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Chromatin marks shape mutation landscape at early stage of

cancer progression

Kyungsik Ha'?, Hong-Gee Kim'? and Hwajin Lee’

Somatic mutation rates in cancer differ across the genome in a cancer cell-type specific manner. Although key factors that
contribute to the differences were identified, the major cancer progression stage when these factors associate with the mutation
variance remained poorly investigated. Here, we analyzed whole-genome sequencing data of pre-cancerous and matching cancer
tissues from 173 individuals and 423 normal tissue chromatin features to determine the critical stage of these features contributing
to shaping the somatic mutation landscape. Our data showed that the establishment of somatic mutation landscape inferred by
chromatin features occur early in the process of cancer progression, and gastric acid reflux environmental exposure-mediated
epigenetic changes, represented as gastric metaplasia, at early stage can dramatically impact the somatic mutation landscape. We
suggest a possible crucial role of chromatin features during the mutation landscape establishment at early stage of progression in a

cancer-type specific manner.
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INTRODUCTION

Recent advances in cancer genomics have so far revealed
numerous somatic mutation landscapes for various cancer types,
leading to a number of key findings. Identification of new driver
gene mutations, deciphering clonal evolution structure, and
profiling tumor heterogeneity within and among different patients
through examination of mutations, mainly at the gene level,'”’
have successfully addressed the genes contributing to cancer
progression and identified novel therapeutic targets. Beyond these
gene-focused approaches, systematic analyses of mechanisms that
could explain genomic regional variations in mutation rates across
various cancer types could significantly extend our understanding
about common contributors to the establishment of mutation
landscapes before and during cancer progression. To this end, a
number of studies have examined relationships between regional
mutation frequencies across the genome and several types of
features, including gene expression level, DNA sequence context,
mutation profiles of nucleotide excision and mismatch repair
genes, histone post-translational modifications, and open chroma-
tin marks such as DNase1-seq profiles.2'® Although these factors
display high correlation with regional mutation rates, somatic
mutation profiles used for the studies were limited to fully
progressed tumors. Thus, it remains unknown whether the
correlations between regional mutation frequencies and cell-of-
origin chromatin marks are established either gradually during
cancer progression or during a specific critical time period, either
pre-or post-malignancy. Analyzing the mutation landscapes of
precancerous, non-neoplastic tissues alongside matching cancer
tissues could help to determine the major time points where
chromatin marks shape the mutation landscape.

Here, we analyzed a total of 38 precancerous lesions including
monoclonal B cell lymphocytosis (MBL) and Barrett's esophagus
(BE) (methods). Representative matching cancer types were also

analyzed, corresponding to a total of 144 tumor samples from
chronic lymphocytic leukemia (CLL) and esophageal adenocarci-
noma (EAC). In addition, a total of 14 esophageal squamous cell
carcinoma (ESCC) samples were analyzed to represent cancer
without any defined precancerous stages during progression with
a matching cell-of-origin.

RESULTS

Precancerous tissues and matching cancers display similar
regional mutation frequency profile

We first performed principal coordinate analysis (PCOA) to test
whether the average mutation rate differences reported pre-
viously'® "7 were reflected in the level of 1-megabase window
regional mutation frequencies. Consistent with the differences in
average mutation frequency, both MBL samples and CLL samples
were indistinguishably located and formed separate clusters
based on immunoglobulin heavy chain variable region (IGHV)
mutation status, a key marker for distinguishing either naive-B
cells or memory B cell origin for both MBL and CLL.'® '® These
results indicate that cell-of-origin differences might contribute to
the differences in regional mutation frequencies, rather than
cancer progression-based status alone (Fig. 1a). In contrast,
individual BE tissues formed clusters with the EAC tissues separate
from the ESCC tissues, suggesting that the matching of cancer
progression history might serve as a stronger factor than the cell-
of-origin context (Fig. 1b). Collectively, these results show
similarity in regional variation in mutation frequencies of
precancerous tissues and matching cancer types and the
differential effect of cell-of-origin context depending on the
cancer types.

'Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul 151-742, South Korea; ZInterdisciplinary Program of Medical Informatics, College of Medicine,
Seoul National University, Seoul 110-799, South Korea and 3Dental Research Institute, School of Dentistry, Seoul National University, Seoul 151-742, South Korea

Correspondence: Hong-Gee Kim (hgkim@snu.ac.kr) or Hwajin Lee (hwajin2k@gmail.com)

Received: 9 November 2016 Revised: 6 February 2017 Accepted: 21 February 2017

Published online: 03 April 2017

Published in partnership with the Center of Excellence in Genomic Medicine Research

NP| nature partner
pJ journals


http://dx.doi.org/10.1038/s41525-017-0010-y
mailto:hgkim@snu.ac.kr
mailto:hwajin2k@gmail.com
www.nature.com/npjgenmed

npj

Chromatin marks shape mutation landscape

K Ha et al
2
a
=]
N 4
=]
= 4 ..t - ‘. Lo
=) $ $
~ o 2% : o
] . Pl B
- %Y .
g o | -,!'_." .
3 ° o, .t
o . . % . .
o . .
- -,
= . ¢
© T . .
2
%}
£ ~
£ 7 . '
) .
prgs
T
<
S -
T
T T T T T
-0.4 -0.2 0.0 0.2 0.4
Principal coordinate 1
Cell Type n
CLL IGHV unmutant 69
MBL IGHV unmutant 2
CLL IGHV mutant 52
MBL IGHV mutant 13

Fig. 1
esophagus, esophageal adenocarcinoma, and ESCC

IGHV mutation context distinguishes the effect of CD19 chromatin
features on the establishment of the somatic mutation landscape
for both MBL and CLL

Whole-genome analyses of distinct cancer types depict cell-of-
origin chromatin marks as the strongest feature explaining the
cancer mutation landscape, with a number of proposed mechan-
isms.'® Based on the IGHV mutation status-based clustering of MBL
and CLL tissues in PCOA, we hypothesized that differential IGHV
mutation status would correlate with distinct chromatin features
explaining the regional mutation variation, and similar chromatin
features would come up as significant when comparing IGHV
mutation type-matching MBL and CLL genomes. To confirm the
former part of the hypothesis, we first employed a random forest
regression-based chromatin feature selection algorithm to identify
significant chromatin features explaining the variance in regional
mutation rates for different sample groups. Indeed, significant
chromatin features explaining regional mutation variations were
different between IGHV mutant and unmutant groups (Supple-
mentary Fig. 1a). Top-ranked chromatin features for both groups
were derived from CD19-positive cells, which is expected since the
CD19 marker cannot distinguish between naive and memory B
cells. To further examine whether the differences in chromatin
features were cell-type dependent, we performed chromatin
feature selection after removing the 1 Mbp regions containing
IGHV mutation status-associated differential DNA methylation
single-nucleotide polymorphisms (SNPs), which also highly over-
laps with differential DNA methylation SNPs between naive and
memory B cells.'®2" This approach resulted in 3 out of 4 top
significant chromatin features overlapping between the IGHV-
mutant and unmutant groups (Supplementary Fig. 1b), implying
that the differential chromatin features explaining mutation
frequency landscapes of distinct IGHV mutation status might
actually correlate with differences in cell-of-origin context. Next, we
compared chromatin features that might explain regional mutation
variations across the genomes of IGHV-mutation-status-matched
MBL and CLL tissues. Due to the limits of sample size and average
mutation rate of the samples, only IGHV-mutant MBL and CLL
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genomes were subjected to further analyses. Notably, the top
ranked chromatin feature explaining the mutation variance was
identical between IGHV-mutant MBL and CLL samples (Fig. 2a),
implicating that the subset of chromatin marks might commonly
infer the formation of regional mutation landscape for both pre-
cancerous tissues and matching cancer type. Additional examina-
tion of simple correlation between regional mutation frequency
and histone modification levels derived from CD19-positive cells at
the 1-megabase-level revealed no apparent differences between
MBL and CLL tissues (Fig. 2b and Supplementary Fig. 2a). The
correlation between the CD19 DNasel-seq profile or CD19
H3K4me1 and regional mutation frequency was higher for CLL
than MBL for chromosome 2 (Fig. 2c) and other chromosomes
(Supplementary Fig. 3a), but this finding might be due to the
different number of samples between MBL and CLL, as the
correlation score for MBL for all of the chromosome was highly
similar to the correlation scores for CLL (—0.76 vs. —0.75 for DNase1-
seq, —0.74 vs.—0.75 for H3K4me1) after sample-number matching.
These results demonstrate that the cell-of-origin chromatin
context, defined by the IGHV mutation status, serves a major role
in shaping the mutation landscape of both MBL and CLL tissues,
suggesting that the cell-of-origin chromatin landscape could shape
the establishment of the somatic mutation landscape of CLL, even
before the precancerous cell type, MBL, is apparent.

Epigenetic shifts caused by metaplasia, driven by acid reflux,
explains the establishment of the somatic mutation landscape for
both BE and EAC

Cell type shift, represented as repeated gastric acid reflux-derived
gastric metaplasia, is one of the main hallmarks in the develop-
ment of BE.>? Thus, one could assume that the critical time point
for the establishment of the mutation landscape for BE could be
either before or during the course of cell type shift, implying the
gradual mutation accumulation process, or after its completion,
suggesting non-gradual mutation accumulation along the course
of cancer progression. Chromatin feature selection analysis of the
mutation landscape of BE and EAC tissues confirmed that high-
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ranked chromatin features were derived from the stomach tissue
type, an epigenetically representative matching tissue for gastric
metaplasia, for both tissues, without any significant esophageal
chromatin features (Supplementary Fig. 4). Simple correlation
between regional mutation frequency and histone modification

a IGHV-mutant MBL IGHV- muta
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marks from stomach and esophagus tissues revealed no apparent
differences between BE and EAC tissues (Supplementary Fig. 2b,
c), and this pattern was also consistent with the correlation to
stomach tissue DNasel-seq profile (Supplementary Fig. 3b).
Moreover, six features covering all stomach chromatin features
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Fig. 2 Cell-of origin chromatin features representing association with the regional mutation frequency of CLL and the corresponding
precancerous cell type, MBL. a Random forest regression-based chromatin feature selection in relations to the regional mutation frequency of
IGHV-mutant MBL and CLL samples. Each chromatin feature is ranked by importance value, and variance explained scores are represented by
bar length. Error bars demonstrate minimum and maximum values derived from 1000 repeated simulations. Red lines display variance
explained scores determined by 423 features—1 SEM, and CD19 chromatin features are green-colored. b Univariate correlation between CD19
chromatin features that displayed significance in the feature selection models and the regional mutation density of IGHV-mutant MBL or CLL.
Spearman’s rank correlations (r) are shown on each plot. ¢ The density plot for regional mutation density of IGHV-mutant MBL or CLL and
CD19 DNase1 accessibility index (reverse scale) across the full chromosome 2. Spearman’s rank correlations (r) are shown on each plot

«

subjected to the feature selection analysis solely explained over
80% of the regional mutation variance for both BE and EAC
tissues, which is unlikely to be random (p-value < 2.2e-16)
(Supplementary Fig. 5). These results imply that the major time
point of mutation landscape establishment for BE is most likely to
be after the cell type shift into stomach mucosa-like cells.
Chromatin feature selections on subgroups of somatic mutations
for BE and EAC based on overlap and uniqueness of the mutations
shared common top-ranked stomach chromatin features (Fig. 3a),
further supporting the establishment of mutation landscape after
the metaplasia. In addition, chromatin feature selection on sample
subgroups with respect to dysplasia grades revealed that the top
features all originated from stomach tissue (Supplementary Fig. 6)
and the variance explained level for all of the dysplasia-based
subgroups using six stomach tissue chromatin features were
similar to the variance explained level using all 423 chromatin
features (Fig. 3b). These findings were consistent with the high
correlation to stomach tissue DNasel-seq profile (Supplementary
Fig. 3c). Next, we sought to further determine whether the
contribution of stomach mucosa chromatin features were indeed
more crucial than esophagus chromatin features for shaping the
mutation landscape of BE through an independent type of
analysis. For this, H3K4me1 chromatin feature was used since this
single feature explains most of the variance in mutation frequency
of BE. Ninety-two 1-megabase regions displaying differential
H3K4me1 levels were selected (methods) based on the specula-
tion that these regions would likely to represent accelerated
mutation accumulations through epigenetic changes during
gastric metaplasia. Subsequently, we predicted mutation frequen-
cies in the 92 regions by linear regression-based modeling using
H3K4me1 level of either stomach mucosa or esophagus tissue
(methods). Comparing the observed and predicted mutation
frequencies in the 92 regions revealed that the mutation
frequencies predicted by H3K4mel of stomach mucosa was
similar to the observed regional mutation frequencies, but the
mutation frequencies predicted by H3K4me1 of esophagus tissue
was significantly different from the other two groups (Supple-
mentary Fig. 7a). Moreover, regions with larger differences in
H3K4me1 level overall display higher accuracy of mutation
frequency predicted by using H3K4me1 level of stomach mucosa
(Supplementary Fig. 7b). These result further implicate that the
chromatin features from stomach mucosa provide major con-
tribution for establishing the mutation landscape of BE, as
opposed to the chromatin features of esophagus tissue, a cell-
of-origin for BE. From all of these results, we infer an early time
point for establishment of the mutation landscape for EAC, even
prior to the occurrence of dysplasia for BE, but most likely after
epigenetic changes due to gastric metaplasia.

Cell-of-origin of major chromatin features associated with
mutation landscape establishment for BE, EAC, and ESCC are
different

To ensure that the chromatin features shaping the mutation
landscape of BE and EAC were not common for any esophageal
cancer type, we analyzed the genome of ESCC, another cancer
type derived from the esophageal squamous epithelium without
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any precancerous stages going through cell type shift during the
progression. Although the regional mutation frequency of ESCC
displayed univariate correlation with histone modification marks
from stomach and esophagus tissues in a similar manner
(Supplementary Fig. 2d), chromatin feature selection revealed a
subset of squamous cell type and esophagus chromatin features
that were significant and distinct from BE and EAC (Supplemen-
tary Fig. 8). Moreover, measuring the level of variance explained
values per tissue or cell type categories showed stomach
chromatin features to be the strongest ones for BE and EAC,
reaching higher than 90% of the variance level explained by the
423 total chromatin features, whereas esophageal chromatin
features were dominant for ESCC (Fig. 4). Notably, the variance
explained values for each category displayed non-significant
relationship with simple correlations between the chromatin
marks from different tissue or cell types (BE r;=0.24, EAC r,=0.24,
ESCC ry=-0.12). These results imply a distinct process of mutation
landscape establishment for these cancer types that varies
depending on the presence of precancerous tissues with cell-
type shifts.

DISCUSSION

In this study, we performed an integrative analyses utilizing
whole-genome sequencing data from 173 individuals represent-
ing precancerous tissues (MBL and BE) and matching cancer types
(CLL, BE, and ESCC) combined with 423 epigenomic features
derived from normal tissues to elucidate the major time point at
which these features play a role in establishing mutation
landscape of cancer at early-stage of the progression. These
analyses were important to investigate the possible role of
chromatin features on shaping cancer somatic mutation land-
scape at early stage of progression along with possibly inferring
previously uncovered intermediate stage of precancerous tissue
development in terms of somatic mutation accumulations.

One of the major findings in our work is that the major time
point for the establishment of the mutation landscape shaped by
chromatin marks could be early, even prior to the phenotypic
emergence of precancerous tissues. This finding was consistent for
both of the precancerous tissues, MBL, and BE. Although
additional whole-genome sequencing data on other types of
precancerous tissues might further confirm our findings, these two
tissue types do represent two major categories of pre-cancerous
tissues, one with metaplasia and one without it.

One thing to note is that our results display non-universal
chromatin features identified as significant in different cancer
types. The reason for these differences in the extent of variance
explaining values for any distinct chromatin feature could be
complex, and the reason might be due to the tissue type-
dependent differences in the mechanisms of epigenetic regula-
tion plus the differences in major contributing chromatin features
serving as either euchromatin or heterochromatin marks. One
mechanistic approach to assess the extent of chromatin features
contributing to mutation landscape is using CRISPR-Cas9
system to incorporate mutations on chromatin enzymes leading
to global epigenetic changes, and then inducing somatic

Published in partnership with the Center of Excellence in Genomic Medicine Research
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Fig. 3 Regional mutation frequency landscape of Barrett’s esophagus and matching esophageal adenocarcinoma are affected by cell-type-
shift-associated epigenetic changes. a Chromatin feature selection based on the commonality of mutations in paired samples of Barrett's
esophagus and esophageal adenocarcinoma. Barrett’s only: mutations observed only in the Barrett’s esophagus genome, Common: mutations
observed in common for both Barrett’s esophagus and esophageal adenocarcinoma genomes, EAC only: mutations observed solely in the
esophageal adenocarcinoma genome. b Bar graph representing average variance explained scores using either stomach chromatin features
(navy) or all 423 epigenomic features (gray). ND: no dysplasia, LGD: low-grade dysplasia, HGD: high-grade dysplasia, EAC: esophageal
adenocarcinoma. Error bars demonstrate minimum and maximum values derived from 1000 repeated simulations

mutations using various types of mutagens to examine the effect Finally, analyses results from BE and EAC also raise the
of different epigenetic features on shaping mutation landscape, possibility that epigenetic changes due to environmental insults,
which could be one of the strong candidates for any follow-up represented as a cell type shift, could serve as a primary role for
research. establishing the mutation landscape of at early stage of cancer
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Fig.4 Regional mutation frequency landscape of esophageal squamous cell carcinoma demonstrates the uniqueness of significant chromatin
features associated with the Barrett’s esophagus and esophageal adenocarcinoma genomes. Average variance explained scores for pre-
cancerous or matching cancer genomes were separately calculated using the tissue or cell type-based subgroup-classified chromatin features.
The pink panel represents subgroups with the highest variance explained score for each cell type. The red line indicates the variance explained
score when using all 423 epigenomic features. Dots represent the Spearman’s rank correlations (r) of chromatin features between the highest
variance explained-scored subgroup and the remaining subgroups. Error bars demonstrate minimum and maximum values derived from 1000

repeated simulations

progression. Although there are possibilities that esophagus tissue
chromatin features could still be involved in shaping the mutation
landscape of BE in a minor manner, our analyses demonstrated
that the stomach tissue chromatin features serve as a key factor
shaping regional variations in somatic mutation frequency of BE.

Taken together, this study provides novel insights to the
mechanisms acting on shaping somatic mutation landscape at
early-stage cancer progression, as well as suggesting possible
dynamic contributions of chromatin features in this process. Based
on our findings, we propose that the mutation accumulation
process at early stage of the cancer progression could be non-
gradual with possible intermediate stage depending on the
presence of metaplasia (Supplementary Fig. 9). Further compre-
hensive studies to decipher the mutation landscape of other
precancerous tissues with metaplasia and discover the exact
mechanisms controlling the timing of mutation landscape
establishment would lead to a better understanding of the effect
of epigenetic marks on shaping the precancerous tissues and
matching cancer genome and help identify possible biomarkers
for early-stage detection of cancer.

npj Genomic Medicine (2017) 9

METHODS
Data

For the purposes of our project, we used somatic mutation data from CLL,
MBL, BE, EAC, and ESCC tissues. In the case of CLL and MBL genome data,
total mutations were acquired from Supplementary Table 2 of the
publication,’® consisting of 136 samples (13 IGHV-mutant MBL, 2 IGHV-
unmutant MBL, 52 IGHV-mutant CLL, and 69 IGHV-unmutant CLL). In the
case of BE, EAC, and ESCC, data use were authorized from ICGC (http://icgc.
org) and BGI (http://www.genomics.cn/) before use. A total of 23 pairs of
BE and matching EAC genomics data'’ were authorized from ICGC and
genome data of 14 ESCC samples®® were acquired from BGl. These data
sets were subsequently analyzed following the standard GATK pipeline
(https://www.broadinstitute.org/gatk/) and somatic variants were called
using the MuTect algorithm®® (https://www.broadinstitute.org/cancer/cga/
mutect).

A total of 423 epigenomics and chromatin data were from the NIH
Roadmap Epigenomics Mapping Consortium?> and ENCODE.?® NIH Road-
map Epigenomics data were accessible from the NCBI GEO series
GSE18927, referring to the University of Washington Human Reference
Epigenome Mapping Project.

To calculate the regional mutation density and mean signal of chromatin
features, all autosomes were split in 1-Mbp regions followed by filtering
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out regions containing centromeres, telomeres, and low quality unique
mappable base pairs. To determine regional mutation density and histone
modification profiles, we counted the total number of somatic mutations
or ChIP-seq reads per each 1-megabase region. For analyzing the DNase |
hypersensitivity and Repli-seq data, scores of DNase | peaks and replication
were calculated per each 1-megabase region. For somatic mutations, ChIP-
seq data and DNase | hypersensitivity data, BEDOPS?” was employed to
calculate the frequency and scores per each 1 Mbp region.

Principal coordinate analysis

PCOA was used to represent differences in mutation frequency distribution
among the individual samples. A dissimilarity matrix was built using 1—
Pearson correlation coefficient across all samples. Each sample location
was assigned in a two-dimensional space using this matrix.

Feature selection based on random forest regression

A random forest regression-based feature selection algorithm was
performed as described'® with modifications. Briefly, the training set for
each tree was constructed, followed by using out-of-bag data to estimate
the mean squared error. Thus, there was no need to perform additional
tests for error evaluation. Out-of-bag data were also used to estimate the
importance of each variable. In each out-of-bag case, the values
corresponding to each variable were randomly permuted, then tested to
each tree. Subtracting the score of the mean squared error between the
untouched out-of-bag data cases and the variable-m-permuted cases, the
raw importance score of variable m was measured. By calculating the
average score of variable m in the entire tree, the rank of importance for
each variable was determined. A total of 1000 random forest trees were
employed to predict mutation density using a total of 423 chromatin
features. Every random forest model was repeated 1000 times.

After the random forest algorithm step, greedy backward elimination
was performed to select the top 20 chromatin variables. Subsequent
removal of the lowest rank variable was done to calculate the variance
explained value measurements for each variable. To conduct feature
selection on all of the samples corresponding to the particular pre-
cancerous tissues or cancer types, mutation density was calculated by
adding samples in each case. However, a number of particular analyses
employed the subgrouping of samples. In the case of chromatin feature
selection assessing the effects of differential DNA methylation between
IGHV-mutants and unmutants (Supplementary Fig. 1b), a total of 935
regions containing differentially methylated CpGs*® were removed prior to
the analysis. To perform feature selection classified by differential dysplasia
states (Supplementary Fig. 6), samples were divided into three groups:
17 samples of no dysplasia, 3 samples of low-grade dysplasia, and
2 samples of high-grade dysplasia. In the case of feature selection after
subgrouping for distinct and common mutations (Fig. 3a), all mutations in
paired-samples of BE and EAC were divided into three different groups:
Barrett's only, EAC only, and common mutations.

Analysis of mutation frequency variance explained by chromatin
features

To examine the effect of a particular cell-type specific chromatin context
on explaining regional variability of mutation density across the genome,
chromatin features were subgrouped based on the feature selection
algorithm. To study the differences in variance explained values among
distinct cell types, nine groups were categorized (Fig. 4). Each group
included five chromatin markers common among the groups: H3K27me3,
H3K36me3, H3K4me1, H3K4me3, and H3K9me3. Random selection of six
chromatin features were either from all of the 423 features or 417 features
(excluding stomach mucosa chromatin features) (Supplementary Fig. 5).
Random selection of chromatin features was repeated 1000 times, then the
average variance explained values and permutation distributions were
obtained.

Prediction of regional mutation frequencies in 1-megabase
genomic regions with differential chromatin levels

To select 1-megabase genomic regions with differential H3K4me1 levels,
we calculated residual values derived from a linear regression model
between the H3K4me1 level of stomach mucosa and that of esophagus
tissue. To represent regions harboring differential H3K4me1 levels along
with increased mutation accumulation rates after gastric metaplasia, a total
of 92 regions were chosen based on the two criteria: (1) displaying top 5%
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in term of the residual values, (2) showing higher H3K4me1 levels in
esophagus than stomach mucosa. Subsequently, we built two separate
regression models, and then applied the model to predict the regional
mutation frequencies for the 92 regions. One regression model was
between observed mutation frequencies in BE with no dysplasia and
H3K4me1 level of stomach mucosa, and the other one was between
observed mutation frequencies in BE with no dysplasia and H3K4me1 level
of esophagus.

Code availability

Our core analysis code utilizing the random forest feature selection
algorithm is available on GitHub (code name: Random_forest_
Ha_mutation_epi).

Preprint availability

The preprint version of our manuscript is currently online at bioarxiv
(https://doi.org/10.1101/074724).
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