. In Figure 3 and Figure 4, we show

examples of the correlation plot between the automated and

manual approaches for a gray matter (caudate) and a white matter

(CST) structures.

Figure 5 shows actual parcellation results of the CST in the

brainstem of subjects with different degrees of abnormalities,

which demonstrates how the integration of five contrast informa-

tion can accurately delineate the sizes. In this example, the fiber-

orientation information in the EV contrast is necessary to

accurately reflect the small CST sizes in Case #3. Namely, the

CST has a characteristic Z-orientation (blue) fiber orientation,

which can uniquely differentiate the CST from the surrounding

high-FA white matter structures. The integration of the EV

information provides strong constraints for the parcellation,

specifically defining the high-FA regions with a strong orientation

alignment along the Z axis. The FA-, MD-, and EV-onlyT
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approaches extracted the CST accurately for Case #1 and #2,

but grossly overestimated the CST size for Case #3.

Based on the comparison results shown in Table 3, significant

improvement of the correlation between the size of the automated

parcellations and that of the manual delineations was achieved by

the 5-contrast approach, compared with the other single contrast

approaches. Likewise, we performed the manual-auto correlation

analyses of the mean FA and MD values within each single ROI.

As shown in Table 4 and 5, again, the 5-contrast approach is

consistently superior to the other three approaches in terms of

either FA or MD correlation.

Figure 6 demonstrates parcellation results for three patients with

different degrees of abnormalities. A high level of parcellation

accuracy is visually appreciable for the wide variety of anatomical

states.

According to our test-retest experiments, the reproducibility

results were 4.7%, 2.19%, and 2% for the volume, FA, and MD,

respectively, averaged over all 193 structures. If we remove 26

small gray matter structures (,1000 mm3), the reproducibility

improves to 3.73%, 1.91%, and 1.79% respectively. These small

gray matter structures had poor test-retest reproducibility because

they lack clear contrasts in DTI and they are usually not the

targets of DTI measurements.

Figure 7 shows the maps of cross-subject variability in the

volume, FA, and MD measurements. The cross-subject variability

is computed for each label of interest. It is quantified as the ratio of

the standard deviation to the mean value across the sixteen

subjects. A large amount of morphological variability was found in

the ventricle volumes, while the standard deviations of the volumes

of white matter structures are in 10-20% range. The standard

deviations of the FA and MD were noticeably lower and most

areas were below 10%. The table in Appendix shows a

comprehensive report of the test-retest reproducibility and the

cross-subject variability of all the 193 defined structures. These

values should provide useful information for power calculation in

future study designs.

Discussion

In this study, we developed and tested an automated image

parcellation method based on a multi-contrast multi-atlas likeli-

hood-fusion algorithm. DTI can generate multiple quantitative

maps with markedly different qualities of anatomical contrasts.

The mean diffusivity contrast provides clear distinction between

the tissue (generally within the range of 0.6–0.9 cm2=s) and the

CSF (approximately 3.0–3.5 cm2=s), providing a strong con-

straints to define the ventricles and the brain surface. The FA

contrast provides sharp distinction between the gray (typically

FA,0.15–0.25) and white matter structures (FA.0.15–0.25). The

eigenvector (EV) can differentiate intra-white matter structures

based on their characteristic orientations. In this work, we used the

absolute values of the three components, EV-x, EV-y, and EV-z.

While this approach solves the difficulties associated with the sign

of the eigenvectors, some orientation information degenerates

[73]. This is obviously a simplified approach and there is room for

improvement. The mixture of these three types of information

could also invite noise. For example, in the low-FA gray matter

structures, the fiber orientation information may be random and

should not receive significant weighting. This type of weighting is

naturally achieved by incorporating the variability information

about the voxel values within a single parcellated structure; for

example, the EV information of the thalamus in Figure 1 shows

almost equal values for the X, Y, and Z channels with high intra-

structure variability. In Eq. (18), we use mixtures of Gaussians to

model the intensity distribution within a single structure. If the

intensity within the structure is homogeneous, the algorithm

automatically assigns weight 1 to a single Gaussian. If there is high

intra-structure variability, multiple Gaussians will be used to

model the intensity, with each Gaussian being given a small

weight. In this way, it effectively reduces the contribution of this

contrast information in computing the quantity

p(Im(x)jW ,a),m[fFA,MD,EV� x,EV� y,EV� zg in Eq. (14).

By incorporating the consistent anatomical signatures into the

parcellation criteria, we aim to achieve robust parcellation. In the

past, multi-contrast image registration approaches have been

postulated including ones for DTI data [60,74–79]. These tensor-

or vector-based registration also indicated improved registration

accuracy [56–59]. The proposed method can be considered as an

extension of these previous works by incorporating them into a

multi-atlas framework.

The improved accuracy, with respect to a single-contrast

approach, is shown in Figure 2 using Dice measurements. While

the performance of single-contrast approaches varies depending

on the structure, the five-contrast approach consistently achieved

Figure 5. Examples of CST parcellations from single- and multi-contrast approaches. Demonstration of the parcellation accuracy of the
CST in three representative cases with different degrees of anatomical abnormalities. Results from five different approaches are compared.
doi:10.1371/journal.pone.0096985.g005
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the highest level of accuracy. As mentioned in the Results section,

the accuracy of the automated method cannot be higher than the

reproducibility level of the manual delineation. In this sense, the

results in Figure 2 indicate that the five-channel approach is as

good as a human rater. Careful observation of this figure reveals

that, for many core white matter structures with distinctive and

uniform tract orientations, the eigenvector contrast alone can

provide a similar level of accuracy as the five-contrast method,

Figure 6. Examples of whole brain parcellations. Results of the whole brain parcellations into 159 structures in three representative cases with
large anatomical variability. The parcellation results are superimposed on color (upper row) and MD (bottom row) images.
doi:10.1371/journal.pone.0096985.g006

Figure 7. Depiction of the cross-subject variability in different whole brain structures of interest. Demonstration of the cross-subject
variability (std/mean) within the 16 healthy subjects for each of the 193 anatomical regions. The population variability in terms of ROI volume (top
row), the mean MD of each ROI (middle row), and the mean FA of each ROI (bottom row) are shown. The results are presented for three difference
axial slices using a colormap with the color scale ranging from 0 to 0.5.
doi:10.1371/journal.pone.0096985.g007
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suggesting that the parcellation was mainly driven by the

eigenvector contrast. However, if a structure is not characterized

by a uniform fiber orientation due to curvature within a segment,

such as GCC and BCC, the eigenvector may not always be the

most reliable contrast.

While the Dice measurements (Figure 2) provide important

information about the accuracy level of the automated parcella-

tion, it is probable that the correlation results reported in Table 3

are more important for actual image-based studies. Anatomical

delineations of brain structures depend on anatomical definitions.

It is reasonable that there is consistent difference in boundaries of

defined structures between two different approaches. In this sense,

low Dice values do not necessarily mean that the automated results

are not useful. The high correlation between the manual and

automated methods indicates that they have similar powers to

differentiate different anatomical states, which is ultimately the

goal of quantitative analyses. In this respect, the high correlation

between the 5-contrast and manual approaches is an encouraging

result.

One limitation of our accuracy evaluation is that the measured

structures were limited to the core brain structures, which can be

reproducibly defined manually. This is inevitable because the

manual delineation results were used as the gold standard. As

reported in the Results section, one of the core white matter

structures, the SLF, suffered from low inter-rater reproducibility

due to its complex shape. Reproducible definitions of peripheral

white matter regions by manual tracing would be prohibitively

difficult and, due to the absence of the gold standard, the accuracy

measurements of the proposed automated segmentation were

challenging. In this study, we are therefore limited to reporting

test-retest reproducibility and population variability measure-

ments, which could be important resources for power analyses of

the proposed method.

The test-retest reproducibility showed less than 5% variability

for the volume measurement for most of the defined structures (see

Appendix table).The test-retest reproducibility measures of FA and

MD indicated higher reproducibility (less than 3%). The

anatomical variability for the 193 measured structures reported

in Figure 7 should provide information for power analysis to

design population studies.

In this study, we reported the accuracy level of the multi-

contrast multi-atlas approach for a wide range of anatomical

phenotypes. The performance of this technology relies heavily on

the availability of atlases with consistent parcellation criteria.

Creation of such atlases is a time consuming task, which is one of

the limitations of this approach. The accuracy of the parcellation

is, of course, influenced by the extent of the anatomical

abnormality. Conceptually, the greater the number of the atlases

and the wider the anatomical range the inventory includes, the

wider the applicability of the tools regardless of the anatomical

findings/pathology. However, the larger number of the atlases

would cost computational time. In the current study, we used

sixteen atlases. The relationship between the number and

properties of the atlases and the resultant accuracy and applicable

anatomical range is not systematically analyzed in this study,

which is an important future investigation.

An interesting extension of this discussion is the necessity of a

‘‘normal’’ definition. Usually, when we establish a population-

based atlas, we invest great efforts to make sure the population

consists of real, normal, healthy subjects. The involvement of

abnormal cases in the atlas building would make the atlas biased.

In the proposed multiple-atlas approach, we need to make sure

that the atlases cover a wide range of anatomical phenotypes, at

least if the approach is to have clinical applications; if a structure of

interest is dislocated to a position beyond the range of all atlases,

the likelihood would become zero and we cannot get correct

parcellation. In this process, the achievement of accurate labeling

is an independent issue from whether we define the normal

anatomy in the atlases.

In conclusion, we developed a multi-contrast multi-atlas image

parcellation algorithm and applied it to whole brain parcellations

in DTI data. Compared to single-contrast approaches, improved

parcellation accuracy was confirmed. Anatomical structures in

patients with a wide range of anatomical states could be accurately

parcellated by incorporating various anatomical phenotypes in the

atlas inventory.

Supporting Information

Appendix S1 Quantification of the test-retest reproduc-
ibility and the cross-subject variability in the volumetric
measurement, the mean FA value, and the mean MD
value, for each of the 193 ROIs.

(XLSX)
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